Finite generation of the cohomology rings of some pointed Hopf algebras

Van C. Nguyen

Hood College, Frederick MD nguyen@hood.edu

joint work with Xingting Wang and Sarah Witherspoon

Maurice Auslander Distinguished Lectures and International Conference April 25 – 30, 2018

Setting & Motivation

Let **k** be a field and \mathcal{H} be a finite-dimensional Hopf algebra over **k**.

The **cohomology** of $\mathcal H$ is $H^*(\mathcal H, \mathbf k) := \bigoplus_{n \geq 0} \operatorname{Ext}^n_{\mathcal H}(\mathbf k, \mathbf k).$

Setting & Motivation

Let k be a field and $\mathcal H$ be a finite-dimensional Hopf algebra over k.

The **cohomology** of
$$\mathcal H$$
 is $H^*(\mathcal H, \mathbf k) := \bigoplus_{n \geq 0} \operatorname{Ext}^n_{\mathcal H}(\mathbf k, \mathbf k).$

Conjecture (Etingof-Ostrik '04)

For any finite-dimensional Hopf algebra \mathcal{H} , $H^*(\mathcal{H}, \mathbf{k})$ is finitely generated.

Setting & Motivation

Let \mathbf{k} be a field and \mathcal{H} be a finite-dimensional Hopf algebra over \mathbf{k} .

The **cohomology** of
$$\mathcal H$$
 is $H^*(\mathcal H, \mathbf k) := \bigoplus_{n \geq 0} \operatorname{Ext}^n_{\mathcal H}(\mathbf k, \mathbf k).$

Conjecture (Etingof-Ostrik '04)

For any finite-dimensional Hopf algebra \mathcal{H} , $H^*(\mathcal{H}, \mathbf{k})$ is finitely generated.

GOAL: Study the finite generation of $H^*(\mathcal{H}, \mathbf{k})$, for some pointed Hopf algebras.

F.g. Cohomology Conjecture

Applications:

Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results

finite group algebras over pos. char., finite group schemes over pos. char., Lusztig's small quantum group over \mathbb{C} , nfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

- $H^*(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring
- H*(H, k) is a finitely generated k-algebra
 ⇒ H*(H, k) is left (or right) Noetherian
 - \iff $H^{ev}(\mathcal{H}, \mathbf{k})$ is Noetherian and $H^*(\mathcal{H}, \mathbf{k})$ is a f.g. module over $H^{ev}(\mathcal{H}, \mathbf{k})$

F.g. Cohomology Conjecture

Applications:

Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results:

finite group algebras over pos. char., finite group schemes over pos. char., Lusztig's small quantum group over \mathbb{C} , Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

- $H^*(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring.
- $H^*(\mathcal{H}, \mathbf{k})$ is a finitely generated \mathbf{k} -algebra $\iff H^*(\mathcal{H}, \mathbf{k})$ is left (or right) Noetherian
 - \iff $H^{ev}(\mathcal{H}, \mathbf{k})$ is Noetherian and $H^*(\mathcal{H}, \mathbf{k})$ is a f.g. module over $H^{ev}(\mathcal{H}, \mathbf{k})$.

F.g. Cohomology Conjecture

Applications:

Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results:

finite group algebras over pos. char., finite group schemes over pos. char., Lusztig's small quantum group over \mathbb{C} , Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

- $H^*(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring.
- H*(H, k) is a finitely generated k-algebra
 ⇒ H*(H, k) is left (or right) Noetherian
 ⇒ H^{ev}(H, k) is Noetherian and H*(H, k) is a f.g. module over H^{ev}(H, k)

F.g. Cohomology Conjecture

Applications:

Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results:

finite group algebras over pos. char., finite group schemes over pos. char., Lusztig's small quantum group over \mathbb{C} , Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

- $H^*(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring.
- $H^*(\mathcal{H}, \mathbf{k})$ is a finitely generated \mathbf{k} -algebra $\iff H^*(\mathcal{H}, \mathbf{k})$ is left (or right) Noetherian
 - \iff $H^{ev}(\mathcal{H}, \mathbf{k})$ is Noetherian and $H^*(\mathcal{H}, \mathbf{k})$ is a f.g. module over $H^{ev}(\mathcal{H}, \mathbf{k})$.

Preliminary Ingredients

Heins Hoff

Definition

A **Hopf algebra** \mathcal{H} over a field **k** is a **k**-vector space which is an algebra (m,u) \heartsuit a coalgebra (Δ,ε) \heartsuit together with an antipode map $S:\mathcal{H}\to\mathcal{H}$.

Preliminary Ingredients

Heins Hoff

Definition

A **Hopf algebra** \mathcal{H} over a field **k** is a **k**-vector space which is an algebra (m, u) \heartsuit a coalgebra (Δ, ε) \heartsuit together with an antipode map $S : \mathcal{H} \to \mathcal{H}$.

Example

group algebra $\mathbf{k}G$, polynomial rings $\mathbf{k}[x_1, x_2, \dots, x_n]$, universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g} , etc.

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char $(\mathbf{k}) = p > 2$ and \mathcal{H} be a p^3 -dim pointed Hopf algebra.

ullet The classification of ${\mathcal H}$ is done by (V.C. Nguyen-X. Wang '16).

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char $(\mathbf{k}) = \mathbf{p} > 2$ and \mathcal{H} be a p^3 -dim pointed Hopf algebra.

- ullet The classification of ${\mathcal H}$ is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$\mathcal{H}_0 = \mathbf{k} C_q = \langle g \rangle$$
, q is divisible by p (more general), $\operatorname{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_q$, where $V = \mathbf{k} x \oplus \mathbf{k} y$ is $\mathbf{k} C_q$ -module.

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char(\mathbf{k}) = p > 2 and \mathcal{H} be a p^3 -dim pointed Hopf algebra.

- ullet The classification of ${\cal H}$ is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$\mathcal{H}_0 = \mathbf{k} C_q = \langle g \rangle, \quad q \text{ is divisible by } p \text{ (more general)},$$
 $\operatorname{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_q, \quad \text{where } V = \mathbf{k} x \oplus \mathbf{k} y \text{ is } \mathbf{k} C_q \text{-module}.$

• $\mathcal{B}(V)$ is a rank two Nichols algebra of Jordan type over C_q .

$$\mathcal{B}(V) = \mathbf{k}\langle x, y \rangle / (x^p, \ y^p, \ yx - xy - \frac{1}{2}x^2).$$
 with action ${}^g x = x$ and ${}^g y = x + y$.

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char $(\mathbf{k}) = p > 2$ and \mathcal{H} be a p^3 -dim pointed Hopf algebra.

- ullet The classification of ${\mathcal H}$ is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$\mathcal{H}_0 = \mathbf{k}C_q = \langle g \rangle, \quad q \text{ is divisible by } p \text{ (more general)},$$
 $\mathrm{gr}\mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k}C_q, \quad \text{where } V = \mathbf{k}x \oplus \mathbf{k}y \text{ is } \mathbf{k}C_q\text{-module}.$

• $\mathcal{B}(V)$ is a rank two Nichols algebra of Jordan type over C_q .

$$\mathcal{B}(V) = \mathbf{k}\langle x,y\rangle/(x^p,\ y^p,\ yx-xy-\frac{1}{2}x^2).$$
 with action ${}^g x = x$ and ${}^g y = x+y$.

Today's Object: two Hopf algebras

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char(\mathbf{k}) = p > 2 and w = g - 1. Consider the following Hopf algebras over \mathbf{k} :

• The p^2q -dim bosonization $\operatorname{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_q$ is isomorphic to $\mathbf{k} \langle w, x, y \rangle$ subject to

$$w^{q}, x^{p}, y^{p}, yx - xy - \frac{1}{2}x^{2}, xw - wx, yw - wy - wx - x.$$

Today's Object: two Hopf algebras

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char(\mathbf{k}) = p > 2 and w = g - 1. Consider the following Hopf algebras over \mathbf{k} :

• The p^2q -dim bosonization $\operatorname{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_q$ is isomorphic to $\mathbf{k} \langle w, x, y \rangle$ subject to

$$w^{q}$$
, x^{p} , y^{p} , $yx - xy - \frac{1}{2}x^{2}$, $xw - wx$, $yw - wy - wx - x$.

② The 27-dim liftings in p=q=3 are $\mathcal{H}=H(\epsilon,\mu,\tau)\cong \mathbf{k}\langle w,x,y\rangle$ subject to

$$\begin{split} w^3 &= 0, \ x^3 = \epsilon x, \ y^3 = -\epsilon y^2 - (\mu \epsilon - \tau - \mu^2) y, \\ yw - wy &= wx + x - (\mu - \epsilon)(w^2 + w), \ xw - wx = \epsilon(w^2 + w), \\ yx - xy &= -x^2 + (\mu + \epsilon)x + \epsilon y - \tau(w^2 - w), \\ \text{with } \epsilon &\in \{0,1\} \text{ and } \tau, \mu \in \mathbf{k}. \end{split}$$

Today's Object: two Hopf algebras

Let $\mathbf{k} = \overline{\mathbf{k}}$ with char(\mathbf{k}) = p > 2 and w = g - 1. Consider the following Hopf algebras over \mathbf{k} :

• The p^2q -dim bosonization $\operatorname{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_q$ is isomorphic to $\mathbf{k} \langle w, x, y \rangle$ subject to

$$w^{q}, x^{p}, y^{p}, yx - xy - \frac{1}{2}x^{2}, xw - wx, yw - wy - wx - x.$$

② The 27-dim liftings in p=q=3 are $\mathcal{H}=H(\epsilon,\mu,\tau)\cong\mathbf{k}\langle w,x,y\rangle$ subject to

$$w^3=0,\ x^3=\epsilon x,\ y^3=-\epsilon y^2-(\mu\epsilon-\tau-\mu^2)y,$$

$$yw-wy=wx+x-(\mu-\epsilon)(w^2+w),\ xw-wx=\epsilon(w^2+w),$$

$$yx-xy=-x^2+(\mu+\epsilon)x+\epsilon y-\tau(w^2-w),$$
 with $\epsilon\in\{0,1\}$ and $\tau,\mu\in\mathbf{k}$.

Main Results (N-Wang-Witherspoon '17)

The cohomology rings of $\mathcal{B}(V)\#\mathbf{k}C_q$ and of $H(\epsilon,\mu,\tau)$ are finitely generated.

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_q$ or $H(\epsilon, \mu, \tau)$ (p = q = 3).
- Assign lexicographic order on monomials in w, x, y with w < x < y.

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_q$ or $H(\epsilon, \mu, \tau)$ (p = q = 3).
- Assign lexicographic order on monomials in w, x, y with w < x < y.
- N-filtration on \mathcal{H} , $\operatorname{gr} \mathcal{H} \cong \mathbf{k}[w, x, y]/(w^q, x^p, y^p)$.

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_q$ or $H(\epsilon, \mu, \tau)$ (p = q = 3).
- Assign lexicographic order on monomials in w, x, y with w < x < y.
- N-filtration on \mathcal{H} , $\operatorname{gr}\mathcal{H} \cong \mathbf{k}[w,x,y]/(w^q,x^p,y^p)$.
- $\mathsf{H}^*(\mathsf{gr}\mathcal{H},\mathbf{k}) = \bigwedge (\mathbf{k}^3) \otimes \mathbf{k} [\xi_w,\xi_x,\xi_y], \ \deg(\xi_i) = 2.$

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_q$ or $H(\epsilon, \mu, \tau)$ (p = q = 3).
- Assign lexicographic order on monomials in w, x, y with w < x < y.
- N-filtration on \mathcal{H} , $\operatorname{gr} \mathcal{H} \cong \mathbf{k}[w, x, y]/(w^q, x^p, y^p)$.
- $H^*(gr\mathcal{H}, \mathbf{k}) = \bigwedge (\mathbf{k}^3) \otimes \mathbf{k} [\xi_w, \xi_x, \xi_y], \ \deg(\xi_i) = 2.$
- (May '66) May spectral sequence

$$E_1^{*,*} \cong \mathsf{H}^*(\mathsf{gr}\mathcal{H}, \boldsymbol{k}) \Longrightarrow E_{\infty}^{*,*} \cong \operatorname{gr} \mathsf{H}^*(\mathcal{H}, \boldsymbol{k}).$$

with respect to the cup product.

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_q$ or $H(\epsilon, \mu, \tau)$ (p = q = 3).
- Assign lexicographic order on monomials in w, x, y with w < x < y.
- N-filtration on \mathcal{H} , $\operatorname{gr}\mathcal{H} \cong \mathbf{k}[w,x,y]/(w^q,x^p,y^p)$.
- $\mathsf{H}^*(\mathsf{gr}\mathcal{H},\mathbf{k}) = \bigwedge (\mathbf{k}^3) \otimes \mathbf{k} [\xi_w,\xi_x,\xi_y], \ \deg(\xi_i) = 2.$
- (May '66) May spectral sequence

$$E_1^{*,*} \cong \mathsf{H}^*(\mathsf{gr}\mathcal{H}, \boldsymbol{k}) \Longrightarrow E_{\infty}^{*,*} \cong \operatorname{gr} \mathsf{H}^*(\mathcal{H}, \boldsymbol{k}).$$

with respect to the cup product.

Lemma (Friedlander-Suslin '97)

If ξ_w, ξ_x, ξ_y are permanent cocyles (meaning they survive at E_∞ -page), then $\operatorname{gr} H^*(\mathcal{H}, \mathbf{k})$ and $H^*(\mathcal{H}, \mathbf{k})$ are noetherian over $\mathbf{k}[\xi_w, \xi_x, \xi_y]$. Consequently, $H^*(\mathcal{H}, \mathbf{k})$ is finitely generated as a \mathbf{k} -algebra.

⇒ Need to find such permanent cocycles!

- Let A and B be associative k-algebras.
- A **twisting map** $\tau: B \otimes A \to A \otimes B$ is a bijective **k**-linear map that respects the identity and multiplication maps of A and of B.

- Let A and B be associative k-algebras.
- A **twisting map** $\tau: B \otimes A \to A \otimes B$ is a bijective **k**-linear map that respects the identity and multiplication maps of A and of B.
- The **twisted tensor product algebra** $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ .

- Let A and B be associative k-algebras.
- A **twisting map** $\tau: B \otimes A \to A \otimes B$ is a bijective **k**-linear map that respects the identity and multiplication maps of A and of B.
- The **twisted tensor product algebra** $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ .
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N

- Let A and B be associative k-algebras.
- A **twisting map** $\tau: B \otimes A \to A \otimes B$ is a bijective **k**-linear map that respects the identity and multiplication maps of A and of B.
- The **twisted tensor product algebra** $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ .
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N
 - \Longrightarrow Construct a projective resolution Y_{\bullet} of $A \otimes_{\tau} B$ -modules from $P_{\bullet}(M)$ and $P_{\bullet}(N)$??

- Let A and B be associative k-algebras.
- A **twisting map** $\tau: B \otimes A \to A \otimes B$ is a bijective **k**-linear map that respects the identity and multiplication maps of A and of B.
- The **twisted tensor product algebra** $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ .
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N
 - \Rightarrow Construct a projective resolution Y_{\bullet} of $A \otimes_{\tau} B$ -modules from $P_{\bullet}(M)$ and $P_{\bullet}(N)$??
- Twisted tensor product resolution: (Shepler-Witherspoon '16) introduced some compatibility conditions that are sufficient for constructing a projective resolution $Y_{\bullet} = \operatorname{Tot}(P_{\bullet}(M) \otimes P_{\bullet}(N))$ of $M \otimes N$ as a module over $A \otimes_{\tau} B$.

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

- $\mathcal{H} = \mathcal{B}(V) \# \mathbf{k} C_q \cong (A \otimes_{\tau} B) \otimes_{\mu} C$.
- $\bullet \ A = \mathbf{k}[x]/(x^p), \quad B = \mathbf{k}[y]/(y^p), \quad C = \mathbf{k}[w]/(w^q).$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

- $\mathcal{H} = \mathcal{B}(V) \# \mathbf{k} C_q \cong (A \otimes_{\tau} B) \otimes_{\mu} C$.
- $A = \mathbf{k}[x]/(x^p)$, $B = \mathbf{k}[y]/(y^p)$, $C = \mathbf{k}[w]/(w^q)$.
- The twisting map $\tau : B \otimes A \to A \otimes B$:

$$\tau(y^r \otimes x^\ell) = \sum_{t=0}^r \binom{r}{t} \frac{\ell(\ell+1)(\ell+2)\cdots(\ell+t-1)}{2^t} x^{\ell+t} \otimes y^{r-t}.$$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}\,\mathcal{C}_q$

- $\mathcal{H} = \mathcal{B}(V) \# \mathbf{k} C_q \cong (A \otimes_{\tau} B) \otimes_{\mu} C$.
- $A = \mathbf{k}[x]/(x^p)$, $B = \mathbf{k}[y]/(y^p)$, $C = \mathbf{k}[w]/(w^q)$.
- The twisting map $\tau : B \otimes A \to A \otimes B$:

$$\tau(y^r \otimes x^\ell) = \sum_{t=0}^r \binom{r}{t} \frac{\ell(\ell+1)(\ell+2)\cdots(\ell+t-1)}{2^t} \ x^{\ell+t} \otimes y^{r-t}.$$

• Let $P_{\bullet}^{A}(\mathbf{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$,

$$P^{B}_{\bullet}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y} B \xrightarrow{y} B \xrightarrow{y} B \xrightarrow{y} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0.$$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

- $\mathcal{H} = \mathcal{B}(V) \# \mathbf{k} C_q \cong (A \otimes_{\tau} B) \otimes_{\mu} C$.
- $A = \mathbf{k}[x]/(x^p)$, $B = \mathbf{k}[y]/(y^p)$, $C = \mathbf{k}[w]/(w^q)$.
- The twisting map $\tau : B \otimes A \to A \otimes B$:

$$\tau(y^r \otimes x^\ell) = \sum_{t=0}^r \binom{r}{t} \frac{\ell(\ell+1)(\ell+2)\cdots(\ell+t-1)}{2^t} \ x^{\ell+t} \otimes y^{r-t}.$$

- Let $P_{\bullet}^{A}(\mathbf{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{x} A \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{x} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$, $P_{\bullet}^{B}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y} B \xrightarrow{y^{p-1}} B \xrightarrow{y} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$.
- The total complex: $\mathcal{K}_{\bullet} := \operatorname{Tot}(P^{A}_{\bullet}(\mathbf{k}) \otimes P^{B}_{\bullet}(\mathbf{k}))$ with differential

$$d_n = \sum_{i+j=n} (d_i \otimes 1 + (-1)^i \otimes d_j).$$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

- $\mathcal{H} = \mathcal{B}(V) \# \mathbf{k} C_q \cong (A \otimes_{\tau} B) \otimes_{\mu} C$.
- $\bullet \ A = \mathbf{k}[x]/(x^p), \quad B = \mathbf{k}[y]/(y^p), \quad C = \mathbf{k}[w]/(w^q).$
- The twisting map $\tau : B \otimes A \to A \otimes B$:

$$\tau(y^r \otimes x^\ell) = \sum_{t=0}^r \binom{r}{t} \frac{\ell(\ell+1)(\ell+2)\cdots(\ell+t-1)}{2^t} \ x^{\ell+t} \otimes y^{r-t}.$$

- Let $P_{\bullet}^{A}(\mathbf{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{x} A \xrightarrow{x^{p-1}} A \xrightarrow{x} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$, $P_{\bullet}^{B}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y} B \xrightarrow{y^{p-1}} B \xrightarrow{y} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$.
- The total complex: $\mathcal{K}_{\bullet} := \operatorname{Tot}(P^{A}_{\bullet}(\mathbf{k}) \otimes P^{B}_{\bullet}(\mathbf{k}))$ with differential

$$d_n = \sum_{i+j=n} (d_i \otimes 1 + (-1)^i \otimes d_j).$$

- $(\mathcal{K}_{\bullet}, d)$ is a resolution of **k** over $A \otimes_{\tau} B$.
- $\bullet \ \mathsf{H}^*(\mathcal{K}_{\bullet}) = \mathsf{H}^*(A \otimes B, \mathbf{k}) \cong \mathsf{H}^*(A, \mathbf{k}) \otimes \mathsf{H}^*(B, \mathbf{k}).$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}\,\mathcal{C}_q$

•
$$\mathcal{K}_n = \bigoplus_{i+j=n} \frac{P_i^A(\mathbf{k}) \otimes P_j^B(\mathbf{k})}{P_j^B(\mathbf{k})} \cong \bigoplus_{i+j=n} (A \otimes_{\tau} B) \phi_{ij}.$$

 $\bullet \ \mathsf{H}^*(\mathcal{K}_{\bullet}) = \mathsf{H}^*(A \otimes_{\tau} B, \mathbf{k}).$

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

•
$$\mathcal{K}_n = \bigoplus_{i+j=n} \frac{P_i^A(\mathbf{k}) \otimes P_j^B(\mathbf{k})}{P_j^B(\mathbf{k})} \cong \bigoplus_{i+j=n} (A \otimes_{\tau} B) \phi_{ij}.$$

- $\bullet \ \mathsf{H}^*(\mathcal{K}_{\bullet}) = \mathsf{H}^*(A \otimes_{\tau} B, \mathbf{k}).$
- \mathcal{K}_{\bullet} is $C_q = \langle g \rangle$ -equivariant.

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}C_q$

•
$$\mathcal{K}_n = \bigoplus_{i+j=n} P_i^A(\mathbf{k}) \otimes P_j^B(\mathbf{k}) \cong \bigoplus_{i+j=n} (A \otimes_{\tau} B) \phi_{ij}.$$

- $\bullet \ \mathsf{H}^*(\mathcal{K}_{\bullet}) = \mathsf{H}^*(A \otimes_{\tau} B, \mathbf{k}).$
- \mathcal{K}_{\bullet} is $C_q = \langle g \rangle$ -equivariant.
- $\bullet P_{\bullet}^{\mathsf{k}C_q}(\mathsf{k}): \cdots \mathsf{k}C_q \xrightarrow{(g-1)\cdot} \mathsf{k}C_q \xrightarrow{(\sum_{s=0}^{q-1}g^s)\cdot} \mathsf{k}C_q \xrightarrow{(g-1)\cdot} \mathsf{k}C_q \xrightarrow{\varepsilon} \mathsf{k} \longrightarrow 0.$
- Twisted tensor resolution $\mathcal{Y}_{\bullet} := \operatorname{Tot}(\mathcal{K}_{\bullet} \otimes P_{\bullet}^{\mathbf{k}C_q}(\mathbf{k}))$ with twisted chain map $\mu_{\bullet} : \mathbf{k}C_q \otimes K_{\bullet} \to K_{\bullet} \otimes \mathbf{k}C_q$ given by the C_q -action.

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}\,\mathcal{C}_q$

- $\mathcal{K}_n = \bigoplus_{i+j=n} P_i^A(\mathbf{k}) \otimes P_j^B(\mathbf{k}) \cong \bigoplus_{i+j=n} (A \otimes_{\tau} B) \phi_{ij}.$
- $\bullet \ \mathsf{H}^*(\mathcal{K}_{\bullet}) = \mathsf{H}^*(A \otimes_{\tau} B, \mathbf{k}).$
- \mathcal{K}_{\bullet} is $C_q = \langle g \rangle$ -equivariant.
- $\bullet P_{\bullet}^{\mathsf{k}C_q}(\mathsf{k}): \cdots \mathsf{k}C_q \xrightarrow{(g-1)\cdot} \mathsf{k}C_q \xrightarrow{(\sum_{s=0}^{q-1}g^s)\cdot} \mathsf{k}C_q \xrightarrow{(g-1)\cdot} \mathsf{k}C_q \xrightarrow{\varepsilon} \mathsf{k} \longrightarrow 0.$
- Twisted tensor resolution $\mathcal{Y}_{\bullet} := \operatorname{Tot}(\mathcal{K}_{\bullet} \otimes P_{\bullet}^{\mathbf{k}C_q}(\mathbf{k}))$ with twisted chain map $\mu_{\bullet} : \mathbf{k}C_q \otimes K_{\bullet} \to K_{\bullet} \otimes \mathbf{k}C_q$ given by the C_q -action.
- Described all $H^n(\mathcal{B}(V) \# \mathbf{k} C_q, \mathbf{k})$ as **k**-vector space.
- Found $\xi_w, \xi_x, \xi_y \in H^2(\mathcal{B}(V) \# \mathbf{k} C_q, \mathbf{k})$, needed permanent cocycles.

Twisted tensor product resolutions over $\mathcal{B}(V)\#\mathbf{k}\,\mathcal{C}_q$

- $\mathcal{K}_n = \bigoplus_{i+j=n} \frac{P_i^A(\mathbf{k}) \otimes P_j^B(\mathbf{k})}{P_j^B(\mathbf{k})} \cong \bigoplus_{i+j=n} (A \otimes_{\tau} B) \phi_{ij}.$
- $H^*(\mathcal{K}_{\bullet}) = H^*(A \otimes_{\tau} B, \mathbf{k}).$
- \mathcal{K}_{\bullet} is $C_q = \langle g \rangle$ -equivariant.
- $P_{\bullet}^{\mathsf{k}C_q}(\mathsf{k}): \cdots \mathsf{k}C_q \xrightarrow{(g-1)^{\cdot}} \mathsf{k}C_q \xrightarrow{(\sum_{s=0}^{q-1}g^s)^{\cdot}} \mathsf{k}C_q \xrightarrow{(g-1)^{\cdot}} \mathsf{k}C_q \xrightarrow{\varepsilon} \mathsf{k} \longrightarrow 0.$
- Twisted tensor resolution $\mathcal{Y}_{\bullet} := \operatorname{Tot}(\mathcal{K}_{\bullet} \otimes P_{\bullet}^{\mathbf{k}C_q}(\mathbf{k}))$ with twisted chain map $\mu_{\bullet} : \mathbf{k}C_q \otimes K_{\bullet} \to K_{\bullet} \otimes \mathbf{k}C_q$ given by the C_q -action.
- Described all $H^n(\mathcal{B}(V) \# \mathbf{k} C_q, \mathbf{k})$ as **k**-vector space.
- Found $\xi_w, \xi_x, \xi_y \in H^2(\mathcal{B}(V) \# \mathbf{k} C_q, \mathbf{k})$, needed permanent cocycles.

Theorem (N-Wang-Witherspoon '17)

 $H^*(\mathcal{B}(V)\#\mathbf{k}C_q,\mathbf{k})$ is finitely generated as a **k**-algebra.

•
$$\mathcal{H} = H(\epsilon, \mu, \tau) = T(V)/(I)$$
.

- $\mathcal{H} = H(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.

- $\mathcal{H} = \mathbf{H}(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.
- $\mathcal{T} = \{ \text{tips} \}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (1).

- $\mathcal{H} = \mathbf{H}(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.
- $\mathcal{T} = \{ \text{tips} \}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (1).
- $\mathcal{R} = \{\text{all proper prefixes (left factors) of the tips}\}.$

- $\mathcal{H} = \mathbf{H}(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.
- $\mathcal{T} = \{ \text{tips} \}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (1).
- $\mathcal{R} = \{\text{all proper prefixes (left factors) of the tips}\}.$
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q} = \mathbf{Q}(\mathcal{B}, \mathcal{T})$:
 - Vertices: $\{1\} \cup \mathcal{R}$.
 - Arrows: $1 \to v$ for $v \in \mathcal{B}$ and all $f \to g$ for $f, g \in \mathcal{R}$ where gf uniquely contains a tip as a prefix.

- $\mathcal{H} = H(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.
- $\mathcal{T} = \{ \text{tips} \}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (1).
- $\mathcal{R} = \{\text{all proper prefixes (left factors) of the tips}\}.$
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q} = \mathbf{Q}(\mathcal{B}, \mathcal{T})$:
 - Vertices: $\{1\} \cup \mathcal{R}$.
 - Arrows: $1 \to v$ for $v \in \mathcal{B}$ and all $f \to g$ for $f, g \in \mathcal{R}$ where gf uniquely contains a tip as a prefix.
- In each homological degree n of the Anick resolution, define a free basis $C_n = \{\text{all paths of length } n \text{ starting from } 1 \text{ in } \mathbf{Q}\}.$

- $\mathcal{H} = \mathbf{H}(\epsilon, \mu, \tau) = T(V)/(I)$.
- $\mathcal{B} = \{w, x, y\}$, a basis of V with the ordering w < x < y.
- $\mathcal{T} = \{ \text{tips} \}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (1).
- $\mathcal{R} = \{\text{all proper prefixes (left factors) of the tips}\}.$
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q} = \mathbf{Q}(\mathcal{B}, \mathcal{T})$:
 - Vertices: $\{1\} \cup \mathcal{R}$.
 - Arrows: $1 \to v$ for $v \in \mathcal{B}$ and all $f \to g$ for $f, g \in \mathcal{R}$ where gf uniquely contains a tip as a prefix.
- In each homological degree n of the Anick resolution, define a free basis $C_n = \{\text{all paths of length } n \text{ starting from } 1 \text{ in } \mathbf{Q}\}.$
- The differentials d are defined recursively, with a simultaneous recursive definition of a contracting homotopy s:

$$\cdots \xrightarrow[s_2]{d_3} \mathcal{H} \otimes \mathbf{k} C_2 \xrightarrow[s_1]{d_2} \mathcal{H} \otimes \mathbf{k} C_1 \xrightarrow[s_0]{d_1} \mathcal{H} \xrightarrow[s_0]{\varepsilon} \mathbf{k} \longrightarrow 0.$$

Anick resolution for some liftings $\mathcal{H} = \mathcal{H}(\epsilon, \mu, \tau)$

Example $(\overline{\mathcal{H}} = H(\epsilon, \mu, \tau) \cong \mathbf{k} \langle w, x, y \rangle$ subject to)

$$w^{3} = 0, \ x^{3} = \epsilon x, \ y^{3} = -\epsilon y^{2} - (\mu \epsilon - \tau - \mu^{2})y,$$

$$yw - wy = wx + x - (\mu - \epsilon)(w^{2} + w), \ xw - wx = \epsilon(w^{2} + w),$$

$$yx - xy = -x^{2} + (\mu + \epsilon)x + \epsilon y - \tau(w^{2} - w),$$

with $\epsilon \in \{0,1\}$ and $\tau, \mu \in \mathbf{k}$.

Anick resolution for some liftings $\mathcal{H} = \mathcal{H}(\epsilon, \mu, \tau)$

$$C_1 = \{w, x, y\} = \mathcal{B},$$

$$C_2 = \{w^3, x^3, y^3, xw, yw, yx\} = \mathcal{T},$$

$$C_3 = \{w^{3+1}, x^{3+1}, y^{3+1}, xw^3, yw^3, yx^3, x^3w, y^3w, y^3x, yxw\}.$$

Anick resolution for some liftings $\mathcal{H} = \mathcal{H}(\epsilon, \mu, \tau)$

$$\begin{split} &C_1 = \{w, x, y\} = \mathcal{B}, \\ &C_2 = \{w^3, x^3, y^3, xw, yw, yx\} = \mathcal{T}, \\ &C_3 = \{w^{3+1}, x^{3+1}, y^{3+1}, xw^3, yw^3, yx^3, x^3w, y^3w, y^3x, yxw\}. \end{split}$$

Define differentials, $\cdots \xrightarrow[s_2]{d_3} \mathcal{H} \otimes \mathbf{k} C_2 \xrightarrow[s_1]{d_2} \mathcal{H} \otimes \mathbf{k} C_1 \xrightarrow[s_0]{d_1} \mathcal{H} \xrightarrow[s_0]{\varepsilon} \mathbf{k} \longrightarrow 0.$

Anick resolution for some liftings $\mathcal{H} = H(\epsilon, \mu, \tau)$

$$\begin{split} &C_1 = \{w, x, y\} = \mathcal{B}, \\ &C_2 = \{w^3, x^3, y^3, xw, yw, yx\} = \mathcal{T}, \\ &C_3 = \{w^{3+1}, x^{3+1}, y^{3+1}, xw^3, yw^3, yx^3, x^3w, y^3w, y^3x, yxw\}. \end{split}$$

Define differentials, $\cdots \xrightarrow[s_2]{d_3} \mathcal{H} \otimes \mathbf{k} C_2 \xrightarrow[s_1]{d_2} \mathcal{H} \otimes \mathbf{k} C_1 \xrightarrow[s_0]{d_1} \mathcal{H} \xrightarrow[s_0]{\varepsilon} \mathbf{k} \longrightarrow 0.$

 \implies Found $\xi_w, \xi_x, \xi_y \in H^2(H(\epsilon, \mu, \tau), \mathbf{k})$, needed permanent cocycles.

Anick resolution for some liftings $\mathcal{H} = H(\epsilon, \mu, \tau)$

$$\begin{split} &C_1 = \{w, x, y\} = \mathcal{B}, \\ &C_2 = \{w^3, x^3, y^3, xw, yw, yx\} = \mathcal{T}, \\ &C_3 = \{w^{3+1}, x^{3+1}, y^{3+1}, xw^3, yw^3, yx^3, x^3w, y^3w, y^3x, yxw\}. \end{split}$$

Define differentials, $\cdots \xrightarrow[s_2]{d_3} \mathcal{H} \otimes \mathbf{k} C_2 \xrightarrow[s_1]{d_2} \mathcal{H} \otimes \mathbf{k} C_1 \xrightarrow[s_0]{d_1} \mathcal{H} \xrightarrow[s_0]{\varepsilon} \mathbf{k} \longrightarrow 0.$

 \Longrightarrow Found $\xi_w, \xi_x, \xi_y \in H^2(H(\epsilon, \mu, \tau), \mathbf{k})$, needed permanent cocycles.

Theorem (N-Wang-Witherspoon '17)

 $H^*(H(\epsilon,\mu,\tau),\mathbf{k})$ is finitely generated as a **k**-algebra.

Anick resolution for some liftings $\mathcal{H} = \mathcal{H}(\epsilon, \mu, au)$

$$\begin{array}{llll} d_2(1\otimes w^3) & = & w^2\otimes w, \\ d_2(1\otimes x^3) & = & x^2\otimes x - \epsilon\otimes x, \\ d_2(1\otimes y^3) & = & y^2\otimes y + \epsilon y\otimes y + (\mu\epsilon - \tau - \mu^2)\otimes y, \\ d_2(1\otimes xw) & = & x\otimes w - w\otimes x - \epsilon w\otimes w - \epsilon\otimes w, \\ d_2(1\otimes yw) & = & y\otimes w - w\otimes y - w\otimes x - 1\otimes x + (\mu - \epsilon)w\otimes w + (\mu - \epsilon)\otimes w, \\ d_2(1\otimes yx) & = & y\otimes x - x\otimes y + x\otimes x - (\mu + \epsilon)\otimes x - \epsilon\otimes y + \tau w\otimes w - \tau\otimes w. \\ \end{array}$$

$$\begin{array}{lll} d_3(1\otimes w^4) & = & w\otimes w^3, & d_3(1\otimes x^4) = x\otimes x^3, & d_3(1\otimes y^4) = y\otimes y^3, \\ d_3(1\otimes xw^3) & = & x\otimes w^3 - w^2\otimes xw, \\ d_3(1\otimes x^3w) & = & x^2\otimes xw + w\otimes x^3 + \epsilon wx\otimes xw + \epsilon x\otimes xw + \epsilon w\otimes xw, \\ d_3(1\otimes yw^3) & = & y\otimes w^3 - w^2\otimes yw + w^2\otimes xw + w\otimes xw, \\ d_3(1\otimes yw^3) & = & y\otimes w^3 - w^2\otimes yw + w^2\otimes xw + w\otimes xw, \\ d_3(1\otimes yxw) & = & y\otimes xw - x\otimes yw + w\otimes yx + \epsilon w\otimes yw + x\otimes xw + (\mu+\epsilon)w\otimes xw, \\ d_3(1\otimes y^3w) & = & y^2\otimes yw + w\otimes y^3 + wy\otimes yx + \epsilon w\otimes yx + (\epsilon-\mu)wy\otimes yw \\ & & + (\mu-\epsilon)wx\otimes yw - \tau w^2\otimes yw + y\otimes yx - (\epsilon+\mu)y\otimes yw \\ & & + \tau w^2\otimes xw + x\otimes yx + (\mu-\epsilon)x\otimes yw + (\mu^2-\epsilon\mu)w\otimes yw + \tau w\otimes xw, \\ d_3(1\otimes y^3x) & = & y^2\otimes yx + x\otimes y^3 - xy\otimes yx - \tau wx\otimes yw - \tau wy\otimes yw \\ & & + \tau w^2\otimes yx + \tau wx\otimes xw + \epsilon x^2\otimes yw + (\epsilon\tau+\mu\tau)w^2\otimes xw \\ & & + \tau w\otimes yx + \tau y\otimes yw - \mu x\otimes yx + \tau x\otimes xw \\ & & + \tau w\otimes yx + \tau y\otimes yw - \mu x\otimes yx + \tau x\otimes xw \\ & & + \tau w\otimes yx + \tau y\otimes yw - \mu x\otimes yx + \tau x\otimes xw \\ & & + \tau w\otimes yx + \tau y\otimes yw - \mu x\otimes yx + \tau x\otimes xw \\ & & & + \tau w\otimes yx + (\epsilon\tau+\mu\tau)w\otimes yw + \epsilon\tau w\otimes xw. \end{array}$$

Recap - The Menu

References

D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641–659.

S. Cojocaru and V. Ufnarovski, BERGMAN under MS-DOS and Anick's resolution, Discrete Math. Theoretical Comp. Sci. 1 (1997), 139–147.

E. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math., 127 (1997), no. 2, 209-270.

J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146.

V. C. Nguyen and X. Wang, Pointed p^3 -dimensional Hopf algebras in positive characteristic, to appear in Alg. Colloq., arXiv:1609.03952.

A. V. Shepler and S. Witherspoon, Resolutions for twisted tensor products, preprint, arXiv:1610.00583.

Thank You! ©

