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Free abelian categories

Freyd showed that, given a skeletally small preadditive category R, for instance a
ring, or the category mod-S of finitely presented modules over a ring, there is an
embedding R → Ab(R) of R into an abelian category which has the following
universal property.

for every additive functor M : R → A, where A is an abelian category, there is a
unique-to-natural-equivalence extension of M to an exact functor M̃ making the
following diagram commute.

R //

M
""EEEEEEEEE Ab(R)

M̃
��
A

The category Ab(R) is realised as the category of finitely presented functors on
finitely presented left R-modules, or as the category of pp-pairs for left R-modules.

Theorem

For any ring or small preadditive category R, there are natural equivalences
Ab(R) ' (R-mod,Ab)fp ' RLeq+. Furthermore, with reference to the diagram

above, M̃ = Meq+, the enrichment of the R-module M by pp-imaginaries.
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For Example:

The free abelian category on the quiver A3 •→ •→ •
(rather, on its path algebra, equivalently on the preadditive category freely
generated by A3):
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Nori motives

(Grothendieck) The motive of a variety should be its abelian avatar: given a
suitable category V of varieties (or schemes), there should be a functor from V to
its category of motives. That category should be abelian and such that every
homology or cohomology theory on V factors through the functor from V to its
category of motives. So that functor itself should be a kind of universal
(co)homology theory for V.
In the case that V is the category of nonsingular projective varieties over C, there
is such a category of motives. But the question of existence for possibly singular,
not-necessarily projective varieties - the conjectural category of mixed motives - is
open.

In the 90s Nori described the construction of an abelian category which is a
candidate for the category of mixed motives. His idea is to construct from a
category of varieties V a (very large) quiver D such every (co)homology theory on
V gives a representation of D (or Dop). A particular representation - singular
homology - is then used to construct this category of motives.

(There is more involved than this, in particular a product structure on D is needed
to give a tensor product operation on the category of motives.)
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It turns out that Nori’s category of motives is a Serre quotient of the free abelian
category on D, the quotient being determined by the representation given by
singular homology.

In essence this first appeared in a paper of Barbieri-Viale, Caramello and Lafforgue
(arXiv:1506:06113), though it is not said this way. In that paper Caramello used
the methods of categorical model theory, in particular classifying toposes for
regular logic, and showed that Nori’s category is the effectivisation of the regular
syntactic category for a regular theory associated to Nori’s diagram D. This is a
much simpler construction than Nori’s original one, in particular there is no need
to approximate the final result through finite subdiagrams of D or to go via
coalgebra representations.

In that paper additivity appears at a relatively late stage of the construction. If we
build that in from the beginning then (Barbieri-Viale and Prest,
arXiv:1604:00153), we are able to apply the existing model theory of additive
structures and, in particular, to realise Nori’s category of motives as a localisation

of the free abelian category on the preadditive category Z
−→
D generated by Nori’s

diagram D.

(
−→
D is the category freely generated by D - so Z

−→
D is essentially the path algebra

of D).
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The Serre quotient associated to a representation

Theorem

Suppose that M is a representation of the small preadditive category R and let M̃
be its exact extension to the free abelian category on R. The kernel of M̃,
SM = {F ∈ Ab(R) : M̃F = 0}, is a Serre subcategory of Ab(R) and there is a

factorisation of M̃ as a composition of exact functors through the quotient
category A(M) = Ab(R)/SM .

R

M

��

j // Ab(R)

M̃

��

















$$HHHHHHHHH

A(M)

M̂
uujjjjjjjjjjjjjjjjjj

Ab
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Nori’s diagram

For the vertices, we take triples (X ,Y , i) where X ,Y ∈ V, Y is a closed
subvariety of X and i ∈ Z.

The arrows of D are of two kinds:
- for each morphism f : X → X ′ of V we have, for each i , a corresponding arrow
(X ,Y , i) → (X ′,Y ′, i) provided fY ⊆ Y ′;
- for each X ,Y ,Z ∈ V with Y ⊇ Z closed subvarieties of X , we add an arrow
(Y ,Z , i) → (X ,Y , i − 1).

A homology theory H on V gives a representation of this quiver by sending
(X ,Y , i) to the relative homology Hi (X ,Y ). Arrows of the first kind are sent to
the obvious maps between relative homology objects; those of the second kind are
sent to the connecting maps in the long exact sequence for homology.
Taking H to be singular homology, we obtain a representation of D and then the

corresponding Serre quotient A(H) = Ab(Z
−→
D )/SH of the free abelian category

turns out to be Nori’s category of motives.

In fact, more is needed. In particular there should be a tensor product structure
on motives. This is needed, for example, to express the Künneth formula.
In Barbieri-Viale, Huber and Prest, arXiv:1803.00809, we show how to induce this
structure. In particular we show how a tensor product on the category of
R-modules induces a tensor product on the free abelian category Ab(R).
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Lifting tensor product from modules to functors on modules

Suppose that R-mod has a tensor product. Then there is an induced tensor
product on the free abelian category Ab(R) = (R-mod,Ab)fp, defined as follows.

Given A,B ∈ R-mod, define ⊗ on the corresponding representable functors by
(A,−)⊗ (B,−) = (A⊗ B,−).
Given morphisms f : A → A ′ and g : B → B ′ between finitely presented modules,
define (f ,−)⊗ (g ,−) = (f ⊗ g ,−) : (A ′ ⊗ B ′,−) → (A⊗ B,−).
The tensor product constructed on Ab(R) will be required to be right exact, so
that forces the rest of the construction.
A typical object of Ab(R) is the cokernel of a morphism between representables:

(B,−)
(f ,−)−−−→ (A,−)

π−→ Ff → 0

for some morphism f : A → B.
Therefore if C ∈ R-mod then the value of (C ,−)⊗ Ff is forced by requiring the
sequence

(C ,−)⊗ (B,−) → (C ,−)⊗ (A,−)
π−→ (C ,−)⊗ Ff → 0

to be exact.
That can then be repeated to compute the general case Fg ⊗ Ff .
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Example:

R = K [ε : ε2 = 0] is commutative so we have the usual ⊗ on R-mod

First, we compute Ab(K [ε]):

We have the exact sequence

0 → K
j−→ R

p−→ K → 0,

where K is the unique simple R-module.

Using this, we get the projective presentations of the two simple functors on
R-mod:

0 → (K ,−)
(p,−)−−−→ (R,−)

πS−→ S = Fp → 0

0 → (K ,−)
(p,−)−−−→ (R,−)

(j,−)−−−→ (K ,−)
πT−−→ T = Fj → 0.
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The category Ab(K [ε]):

(R,−)
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We compute the values of ⊗ on Ab(R) using the projective presentations

(K ,−)
(p,−)−−−→ (R,−)

πS−→ S → 0

and

(R,−)
(j,−)−−−→ (K ,−)

πT−−→ T → 0

of the simple functors S and T .

To compute S ⊗ S :

(K ⊗ K ,−)
(p⊗1K ,−) //

(1K⊗p,−)

��

(R ⊗ K ,−)
πS⊗(1K ,−) //

(1R⊗p,−)

��

S ⊗ (K ,−)

1S⊗(p,−)

��

// 0

(K ⊗ R,−)
(p⊗1R ,−) //

(1K ,−)⊗πS

��

(R ⊗ R,−)
πS⊗(1R ,−) //

(1R ,−)⊗πS

��

S ⊗ (R,−)

1S⊗πS

��

// 0

(K ,−)⊗ S
(p,−)⊗1S //

��

(R,−)⊗ S
πS⊗1S //

��

S ⊗ S //

��

// 0

0 0 0
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which simplifies to:

(K ,−)
1 //

1

��

(K ,−) //

(p,−)

��

0

��

// 0

(K ,−)
(p,−) //

��

(R,−)
πS //

πS

��

S

πS⊗1S
��

// 0

0 //

��

S
πS⊗1S //

��

S ⊗ S //

��

// 0

0 0 0

Hence S ⊗ S = S and πS ⊗ 1S = 1S .
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S T (K ,−) =
T

S
S

T (R,−) =

S
T
S

S S 0 0 S S

T 0 (K ,−) (K ,−) T T

(K ,−) 0 (K ,−) (K ,−) (K ,−) (K ,−)

S

T S T (K ,−)
S

T
S

T

(R,−) S T (K ,−)
S

T (R,−)
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A final remark: this shows how, when we have a tensor product on R-mod, to
form the tensor product of pp formulas.
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