
A constructive approach to Freyd categories

Sebastian Posur

University of Siegen

April 26, 2018

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

What are finitely presented functors?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

What are finitely presented functors?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

What are finitely presented functors?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

What are finitely presented functors?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Definition
A functor F : R-Mod→ Ab is called finitely presented if there exist
A,B ∈ R-Mod and an exact sequence of functors

0 F Hom(B,−) Hom(A,−)

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Definition
A functor F : R-Mod→ Ab is called finitely presented if there exist
A,B ∈ R-Mod and an exact sequence of functors

0 F Hom(B,−) Hom(A,−)

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-fpmod −→ Ab

on the computer?

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,

2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,

3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces

Hom(V ,W) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'
Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'
Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'
Category of matrices (computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W) := k -linear maps V →W

'
Category of matrices (computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories

⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B).

To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B).

To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,

its embedding κ = KernelEmbedding(ϕ),
and for every test morphism τ

a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ

a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ)

, such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ

�

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel/cokernel.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category another categorycategory constructor

Example

A additive A(A)Freyd category

Freyd category

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category another categorycategory constructor

Example

A additive A(A)Freyd category

Freyd category

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category another categorycategory constructor

Example

A additive A(A)Freyd category

Freyd category

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category another categorycategory constructor

Example

A additive A(A)Freyd categoryFreyd category

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion

, i.e., it consists of
a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)

Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.

Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α

∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα

�
= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms

composition in A composition in A(A)

identities in A identities in A(A)

Cokernels in A(A) are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT).

α

τ

idB

τ

0

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

Kernels in Freyd categories.
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.

Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Kernels in Freyd categories

Theorem (Freyd)

Let A be an additive category. Then A(A) has kernels if and only if A
has weak kernels.

This theorem can be proven constructively. In particular, an algorithm
for weak kernels in A gives an algorithm for kernels in A(A).

Sebastian Posur A constructive approach to Freyd categories

Kernels in Freyd categories

Theorem (Freyd)

Let A be an additive category. Then A(A) has kernels if and only if A
has weak kernels.

This theorem can be proven constructively. In particular, an algorithm
for weak kernels in A gives an algorithm for kernels in A(A).

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ) , such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ) , such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ) , such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ) , such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the weak kernel of ϕ . . .

. . . one needs an object weakkerϕ,
its embedding κ = WeakKernelEmbedding(ϕ),

and for every test morphism τ
a morphism λ = WeakKernelLift(ϕ, τ) , such that

A B

weakkerϕ

T

ϕ

0

κ

τ

0

λ �

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated.

In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn]

(coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)

k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N]

(coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)

k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉

(not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.
Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.
Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.

Cokernels in A(RowsR) yield weak kernels in A(RowsR)
op.

Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.

Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.
Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.
Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.

X

Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.

X

Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories. X
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories. X
Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

A = RowsR: linear system X · D = E for matrices D,E in R.
A = A(RowsR)

op: 2-sided linear system

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

A = RowsR: linear system X · D = E for matrices D,E in R.
A = A(RowsR)

op: 2-sided linear system

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

A = RowsR: linear system X · D = E for matrices D,E in R.

A = A(RowsR)
op: 2-sided linear system

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

A = RowsR: linear system X · D = E for matrices D,E in R.
A = A(RowsR)

op: 2-sided linear system

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In k [x1, . . . , xn] we can solve all linear equations

using Gröbner bases

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In k [x1, . . . , xn] we can solve all linear equations using Gröbner bases

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In k [x1, . . . , xn]/I we can solve all linear equations using Gröbner bases

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases if we can also algorithmically create elements s ∈ S ∩ J (if they
exist) for any given ideal J ⊆ k [x1, . . . , xn]/I.

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases if we can also algorithmically create elements s ∈ S ∩ J (if they
exist) for any given ideal J ⊆ k [x1, . . . , xn]/I.

Nonexample

Let F be the free group in 10 generators.

In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases if we can also algorithmically create elements s ∈ S ∩ J (if they
exist) for any given ideal J ⊆ k [x1, . . . , xn]/I.

Nonexample

Let F be the free group in 10 generators. In Q[F × F]

the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases if we can also algorithmically create elements s ∈ S ∩ J (if they
exist) for any given ideal J ⊆ k [x1, . . . , xn]/I.

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable.

This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Example

In S−1k [x1, . . . , xn]/I we can solve all linear equations using Gröbner
bases if we can also algorithmically create elements s ∈ S ∩ J (if they
exist) for any given ideal J ⊆ k [x1, . . . , xn]/I.

Nonexample

Let F be the free group in 10 generators. In Q[F × F] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X · D = E

, but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

We can decide equality of morphisms in A(RowsR), but not in

A
(
A(RowsR)

op
)
.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X · D = E , but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

We can decide equality of morphisms in A(RowsR), but not in

A
(
A(RowsR)

op
)
.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X · D = E , but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

We can decide equality of morphisms in A(RowsR)

, but not in
A
(
A(RowsR)

op
)
.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X · D = E , but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

We can decide equality of morphisms in A(RowsR), but not in

A
(
A(RowsR)

op
)
.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories. X
Equality of morphisms in Freyd categories.

X

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories. X
Equality of morphisms in Freyd categories.

X

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories. X
Equality of morphisms in Freyd categories. X

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout

Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases

Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)

Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories

 prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

CAP Days 2018 in Siegen: 8/28/2018 - 8/31/2018

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

CAP Days 2018 in Siegen: 8/28/2018 - 8/31/2018

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

CAP Days 2018 in Siegen: 8/28/2018 - 8/31/2018

Sebastian Posur A constructive approach to Freyd categories

References

Maurice Auslander, Coherent functors, Proc. Conf. Categorical
Algebra (La Jolla, Calif., 1965), Springer, New York, 1966,
pp. 189–231. MR MR0212070 (35 #2945)

Mohamed Barakat and Markus Lange-Hegermann, An axiomatic
setup for algorithmic homological algebra and an alternative
approach to localization, J. Algebra Appl. 10 (2011), no. 2,
269–293, (arXiv:1003.1943). MR 2795737 (2012f:18022)

Peter Freyd, Representations in abelian categories, Proc. Conf.
Categorical Algebra (La Jolla, Calif., 1965), Springer, New York,
1966, pp. 95–120. MR 0209333

Sebastian Posur, A constructive approach to Freyd categories,
ArXiv e-prints (2017), (arXiv:1712.03492).

Sebastian Posur A constructive approach to Freyd categories

http://arxiv.org/abs/1003.1943
https://arxiv.org/abs/1712.03492

