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Finitely presented functors

Let R be a ring.

Q: Is it possible to model the category of finitely presented functors

R-Mod −→ Ab

on the computer?

What are finitely presented functors?
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Finitely presented functors

Let R be a ring.

Definition
A functor F : R-Mod→ Ab is called finitely presented if there exist
A,B ∈ R-Mod and an exact sequence of functors

0 F Hom(B,−) Hom(A,−)
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CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.
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Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces

Obj := finite dim. k -vector spaces
Hom(V ,W ) := k -linear maps V →W

'

Category of matrices

(computerfriendly model)

Obj := N0

Hom(m,n) := km×n

}
Rowsk
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The language of category theory

Some categorical operations in abelian categories

⊕ : Obj× Obj→ Obj

+,− : Hom(A,B)× Hom(A,B)→ Hom(A,B)

ker : Hom(A,B)→ Obj
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Implementation of the kernel

Let ϕ ∈ Hom(A,B).

To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ), such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �

3 algorithms needed for the kernel

/cokernel.
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Category constructors

category another categorycategory constructor

Example

A additive A(A)Freyd category

Freyd category
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Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

a category A(A) having cokernels
a functor A→ A(A)

such that for all additive T with cokernels and functors A→ T, we have:

A A(A)

T

∃! (up to nat. iso.) resp. cokernels
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Freyd category

Examples of Freyd categories

A(RowsR) ' R-fpmod

A
({

Hom(A,−) | A ∈ R-fpmod
})
'

finitely presented functors over R-fpmod

Yoneda’s lemma{
Hom(A,−) | A ∈ R-fpmod

}
' R-fpmodop

Corollary

finitely presented functors over R-fpmod ' A
(
A(RowsR)

op)
Study the constructiveness of A(−).
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Freyd category

Let A be additive.

Freyd category: data structures

The Freyd category A(A) is given by the following data:

An object in A(A) is simply a morphism (A
ρA←− RA) in A.

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

We also write

(A
ρA←− RA) (B

ρB←− RB)
α
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Algorithms in Freyd categories

Freyd category: algorithms

composition in A  composition in A(A)

identities in A  identities in A(A)

Cokernels in A(A)

are constructive if A is:

(A
ρA←− RA) (B

ρB←− RB)

(B

ρB
α


←− RB ⊕ A)

(T
ρT←− RT ).

α

τ

idB

τ

0
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Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.
Equality of morphisms in Freyd categories.
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Kernels in Freyd categories

Theorem (Freyd)

Let A be an additive category. Then A(A) has kernels if and only if A
has weak kernels.

This theorem can be proven constructively. In particular, an algorithm
for weak kernels in A gives an algorithm for kernels in A(A).
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Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the kernel of ϕ . . .

. . . one needs an object kerϕ,
its embedding κ = KernelEmbedding(ϕ),

and for every test morphism τ
a unique morphism λ = KernelLift(ϕ, τ) , such that

A B

kerϕ

T

ϕ

0

κ

τ

0

λ �
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Weak kernels

Let ϕ ∈ Hom(A,B). To fully describe the weak kernel of ϕ . . .
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Weak kernels in RowsR

Weak kernels in RowsR

RowsR has weak kernels iff the (row) kernel of every M ∈ Rm×n is
finitely generated. In this case R is called (left) coherent.

Remark
Algorithms computing such syzygies usually rely on Gröbner bases.

Examples

k [x1, . . . , xn] (coherent)
k [xi | i ∈ N] (coherent)
k [z, xi | i ∈ N]/〈zxi | i ∈ N〉 (not coherent)
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Weak kernels in A(RowsR)
op

We want to compute kernels in A(A(RowsR)
op).

By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(RowsR)

op.
Cokernels in A(RowsR) yield weak kernels in A(RowsR)

op.
Cokernels in A(RowsR) are algorithmic.

 Kernels in A(A(RowsR)
op) are algorithmic.
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Algorithms in Freyd categories

More delicate algorithmic issues:
Kernels in Freyd categories.

X

Equality of morphisms in Freyd categories.
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More delicate algorithmic issues:
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Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories



Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms:

A RA

B RB

ρA

ρB

α ∃ρα
�

= 0

A = RowsR: linear system X · D = E for matrices D,E in R.
A = A(RowsR)

op: 2-sided linear system
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Equality of morphisms in Freyd categories

Example

In k [x1, . . . , xn] we can solve all linear equations

using Gröbner bases

Nonexample

Let F be the free group in 10 generators. In Q[F × F ] the existence of
a solution of a given linear system X · D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.
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Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X · D = E

, but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

 
We can decide equality of morphisms in A(RowsR), but not in

A
(
A(RowsR)

op
)
.
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CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.
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Categorical algorithms

Categorical algorithms for abelian categories
Abelian constructions like pullback or pushout
Constructive diagram chases
Spectral sequence algorithm

Computational applications of Freyd categories

Computing sets of natural transformations, e.g.,
Hom

(
Torj(M,−),Exti(A,−)

)
Construct free abelian categories prove homological theorems
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CAP

CAP - Categories, Algorithms, Programming
(Gutsche, P., Skartsæterhagen)

CAP is a software project in GAP facilitating the implementation of
1 specific instances of categories,
2 category constructors,
3 categorical algorithms.

CAP Days 2018 in Siegen: 8/28/2018 - 8/31/2018
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