A constructive approach to Freyd categories

Sebastian Posur

University of Siegen

April 26, 2018

A

C P

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.
Q: Is it possible to model the category of finitely presented functors
R-Mod — Ab

on the computer?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.
Q: Is it possible to model the category of finitely presented functors
R-Mod — Ab

on the computer?

What are finitely presented functors?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.

Definition
A functor F : R-Mod — Ab is called finitely presented if there exist
A, B € R-Mod and an exact sequence of functors

0 F Hom(B, —) «—— Hom(A, —)

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.
Q: Is it possible to model the category of finitely presented functors
R-Mod — Ab

on the computer?

Sebastian Posur A constructive approach to Freyd categories

Finitely presented functors

Let R be aring.
Q: Is it possible to model the category of finitely presented functors
R-fpmod — Ab

on the computer?

Sebastian Posur A constructive approach to Freyd categories

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)
CAP is a software project in GAP facilitating the implementation of

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)
CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Category of matrices
@ Obj =N,

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Category of matrices
@ Obj:= Ny
@ Hom(m, n) := k™*"

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Category of matrices
@ Obj:= Ny
@ Hom(m, n) := k™*"

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Y

Category of matrices
@ Obj:= Ny
@ Hom(m, n) := k™*"

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Y

Category of matrices (computerfriendly model)
@ Obj := N
@ Hom(m,n) := k™"

Sebastian Posur A constructive approach to Freyd categories

Category of finite dim. vector spaces

Let k be a field.

Category of finite dim. vector spaces
@ Obj := finite dim. k-vector spaces
@ Hom(V, W) := k-linear maps V — W

Y

Category of matrices (computerfriendly model)

@ Obj :=Np
@ Hom(m, n) := k™*" } Rowsk

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)
@ ker: Hom(A, B) — Obj

Sebastian Posur A constructive approach to Freyd categories

The language of category theory

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)
@ ker: Hom(A, B) — Obj

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B).

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B).

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,

ker ¢

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,
its embedding x = KernelEmbedding(y),

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,
its embedding x = KernelEmbedding(y),
and for every test morphism =

0

ker ¢ z\

®
r ,A—B

I

0

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,

its embedding x = KernelEmbedding(y),
and for every test morphism =
a unique morphism \ = KernelLift(y, 7)

0

e N
®

A—— B

S

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,
its embedding x = KernelEmbedding(y),
and for every test morphism =
a unique morphism \ = KernelLift(y, 7), such that

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,
its embedding x = KernelEmbedding(y),
and for every test morphism =
a unique morphism \ = KernelLift(y, 7), such that

3 algorithms needed for the kernel

Sebastian Posur A constructive approach to Freyd categories

Implementation of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

... one needs an object ker ¢,
its embedding x = KernelEmbedding(y),
and for every test morphism =
a unique morphism \ = KernelLift(y, 7), such that

3 algorithms needed for the kernel/cokernel.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category category constructor —— another category

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category category constructor —— another category

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category

category constructor

—— another category

A additive

Freyd category — A(A)

Sebastian Posur A constructive approach to Freyd categories

Category constructors

category

category constructor

—— another category

A additive —{Fieyd category|——— A(A)

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization

The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

@ a category A(A) having cokernels

@ afunctor A — A(A)

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization
The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

@ a category A(A) having cokernels

@ afunctor A — A(A)
such that for all additive T with cokernels and functors A — T, we have:

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Freyd category: implicit characterization
The Freyd category of an additive category A is its universal cokernel
completion, i.e., it consists of

@ a category A(A) having cokernels

@ afunctor A — A(A)
such that for all additive T with cokernels and functors A — T, we have:

A A(A)

3! (up to nat. iso.) resp. cokernels

&
T

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories
@ A(Rowsg) ~ R-fpmod

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Examples of Freyd categories

@ A(Rowsg) ~ R-fpmod

o A({Hom(A,—) | A€ R-fpmod}) ~
finitely presented functors over R-fpmod

Sebastian Posur A constructive approach to Freyd categories

Freyd category
Examples of Freyd categories

@ A(Rowsg) ~ R-fpmod

o A({Hom(A,—) | A€ R-fpmod}) ~
finitely presented functors over R-fpmod

Yoneda’s lemma

{Hom(A,-) | A€ R-fpmod} ~ R-fpmod®?

Sebastian Posur A constructive approach to Freyd categories

Freyd category
Examples of Freyd categories

@ A(Rowsg) ~ R-fpmod

o A({Hom(A,—) | A€ R-fpmod}) ~
finitely presented functors over R-fpmod

Yoneda’s lemma

{Hom(A,-) | A€ R-fpmod} ~ R-fpmod®?

Corollary

finitely presented functors over R-fpmod ~ A(.A(Rowsg)*)

A\

Sebastian Posur A constructive approach to Freyd categories

Freyd category
Examples of Freyd categories

@ A(Rowsg) ~ R-fpmod

o A({Hom(A,—) | A€ R-fpmod}) ~
finitely presented functors over R-fpmod

Yoneda’s lemma

{Hom(A,-) | A€ R-fpmod} ~ R-fpmod®?

Corollary

finitely presented functors over R-fpmod ~ A(.A(Rowsg)*)

A\

Study the constructiveness of A(—).

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures

The Freyd category .4(A) is given by the following data:

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

_Freydcategory .
Let A be additive.

The Freyd category .A(A) is given by the foIIowing data:
@ An object in A(A) is simply a morphism (A <2 Ry) in A.

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

_Freydcategory .
Let A be additive.

The Freyd category .A(A) is given by the foIIowing data:
@ An object in A(A) is simply a morphism (A <2 Ry) in A.

@ Morphisms:

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

A(p—ARA

@ Morphisms:

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

A(p—ARA

@ Morphisms:

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

A(p—ARA

@ Morphisms:

B+—— Rp

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

@ Morphisms:

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive.
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

@ Morphisms: , .

v

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

@ Morphisms: .

We also write

Sebastian Posur A constructive approach to Freyd categories

Freyd category

Let A be additive
Freyd category: data structures
The Freyd category .A(A) is given by the foIIowmg data:
@ An object in A(A) is simply a morphism (A <A R4) in A.

@ Morphisms: , .

We also write

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)
(=)
«
(B +~ Rg@A)

v

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories
Freyd category: algorithms

@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms
@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms
@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A)

/

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Freyd category: algorithms
@ compositionin A ~» composition in A(A)
@ identitiesin A ~~» identities in A(A)
@ Cokernels in A(A) are constructive if A is:

/

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories.
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories.
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Kernels in Freyd categories

Theorem (Freyd)

Let A be an additive category. Then A(A) has kernels if and only if A
has weak kernels.

Sebastian Posur A constructive approach to Freyd categories

Kernels in Freyd categories

Theorem (Freyd)

Let A be an additive category. Then A(A) has kernels if and only if A
has weak kernels.

This theorem can be proven constructively. In particular, an algorithm
for weak kernels in A gives an algorithm for kernels in A(A).

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ ...

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unique morphism X\ = KernelLift(y, 7) , such that

0
ore TN
N ¥
A O\’A—>B

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ ...

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unique morphism X\ = KernelLift(y, 7) , such that

0
ore TN
N ¥
A O\’A—>B

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ ...

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unique morphism X\ = KernelLift(y, 7) , such that

0
ore TN
N ¥
A O\’A—>B

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ ...

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unigge morphism A = KernelLift(y, 7) , such that

Sebastian Posur A constructive approach to Freyd categories

Weak kernels

Let ¢ € Hom(A, B). To fully describe the weak kernel of ¢ ...

... one needs an object weakkerp,
its embedding x = WeakKernelEmbedding(y),
and for every test morphism 7
a morphism \ = WeakKernelLift(y, 7) , such that

0

weakkerp "\,
T, ®

/\E A—— B

S

0

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowsg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowsg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowsg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[Xq,...,Xn]

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[xq,...,Xn] (coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[xq,...,Xn] (coherent)
@ K[x;|ieN]

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[xq,...,Xn] (coherent)
@ K[x; | i € N] (coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[xq,...,Xn] (coherent)
@ K[x; | i € N] (coherent)
@ k(z,x;|ieN]/(zx; | i € N)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in Rowsg

Weak kernels in Rowsg

Rowspg has weak kernels iff the (row) kernel of every M € R™" is
finitely generated. In this case R is called (left) coherent.

Algorithms computing such syzygies usually rely on Grébner bases.

@ K[xq,...,Xn] (coherent)
@ K[x; | i € N] (coherent)
@ K[z,x;|ieN]/(zx; | i € N) (not coherent)

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

We want to compute kernels in A(A(Rowsg)°P).

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

We want to compute kernels in A(A(Rowsg)°P).

@ By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(Rowsg)°P.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

We want to compute kernels in A(A(Rowsg)°P).

@ By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(Rowsg)°P.

@ Cokernels in A(Rowspg) yield weak kernels in A(Rowsg)°P.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

We want to compute kernels in A(A(Rowsg)°P).

@ By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(Rowsg)°P.

@ Cokernels in A(Rowspg) yield weak kernels in A(Rowsg)°P.
@ Cokernels in A(Rowsg) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Weak kernels in A(Rowsg)®

We want to compute kernels in A(A(Rowsg)°P).

@ By Freyd’s theorem, it suffices to have an algorithm for weak
kernels in A(Rowsg)°P.

@ Cokernels in A(Rowspg) yield weak kernels in A(Rowsg)°P.
@ Cokernels in A(Rowsg) are algorithmic.

~ Kernels in A(.A(Rowsg)°P) are algorithmic.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories.
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories.
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories. v/
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:

@ Kernels in Freyd categories. v/
@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms: T

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms: T

@ A = Rowsg: linear system X - D = E for matrices D, E in R.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Let A be an additive category.

Freyd category: equality

Morphisms: s

@ A = Rowsg: linear system X - D = E for matrices D, E in R.
@ A = A(Rowsg)°P: 2-sided linear system

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In k[x1, ..., Xn] we can solve all linear equations

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In k[x1, ..., Xn] we can solve all linear equations using Grébner bases

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In k[x1, ..., Xn]// we can solve all linear equations using Grébner bases

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'K[xq, ..., Xn]/I we can solve all linear equations using Grébner
bases

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'k[xy,...,xs)/I we can solve all linear equations using Grébner
bases if we can also algorithmically create elements s € SN J (if they
exist) for any given ideal J C K[xq, ..., xa]/!.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'K[xq, ..., Xn]/I we can solve all linear equations using Grébner
bases if we can also algorithmically create elements s € SN J (if they
exist) for any given ideal J C K[xq, ..., xa]/!.

v
Nonexample

Let F be the free group in 10 generators.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'K[xq, ..., Xn]/I we can solve all linear equations using Grébner
bases if we can also algorithmically create elements s € SN J (if they
exist) for any given ideal J C K[xq, ..., xa]/!.

v
Nonexample

Let F be the free group in 10 generators. In Q[F x F]

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'K[xq, ..., Xn]/I we can solve all linear equations using Grébner
bases if we can also algorithmically create elements s € SN J (if they
exist) for any given ideal J C K[xq, ..., xa]/!.

v
Nonexample

Let F be the free group in 10 generators. In Q[F x F] the existence of
a solution of a given linear system X - D = E is computationally
undecidable.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

In S~'K[xq, ..., Xn]/I we can solve all linear equations using Grébner
bases if we can also algorithmically create elements s € SN J (if they
exist) for any given ideal J C K[xq, ..., xa]/!.

v
Nonexample

Let F be the free group in 10 generators. In Q[F x F] the existence of
a solution of a given linear system X - D = E is computationally
undecidable. This is based on an example by Collins of a f.p. group
with 10 generators with unsolvable word problem.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)
We can construct a ring R with an algorithm for solving linear systems
X-D=E

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems
X - D = E, but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems
X - D = E, but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

od

We can decide equality of morphisms in .A(Rowsg)

Sebastian Posur A constructive approach to Freyd categories

Equality of morphisms in Freyd categories

Nonexample (P., arXiv:1712.03492)

We can construct a ring R with an algorithm for solving linear systems
X - D = E, but the existence of a solution of a given 2-sided linear
system is computationally undecidable.

We can decide equality of morphisms in .A(Rowsg), but not in
A(A(Rowsg)°P).

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
@ Kernels in Freyd categories. v/

@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
@ Kernels in Freyd categories. v/

@ Equality of morphisms in Freyd categories.

Sebastian Posur A constructive approach to Freyd categories

Algorithms in Freyd categories

More delicate algorithmic issues:
@ Kernels in Freyd categories. v/

@ Equality of morphisms in Freyd categories. v/

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
@ Abelian constructions like pullback or pushout

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
@ Abelian constructions like pullback or pushout
@ Constructive diagram chases

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories
@ Abelian constructions like pullback or pushout
@ Constructive diagram chases

@ Spectral sequence algorithm

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

@ Abelian constructions like pullback or pushout
@ Constructive diagram chases
@ Spectral sequence algorithm

Computational applications of Freyd categories

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

@ Abelian constructions like pullback or pushout
@ Constructive diagram chases
@ Spectral sequence algorithm

Computational applications of Freyd categories

@ Computing sets of natural transformations, e.g.,
Hom (Tor;(M, —),Ext'(A, —))

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

@ Abelian constructions like pullback or pushout
@ Constructive diagram chases
@ Spectral sequence algorithm

Computational applications of Freyd categories

@ Computing sets of natural transformations, e.g.,
Hom (Tor;(M, —),Ext'(A, —))
@ Construct free abelian categories

Sebastian Posur A constructive approach to Freyd categories

Categorical algorithms

Categorical algorithms for abelian categories

@ Abelian constructions like pullback or pushout
@ Constructive diagram chases
@ Spectral sequence algorithm

Computational applications of Freyd categories

@ Computing sets of natural transformations, e.g.,
Hom (Tor;(M, —),Ext'(A, —))
@ Construct free abelian categories ~~ prove homological theorems

v

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

Sebastian Posur A constructive approach to Freyd categories

CAP

CAP - Categories, Algorithms, Programming

(Gutsche, P., Skartsaeterhagen)

CAP is a software project in GAP facilitating the implementation of
@ specific instances of categories,
@ category constructors,
© categorical algorithms.

CapP Days 2018 in Siegen: 8/28/2018 - 8/31/2018

Sebastian Posur A constructive approach to Freyd categories

References

[W Maurice Auslander, Coherent functors, Proc. Conf. Categorical
Algebra (La Jolla, Calif., 1965), Springer, New York, 1966,
pp. 189-231. MR MR0212070 (35 #2945)

[Mohamed Barakat and Markus Lange-Hegermann, An axiomatic
setup for algorithmic homological algebra and an alternative
approach to localization, J. Algebra Appl. 10 (2011), no. 2,
269-293, (arxiv:1003.1943). MR 2795737 (2012f:18022)

[4 Peter Freyd, Representations in abelian categories, Proc. Conf.
Categorical Algebra (La Jolla, Calif., 1965), Springer, New York,
1966, pp. 95-120. MR 0209333

[1 Sebastian Posur, A constructive approach to Freyd categories,
ArXiv e-prints (2017), (arXiv:1712.03492).

Sebastian Posur A constructive approach to Freyd categories

http://arxiv.org/abs/1003.1943
https://arxiv.org/abs/1712.03492

