A constructive approach to Freyd categories

Sebastian Posur

University of Siegen

April 26, 2018

Let R be a ring.

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

$$R ext{-}\mathrm{Mod}\longrightarrow \mathbf{Ab}$$

on the computer?

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

$$R\text{-Mod}\longrightarrow \mathbf{Ab}$$

on the computer?

What are finitely presented functors?

Let *R* be a ring.

Let *R* be a ring.

Definition

A functor $F : R\text{-}\mathrm{Mod} \to \mathbf{Ab}$ is called **finitely presented** if there exist $A, B \in R\text{-}\mathrm{Mod}$ and an exact sequence of functors

$$0 \longleftarrow F \longleftarrow \mathsf{Hom}(B, -) \longleftarrow \mathsf{Hom}(A, -)$$

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

$$R$$
-Mod \longrightarrow **Ab**

on the computer?

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

$$R$$
-fpmod \longrightarrow **Ab**

on the computer?

CAP

CAP

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

specific instances of categories,

- specific instances of categories,
- category constructors,

- specific instances of categories,
- category constructors,
- categorical algorithms.

- specific instances of categories,
- category constructors,
- categorical algorithms.

Let *k* be a field.

Let *k* be a field.

Category of finite dim. vector spaces

• Obj := finite dim. *k*-vector spaces

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices

• Obj := \mathbb{N}_0

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices

- Obj := \mathbb{N}_0
- Hom $(m, n) := k^{m \times n}$

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices

- Obj := \mathbb{N}_0
- Hom $(m, n) := k^{m \times n}$

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices

- Obj := \mathbb{N}_0
- Hom $(m, n) := k^{m \times n}$

Let *k* be a field.

Category of finite dim. vector spaces

- Obj := finite dim. *k*-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices (computerfriendly model)

- Obj := \mathbb{N}_0
- Hom $(m, n) := k^{m \times n}$

Let k be a field.

Category of finite dim. vector spaces

- Obj := finite dim. k-vector spaces
- Hom(V, W) := k-linear maps $V \rightarrow W$

Category of matrices (computerfriendly model)

- Obj := \mathbb{N}_0 Hom $(m, n) := k^{m \times n}$ Rows_k

Some categorical operations in abelian categories

 $\bullet \ \oplus : Obj \times Obj \rightarrow Obj$

- ullet \oplus : Obj imes Obj o Obj
- $+, -: \operatorname{\mathsf{Hom}}(A,B) \times \operatorname{\mathsf{Hom}}(A,B) \to \operatorname{\mathsf{Hom}}(A,B)$

- \bullet \oplus : Obj \times Obj \rightarrow Obj
- $+, : \mathsf{Hom}(A, B) \times \mathsf{Hom}(A, B) \to \mathsf{Hom}(A, B)$
- ker : $Hom(A, B) \rightarrow Obj$

- ullet \oplus : Obj imes Obj o Obj
- $+, : \mathsf{Hom}(A, B) \times \mathsf{Hom}(A, B) \to \mathsf{Hom}(A, B)$
- ker : $Hom(A, B) \rightarrow Obj$

Let $\varphi \in \text{Hom}(A, B)$.

Let $\varphi \in \text{Hom}(A, B)$.

$$A \stackrel{arphi}{-\!\!\!-\!\!\!\!-\!\!\!\!-} B$$

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

$$A \stackrel{arphi}{-\!\!\!-\!\!\!\!-\!\!\!\!-} B$$

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

 \dots one needs an object $\ker \varphi$,

 $\ker \varphi$

$$A \stackrel{\varphi}{\longrightarrow} B$$

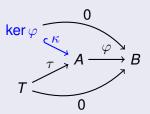
Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$,

$$\ker \varphi \xrightarrow{\kappa} A \xrightarrow{\varphi} B$$

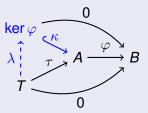
Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau
```



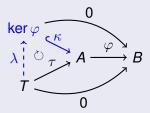
Let $\varphi \in \operatorname{Hom}(A,B)$. To fully describe the kernel of $\varphi \dots$

```
\label{eq:kerphi} \begin{array}{l} \dots \text{ one needs an object ker } \varphi,\\ \text{its embedding } \kappa = \text{KernelEmbedding}(\varphi),\\ \text{ and for every test morphism } \tau\\ \text{a } \textit{unique morphism } \lambda = \text{KernelLift}(\varphi,\tau) \end{array}
```



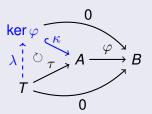
Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$



Implementation of the kernel

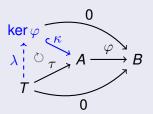
Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$



3 algorithms needed for the kernel

Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$



3 algorithms needed for the kernel/cokernel.

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

- specific instances of categories,
- category constructors,
- categorical algorithms.

Example

Freyd category: implicit characterization

The Freyd category of an additive category **A** is its universal cokernel completion

Freyd category: implicit characterization

The Freyd category of an additive category **A** is its universal cokernel completion, i.e., it consists of

- a category $A(\mathbf{A})$ having cokernels
- ullet a functor ${f A}
 ightarrow {\cal A}({f A})$

Freyd category: implicit characterization

The Freyd category of an additive category **A** is its universal cokernel completion, i.e., it consists of

- a category A(A) having cokernels
- a functor $\mathbf{A} \to \mathcal{A}(\mathbf{A})$

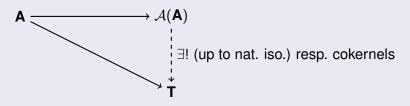
such that for all additive **T** with cokernels and functors $\mathbf{A} \to \mathbf{T}$, we have:

Freyd category: implicit characterization

The Freyd category of an additive category **A** is its universal cokernel completion, i.e., it consists of

- a category A(A) having cokernels
- ullet a functor ${f A}
 ightarrow {\cal A}({f A})$

such that for all additive \boldsymbol{T} with cokernels and functors $\boldsymbol{A} \to \boldsymbol{T}$, we have:



Examples of Freyd categories

Examples of Freyd categories

• $\mathcal{A}(\text{Rows}_R) \simeq R$ -fpmod

Examples of Freyd categories

- $\mathcal{A}(\text{Rows}_R) \simeq R$ -fpmod
- $\mathcal{A}(\{ \text{Hom}(A, -) \mid A \in R\text{-fpmod} \}) \simeq$ finitely presented functors over R-fpmod

Examples of Freyd categories

- $\mathcal{A}(\text{Rows}_R) \simeq R$ -fpmod
- $A(\{ Hom(A, -) \mid A \in R\text{-fpmod} \}) \simeq$ finitely presented functors over R-fpmod

Yoneda's lemma

$$\big\{\operatorname{\mathsf{Hom}}(A,-)\mid A\in R\operatorname{\!-fpmod}\big\}\simeq R\operatorname{\!-fpmod}^{\operatorname{op}}$$

Examples of Freyd categories

- $\mathcal{A}(\text{Rows}_R) \simeq R$ -fpmod
- $A(\{ Hom(A, -) \mid A \in R\text{-fpmod} \}) \simeq$ finitely presented functors over R-fpmod

Yoneda's lemma

$$\big\{\operatorname{\mathsf{Hom}}(A,-)\mid A\in R\operatorname{\!-fpmod}\big\}\simeq R\operatorname{\!-fpmod}^{\operatorname{op}}$$

Corollary

finitely presented functors over R-fpmod $\simeq \mathcal{A}(\mathcal{A}(Rows_R)^{op})$

Examples of Freyd categories

- $\mathcal{A}(\text{Rows}_R) \simeq R$ -fpmod
- $A(\{ Hom(A, -) \mid A \in R\text{-fpmod} \}) \simeq$ finitely presented functors over R-fpmod

Yoneda's lemma

$$\big\{\operatorname{\mathsf{Hom}}(A,-)\mid A\in R\operatorname{\!-fpmod}\big\}\simeq R\operatorname{\!-fpmod}^{\operatorname{op}}$$

Corollary

finitely presented functors over R-fpmod $\simeq \mathcal{A}(\mathcal{A}(Rows_R)^{op})$

Study the constructiveness of A(-).

Let A be additive.

Let A be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

• An object in $\mathcal{A}(\mathbf{A})$ is simply a morphism $(A \stackrel{\rho_A}{\longleftarrow} R_A)$ in \mathbf{A} .

Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

• An object in $\mathcal{A}(\mathbf{A})$ is simply a morphism $(A \stackrel{\rho_A}{\longleftarrow} R_A)$ in \mathbf{A} .

$$A \leftarrow \stackrel{\rho_A}{\longleftarrow} R_A$$

Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

• An object in $\mathcal{A}(\mathbf{A})$ is simply a morphism $(A \stackrel{\rho_A}{\longleftarrow} R_A)$ in \mathbf{A} .

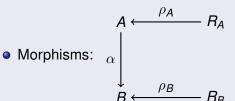
$$A \longleftarrow^{\rho_A} R_A$$

$$extit{B} \longleftarrow^{
ho_B} R_B$$

Let **A** be additive.

Freyd category: data structures

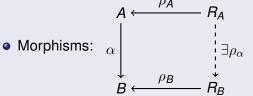
The **Freyd category** A(A) is given by the following data:



Let **A** be additive.

Freyd category: data structures

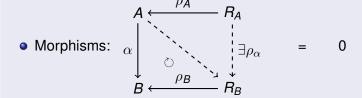
The **Freyd category** A(A) is given by the following data:



Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

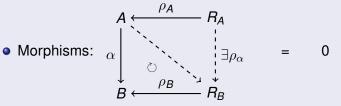


Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

• An object in $\mathcal{A}(\mathbf{A})$ is simply a morphism $(A \stackrel{\rho_A}{\longleftarrow} R_A)$ in \mathbf{A} .



We also write

$$(A \stackrel{\rho_A}{\longleftarrow} R_A) \xrightarrow{\quad \alpha \quad} (B \stackrel{\rho_B}{\longleftarrow} R_B)$$

Let **A** be additive.

Freyd category: data structures

The **Freyd category** A(A) is given by the following data:

• An object in $\mathcal{A}(\mathbf{A})$ is simply a morphism $(A \stackrel{\rho_A}{\longleftarrow} R_A)$ in \mathbf{A} .

 $A \leftarrow PA \qquad R_A$ $\alpha \downarrow \qquad \qquad \downarrow \exists \rho_{\alpha} \qquad = \qquad 0$ $B \leftarrow PB \qquad R_B$

We also write

$$(A \stackrel{\rho_A}{\longleftarrow} R_A) \xrightarrow{\quad \alpha \quad} (B \stackrel{\rho_B}{\longleftarrow} R_B)$$

Algorithms in Freyd categories

Freyd category: algorithms

Algorithms in Freyd categories

Freyd category: algorithms

• composition in A \leadsto composition in $\mathcal{A}(A)$

Algorithms in Freyd categories

Freyd category: algorithms

- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in A \rightsquigarrow identities in $\mathcal{A}(A)$

- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in A \longrightarrow identities in $\mathcal{A}(\mathbf{A})$
- Cokernels in A(A)

- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in A \longrightarrow identities in $\mathcal{A}(\mathbf{A})$
- Cokernels in A(A)

- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in A \longrightarrow identities in $\mathcal{A}(\mathbf{A})$
- Cokernels in A(A)

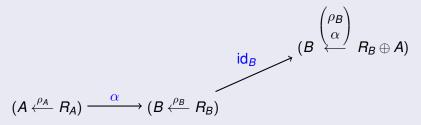
$$(A \stackrel{\rho_A}{\longleftarrow} R_A) \xrightarrow{\alpha} (B \stackrel{\rho_B}{\longleftarrow} R_B)$$

- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in A \longrightarrow identities in $\mathcal{A}(A)$
- ullet Cokernels in $\mathcal{A}(\mathbf{A})$

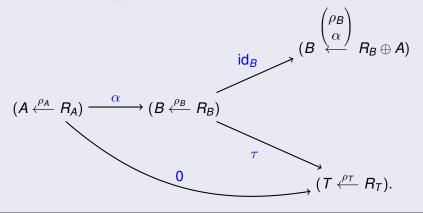
$$(B \stackrel{\begin{pmatrix} \rho_B \\ \alpha \end{pmatrix}}{\longleftarrow} R_B \oplus A)$$

$$(A \stackrel{\rho_A}{\longleftarrow} R_A) \xrightarrow{\alpha} (B \stackrel{\rho_B}{\longleftarrow} R_B)$$

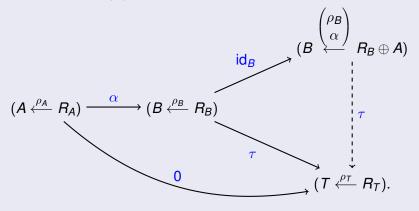
- composition in A \leadsto composition in $\mathcal{A}(A)$
- ullet identities in ${\bf A}$ \longrightarrow identities in ${\mathcal A}({\bf A})$
- Cokernels in A(A)



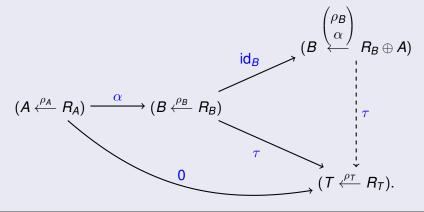
- composition in A \leadsto composition in $\mathcal{A}(A)$
- ullet identities in ${\bf A}$ \longrightarrow identities in ${\mathcal A}({\bf A})$
- Cokernels in A(A)



- composition in A \leadsto composition in $\mathcal{A}(A)$
- ullet identities in ${\bf A}$ \longrightarrow identities in ${\mathcal A}({\bf A})$
- Cokernels in A(A)



- composition in A \leadsto composition in $\mathcal{A}(A)$
- identities in $A \longrightarrow identities$ in $\mathcal{A}(A)$
- Cokernels in A(A) are constructive if A is:



More delicate algorithmic issues:

More delicate algorithmic issues:

• Kernels in Freyd categories.

More delicate algorithmic issues:

- Kernels in Freyd categories.
- Equality of morphisms in Freyd categories.

More delicate algorithmic issues:

- Kernels in Freyd categories.
- Equality of morphisms in Freyd categories.

Kernels in Freyd categories

Theorem (Freyd)

Let **A** be an additive category. Then $\mathcal{A}(\mathbf{A})$ has kernels if and only if **A** has weak kernels.

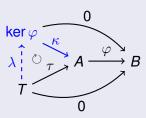
Kernels in Freyd categories

Theorem (Freyd)

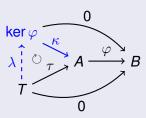
Let ${\bf A}$ be an additive category. Then ${\mathcal A}({\bf A})$ has kernels if and only if ${\bf A}$ has weak kernels.

This theorem can be proven constructively. In particular, an algorithm for weak kernels in **A** gives an algorithm for kernels in $\mathcal{A}(\mathbf{A})$.

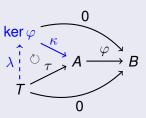
```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \text{KernelLift}(\varphi, \tau), such that
```



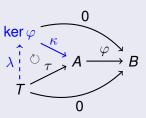
```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \text{KernelLift}(\varphi, \tau), such that
```



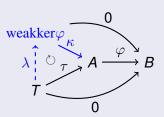
```
... one needs an object \ker \varphi, its embedding \kappa = \operatorname{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \operatorname{KernelLift}(\varphi, \tau), such that
```



```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau a \frac{\text{unique}}{\text{unique}} morphism \lambda = \text{KernelLift}(\varphi, \tau), such that
```



```
... one needs an object weakker\varphi, its embedding \kappa = \text{WeakKernelEmbedding}(\varphi), and for every test morphism \tau a morphism \lambda = \text{WeakKernelLift}(\varphi, \tau), such that
```



Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated.

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

•
$$k[x_1,\ldots,x_n]$$

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

• $k[x_1, \ldots, x_n]$ (coherent)

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

- $k[x_1, \ldots, x_n]$ (coherent)
- $k[x_i \mid i \in \mathbb{N}]$

Weak kernels in $Rows_R$

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

- $k[x_1, \ldots, x_n]$ (coherent)
- $k[x_i \mid i \in \mathbb{N}]$ (coherent)

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

- $k[x_1, \ldots, x_n]$ (coherent)
- $k[x_i \mid i \in \mathbb{N}]$ (coherent)
- $k[z, x_i \mid i \in \mathbb{N}]/\langle zx_i \mid i \in \mathbb{N}\rangle$

Weak kernels in Rows_R

Rows_R has weak kernels iff the (row) kernel of every $M \in R^{m \times n}$ is finitely generated. In this case R is called (left) **coherent**.

Remark

Algorithms computing such syzygies usually rely on Gröbner bases.

- $k[x_1, \ldots, x_n]$ (coherent)
- $k[x_i \mid i \in \mathbb{N}]$ (coherent)
- $k[z, x_i \mid i \in \mathbb{N}]/\langle zx_i \mid i \in \mathbb{N} \rangle$ (not coherent)

We want to compute kernels in $\mathcal{A}(\overline{\mathcal{A}}(Rows_R)^{op})$.

We want to compute kernels in $\mathcal{A}(\mathcal{A}(Rows_R)^{op})$.

• By Freyd's theorem, it suffices to have an algorithm for weak kernels in $\mathcal{A}(\text{Rows}_R)^{\text{op}}$.

We want to compute kernels in $\mathcal{A}(\mathcal{A}(Rows_R)^{op})$.

- By Freyd's theorem, it suffices to have an algorithm for weak kernels in $\mathcal{A}(\text{Rows}_R)^{\text{op}}$.
- Cokernels in $\mathcal{A}(\text{Rows}_R)$ yield weak kernels in $\mathcal{A}(\text{Rows}_R)^{\text{op}}$.

Weak kernels in $\mathcal{A}(Rows_R)^{op}$

We want to compute kernels in $\mathcal{A}(\mathcal{A}(Rows_R)^{op})$.

- By Freyd's theorem, it suffices to have an algorithm for weak kernels in $\mathcal{A}(\text{Rows}_{B})^{\text{op}}$.
- Cokernels in $\mathcal{A}(\text{Rows}_R)$ yield weak kernels in $\mathcal{A}(\text{Rows}_R)^{\text{op}}$.
- Cokernels in $\mathcal{A}(\text{Rows}_R)$ are algorithmic.

We want to compute kernels in $\mathcal{A}(\mathcal{A}(Rows_R)^{op})$.

- By Freyd's theorem, it suffices to have an algorithm for weak kernels in $\mathcal{A}(\text{Rows}_R)^{\text{op}}$.
- Cokernels in $\mathcal{A}(Rows_R)$ yield weak kernels in $\mathcal{A}(Rows_R)^{op}$.
- Cokernels in $\mathcal{A}(Rows_B)$ are algorithmic.

 \rightsquigarrow Kernels in $\mathcal{A}(\mathcal{A}(Rows_R)^{op})$ are algorithmic.

- Kernels in Freyd categories.
- Equality of morphisms in Freyd categories.

- Kernels in Freyd categories.
- Equality of morphisms in Freyd categories.

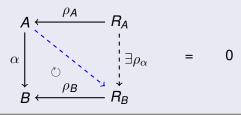
- Kernels in Freyd categories. √
- Equality of morphisms in Freyd categories.

- Kernels in Freyd categories. √
- Equality of morphisms in Freyd categories.

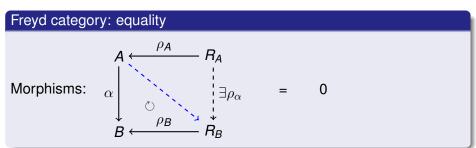
Let **A** be an additive category.

Let **A** be an additive category.

Freyd category: equality



Let **A** be an additive category.

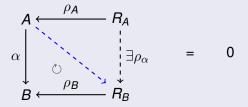


• $\mathbf{A} = \operatorname{Rows}_R$: linear system $\mathbf{X} \cdot \mathbf{D} = \mathbf{E}$ for matrices \mathbf{D}, \mathbf{E} in \mathbf{R} .

Let **A** be an additive category.

Freyd category: equality

Morphisms:



- $\mathbf{A} = \operatorname{Rows}_R$: linear system $\mathbf{X} \cdot \mathbf{D} = \mathbf{E}$ for matrices \mathbf{D}, \mathbf{E} in \mathbf{R} .
- $\mathbf{A} = \mathcal{A}(\operatorname{Rows}_R)^{\operatorname{op}}$: 2-sided linear system

Example

In $k[x_1, \ldots, x_n]$ we can solve all linear equations

Example

In $k[x_1, \ldots, x_n]$ we can solve all linear equations using Gröbner bases

Example

In $k[x_1, \dots, x_n]/I$ we can solve all linear equations using Gröbner bases

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases if we can also algorithmically create elements $s \in S \cap J$ (if they exist) for any given ideal $J \subseteq k[x_1,\ldots,x_n]/I$.

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases if we can also algorithmically create elements $s \in S \cap J$ (if they exist) for any given ideal $J \subseteq k[x_1,\ldots,x_n]/I$.

Nonexample

Let *F* be the free group in 10 generators.

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases if we can also algorithmically create elements $s \in S \cap J$ (if they exist) for any given ideal $J \subseteq k[x_1,\ldots,x_n]/I$.

Nonexample

Let F be the free group in 10 generators. In $\mathbb{Q}[F \times F]$

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases if we can also algorithmically create elements $s \in S \cap J$ (if they exist) for any given ideal $J \subseteq k[x_1,\ldots,x_n]/I$.

Nonexample

Let F be the free group in 10 generators. In $\mathbb{Q}[F \times F]$ the existence of a solution of a given linear system $X \cdot D = E$ is **computationally undecidable**.

Example

In $S^{-1}k[x_1,\ldots,x_n]/I$ we can solve all linear equations using Gröbner bases if we can also algorithmically create elements $s \in S \cap J$ (if they exist) for any given ideal $J \subseteq k[x_1,\ldots,x_n]/I$.

Nonexample

Let F be the free group in 10 generators. In $\mathbb{Q}[F \times F]$ the existence of a solution of a given linear system $X \cdot D = E$ is **computationally undecidable**. This is based on an example by Collins of a f.p. group with 10 generators with unsolvable word problem.

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems $X \cdot D = E$

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems $X \cdot D = E$, but the existence of a solution of a given 2-sided linear system is **computationally undecidable**.

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems $X \cdot D = E$, but the existence of a solution of a given 2-sided linear system is **computationally undecidable**.

 \rightsquigarrow

We can decide equality of morphisms in $A(Rows_R)$

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems $X \cdot D = E$, but the existence of a solution of a given 2-sided linear system is **computationally undecidable**.

 \rightsquigarrow

We can decide equality of morphisms in $\mathcal{A}(\text{Rows}_R)$, but not in $\mathcal{A}(\mathcal{A}(\text{Rows}_R)^{\text{op}})$.

- Kernels in Freyd categories. √
- Equality of morphisms in Freyd categories.

- Kernels in Freyd categories. √
- Equality of morphisms in Freyd categories.

- Kernels in Freyd categories. √
- Equality of morphisms in Freyd categories. √

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

- specific instances of categories,
- category constructors,
- categorical algorithms.

Categorical algorithms for abelian categories

Categorical algorithms for abelian categories

Abelian constructions like pullback or pushout

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases
- Spectral sequence algorithm

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases
- Spectral sequence algorithm

Computational applications of Freyd categories

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases
- Spectral sequence algorithm

Computational applications of Freyd categories

• Computing sets of natural transformations, e.g., Hom $(\text{Tor}_i(M, -), \text{Ext}^i(A, -))$

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases
- Spectral sequence algorithm

Computational applications of Freyd categories

- Computing sets of natural transformations, e.g., Hom $(\text{Tor}_i(M, -), \text{Ext}^i(A, -))$
- Construct free abelian categories

Categorical algorithms for abelian categories

- Abelian constructions like pullback or pushout
- Constructive diagram chases
- Spectral sequence algorithm

Computational applications of Freyd categories

- Computing sets of natural transformations, e.g., Hom $(\text{Tor}_i(M, -), \text{Ext}^i(A, -))$
- Construct free abelian categories → prove homological theorems

CAP

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

- specific instances of categories,
- category constructors,
- 3 categorical algorithms.

CAP

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP

CAP - Categories, Algorithms, Programming (Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of

- specific instances of categories,
- category constructors,
- categorical algorithms.

CAP Days 2018 in Siegen: 8/28/2018 - 8/31/2018

References

- Maurice Auslander, *Coherent functors*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1966, pp. 189–231. MR MR0212070 (35 #2945)
- Mohamed Barakat and Markus Lange-Hegermann, *An axiomatic setup for algorithmic homological algebra and an alternative approach to localization*, J. Algebra Appl. **10** (2011), no. 2, 269–293, (arXiv:1003.1943). MR 2795737 (2012f:18022)
- Peter Freyd, *Representations in abelian categories*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1966, pp. 95–120. MR 0209333
- Sebastian Posur, *A constructive approach to Freyd categories*, ArXiv e-prints (2017), (arXiv:1712.03492).