Finite generation of the cohomology rings of some pointed Hopf algebras

Van C. Nguyen
Hood College, Frederick MD
nguyen@hood.edu

joint work with Xingting Wang and Sarah Witherspoon

Maurice Auslander Distinguished Lectures and International Conference
April 25 - 30, 2018

Setting \& Motivation

Let \mathbf{k} be a field and \mathcal{H} be a finite-dimensional Hopf algebra over \mathbf{k}. The cohomology of \mathcal{H} is $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k}):=\bigoplus_{n \geq 0} \operatorname{Ext}_{\mathcal{H}}^{n}(\mathbf{k}, \mathbf{k})$.

Setting \& Motivation

Let \mathbf{k} be a field and \mathcal{H} be a finite-dimensional Hopf algebra over \mathbf{k}. The cohomology of \mathcal{H} is $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k}):=\bigoplus_{n \geq 0} \operatorname{Ext}_{\mathcal{H}}^{n}(\mathbf{k}, \mathbf{k})$.

Conjecture (Etingof-Ostrik '04)

For any finite-dimensional Hopf algebra $\mathcal{H}, \mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is finitely generated.

Setting \& Motivation

Let \mathbf{k} be a field and \mathcal{H} be a finite-dimensional Hopf algebra over \mathbf{k}. The cohomology of \mathcal{H} is $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k}):=\bigoplus_{n \geq 0} \mathrm{Ext}_{\mathcal{H}}^{n}(\mathbf{k}, \mathbf{k})$.

Conjecture (Etingof-Ostrik '04)

For any finite-dimensional Hopf algebra $\mathcal{H}, \mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is finitely generated.

GOAL: Study the finite generation of $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$, for some pointed Hopf algebras.

Finite generation of cohomology ring

F.g. Cohomology Conjecture

Applications:
 Quillen's stratification theorem, modular representation theory,
 support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Remarks:

Finite generation of cohomology ring

F.g. Cohomology Conjecture

Applications:
Quillen's stratification theorem,

Partial Results:
finite group algebras over pos. char., finite group schemes over pos. char.,
Lusztig's small quantum group over \mathbb{C},
Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

Remarks:

Finite generation of cohomology ring

F.g. Cohomology Conjecture

Applications:
Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results:

finite group algebras over pos. char., finite group schemes over pos. char.,
Lusztig's small quantum group over \mathbb{C},
Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

Remarks:

- $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring.

Finite generation of cohomology ring

F.g. Cohomology Conjecture

Applications:

Quillen's stratification theorem, modular representation theory, support variety theory, algebraic geometry, commutative algebra, some homological conjectures

Partial Results:

finite group algebras over pos. char., finite group schemes over pos. char.,
Lusztig's small quantum group over \mathbb{C},
Drinfeld double of Frob. kernels of finite alg. groups, certain pointed Hopf algebras

Remarks:

- $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is a graded-commutative ring.
- $\mathbf{H}^{*}(\mathcal{H}, \mathbf{k})$ is a finitely generated \mathbf{k}-algebra
$\Longleftrightarrow \mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is left (or right) Noetherian
$\Longleftrightarrow \mathrm{H}^{e v}(\mathcal{H}, \mathbf{k})$ is Noetherian and $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is a f.g. module over $\mathrm{H}^{e v}(\mathcal{H}, \mathbf{k})$.

Preliminary Ingredients

Definition

A Hopf algebra \mathcal{H} over a field \mathbf{k} is a \mathbf{k}-vector space which is an algebra $(m, u) \odot$ a coalgebra $(\Delta, \varepsilon) \oslash$ together with an antipode map $S: \mathcal{H} \rightarrow \mathcal{H}$.

Preliminary Ingredients

Definition

A Hopf algebra \mathcal{H} over a field \mathbf{k} is a \mathbf{k}-vector space which is an algebra $(m, u) \odot$ a coalgebra $(\Delta, \varepsilon) \bigcirc$ together with an antipode map $S: \mathcal{H} \rightarrow \mathcal{H}$.

Example

group algebra $\mathbf{k} G$, polynomial rings $\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g}, etc.

Today's Object: p^{3}-dim pointed Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with char($\mathbf{k})=p>2$ and \mathcal{H} be a p^{3}-dim pointed Hopf algebra.

- The classification of \mathcal{H} is done by (V.C. Nguyen-X. Wang '16).

Today's Object: p^{3}-dim pointed Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with char($\mathbf{k})=p>2$ and \mathcal{H} be a p^{3}-dim pointed Hopf algebra.

- The classification of \mathcal{H} is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$
\begin{array}{rlrl}
\mathcal{H}_{0} & =\mathbf{k} C_{q}=\langle g\rangle, & q \text { is divisible by } p \text { (more general }) \\
\operatorname{gr\mathcal {H}} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}, & \text { where } V=\mathbf{k} x \oplus \mathbf{k} y \text { is } \mathbf{k} C_{q} \text {-module. }
\end{array}
$$

Today's Object: p^{3}-dim pointed Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with char($\mathbf{k})=p>2$ and \mathcal{H} be a p^{3}-dim pointed Hopf algebra.

- The classification of \mathcal{H} is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$
\begin{aligned}
\mathcal{H}_{0} & =\mathbf{k} C_{q}=\langle g\rangle, \\
\operatorname{gr\mathcal {H}} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}, & \quad \text { where } V=\mathbf{k} x \oplus \mathbf{k} y \text { is } \mathbf{k} C_{q} \text {-module } .
\end{aligned}
$$

- $\mathcal{B}(V)$ is a rank two Nichols algebra of Jordan type over C_{q}.

$$
\mathcal{B}(V)=\mathbf{k}\langle x, y\rangle /\left(x^{p}, y^{p}, y x-x y-\frac{1}{2} x^{2}\right) .
$$

with action ${ }^{g} x=x$ and $g^{g}=x+y$.

Today's Object: p^{3}-dim pointed Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with char($\mathbf{k})=p>2$ and \mathcal{H} be a p^{3}-dim pointed Hopf algebra.

- The classification of \mathcal{H} is done by (V.C. Nguyen-X. Wang '16).
- We are interested in the case when

$$
\begin{aligned}
\mathcal{H}_{0} & =\mathbf{k} C_{q}=\langle g\rangle, \\
\operatorname{gr\mathcal {H}} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}, & \quad \text { where } V=\mathbf{k} x \oplus \mathbf{k} y \text { is } \mathbf{k} C_{q} \text {-module } .
\end{aligned}
$$

- $\mathcal{B}(V)$ is a rank two Nichols algebra of Jordan type over C_{q}.

$$
\mathcal{B}(V)=\mathbf{k}\langle x, y\rangle /\left(x^{p}, y^{p}, y x-x y-\frac{1}{2} x^{2}\right) .
$$

with action ${ }^{g} x=x$ and $g^{g} y=x+y$.

Today's Object: two Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with $\operatorname{char}(\mathbf{k})=p>2$ and $w=g-1$. Consider the following Hopf algebras over \mathbf{k} :
(1) The $p^{2} q$-dim bosonization $\mathrm{grH} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}$ is isomorphic to $\mathbf{k}\langle w, x, y\rangle$ subject to

$$
w^{q}, x^{p}, y^{p}, y x-x y-\frac{1}{2} x^{2}, x w-w x, y w-w y-w x-x
$$

Today's Object: two Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with $\operatorname{char}(\mathbf{k})=p>2$ and $w=g-1$. Consider the following Hopf algebras over \mathbf{k} :
(1) The $p^{2} q$-dim bosonization $\mathrm{gr} \mathcal{H} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}$ is isomorphic to $\mathbf{k}\langle w, x, y\rangle$ subject to

$$
w^{q}, x^{p}, y^{p}, y x-x y-\frac{1}{2} x^{2}, x w-w x, y w-w y-w x-x .
$$

(2) The 27-dim liftings in $p=q=3$ are $\mathcal{H}=H(\epsilon, \mu, \tau) \cong \mathbf{k}\langle w, x, y\rangle$ subject to

$$
\begin{gathered}
w^{3}=0, x^{3}=\epsilon x, y^{3}=-\epsilon y^{2}-\left(\mu \epsilon-\tau-\mu^{2}\right) y, \\
y w-w y=w x+x-(\mu-\epsilon)\left(w^{2}+w\right), x w-w x=\epsilon\left(w^{2}+w\right), \\
y x-x y=-x^{2}+(\mu+\epsilon) x+\epsilon y-\tau\left(w^{2}-w\right),
\end{gathered}
$$

with $\epsilon \in\{0,1\}$ and $\tau, \mu \in \mathbf{k}$.

Today's Object: two Hopf algebras

Let $\mathbf{k}=\overline{\mathbf{k}}$ with $\operatorname{char}(\mathbf{k})=p>2$ and $w=g-1$. Consider the following Hopf algebras over \mathbf{k} :
(1) The $p^{2} q$-dim bosonization $\mathrm{grH} \cong \mathcal{B}(V) \# \mathbf{k} C_{q}$ is isomorphic to $\mathbf{k}\langle w, x, y\rangle$ subject to

$$
w^{q}, x^{p}, y^{p}, y x-x y-\frac{1}{2} x^{2}, x w-w x, y w-w y-w x-x .
$$

(2) The 27-dim liftings in $p=q=3$ are $\mathcal{H}=H(\epsilon, \mu, \tau) \cong \mathbf{k}\langle w, x, y\rangle$ subject to

$$
\begin{gathered}
w^{3}=0, x^{3}=\epsilon x, y^{3}=-\epsilon y^{2}-\left(\mu \epsilon-\tau-\mu^{2}\right) y \\
y w-w y=w x+x-(\mu-\epsilon)\left(w^{2}+w\right), x w-w x=\epsilon\left(w^{2}+w\right) \\
y x-x y=-x^{2}+(\mu+\epsilon) x+\epsilon y-\tau\left(w^{2}-w\right)
\end{gathered}
$$

with $\epsilon \in\{0,1\}$ and $\tau, \mu \in \mathbf{k}$.

Main Results (N-Wang-Witherspoon '17)

The cohomology rings of $\mathcal{B}(V) \# \mathbf{k} C_{q}$ and of $H(\epsilon, \mu, \tau)$ are finitely generated.

Strategy: May spectral sequence \& permanent cocycles

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_{q}$ or $H(\epsilon, \mu, \tau)(p=q=3)$.
- Assign lexicographic order on monomials in w, x, y with $w<x<y$.

Strategy: May spectral sequence \& permanent cocycles

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_{q}$ or $H(\epsilon, \mu, \tau)(p=q=3)$.
- Assign lexicographic order on monomials in w, x, y with $w<x<y$.
- \mathbb{N}-filtration on \mathcal{H}, $\operatorname{gr\mathcal {H}} \cong \mathbf{k}[w, x, y] /\left(w^{q}, x^{p}, y^{p}\right)$.

Strategy: May spectral sequence \& permanent cocycles

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_{q}$ or $H(\epsilon, \mu, \tau)(p=q=3)$.
- Assign lexicographic order on monomials in w, x, y with $w<x<y$.
- \mathbb{N}-filtration on \mathcal{H}, $\operatorname{gr\mathcal {H}} \cong \mathbf{k}[w, x, y] /\left(w^{q}, x^{p}, y^{p}\right)$.
- $\mathbf{H}^{*}(\operatorname{gr\mathcal {H}}, \mathbf{k})=\Lambda\left(\mathbf{k}^{3}\right) \otimes \mathbf{k}\left[\xi_{w}, \xi_{x}, \xi_{y}\right], \operatorname{deg}\left(\xi_{i}\right)=2$.

Strategy: May spectral sequence \& permanent cocycles

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_{q}$ or $H(\epsilon, \mu, \tau)(p=q=3)$.
- Assign lexicographic order on monomials in w, x, y with $w<x<y$.
- \mathbb{N}-filtration on $\mathcal{H}, \operatorname{gr\mathcal {H}} \cong \mathbf{k}[w, x, y] /\left(w^{q}, x^{p}, y^{p}\right)$.
- $\mathbf{H}^{*}(\operatorname{grH}, \mathbf{k})=\Lambda\left(\mathbf{k}^{3}\right) \otimes \mathbf{k}\left[\xi_{w}, \xi_{x}, \xi_{y}\right], \operatorname{deg}\left(\xi_{i}\right)=2$.
- (May '66) May spectral sequence

$$
E_{1}^{*, *} \cong \mathrm{H}^{*}(\mathrm{gr} \mathrm{\mathcal{H}}, \mathbf{k}) \Longrightarrow E_{\infty}^{*, *} \cong \operatorname{gr} \mathrm{H}^{*}(\mathcal{H}, \mathbf{k}) .
$$

with respect to the cup product.

Strategy: May spectral sequence \& permanent cocycles

- Take \mathcal{H} as $\mathcal{B}(V) \# \mathbf{k} C_{q}$ or $H(\epsilon, \mu, \tau)(p=q=3)$.
- Assign lexicographic order on monomials in w, x, y with $w<x<y$.
- \mathbb{N}-filtration on $\mathcal{H}, \operatorname{gr\mathcal {H}} \cong \mathbf{k}[w, x, y] /\left(w^{q}, x^{p}, y^{p}\right)$.
- $\mathbf{H}^{*}(\operatorname{grH}, \mathbf{k})=\Lambda\left(\mathbf{k}^{3}\right) \otimes \mathbf{k}\left[\xi_{w}, \xi_{x}, \xi_{y}\right], \operatorname{deg}\left(\xi_{i}\right)=2$.
- (May '66) May spectral sequence

$$
E_{1}^{*, *} \cong \mathrm{H}^{*}(\mathrm{gr} \mathrm{\mathcal{H}}, \mathbf{k}) \Longrightarrow E_{\infty}^{*, *} \cong \operatorname{gr} \mathrm{H}^{*}(\mathcal{H}, \mathbf{k}) .
$$

with respect to the cup product.

Lemma (Friedlander-Suslin '97)

If $\xi_{w}, \xi_{x}, \xi_{y}$ are permanent cocyles (meaning they survive at E_{∞}-page), then $\operatorname{gr} \mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ and $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ are noetherian over $\mathbf{k}\left[\xi_{w}, \xi_{x}, \xi_{y}\right]$. Consequently, $\mathrm{H}^{*}(\mathcal{H}, \mathbf{k})$ is finitely generated as a \mathbf{k}-algebra.
\Longrightarrow Need to find such permanent cocycles!

Tool 1: Twisted tensor product resolution (Shepler-Witherspoon '16)

- Let A and B be associative \mathbf{k}-algebras.
- A twisting map $\tau: B \otimes A \rightarrow A \otimes B$ is a bijective \mathbf{k}-linear map that respects the identity and multiplication maps of A and of B.

Tool 1: Twisted tensor product resolution (Shepler-Witherspoon '16)

- Let A and B be associative \mathbf{k}-algebras.
- A twisting map $\tau: B \otimes A \rightarrow A \otimes B$ is a bijective \mathbf{k}-linear map that respects the identity and multiplication maps of A and of B.
- The twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ.

Tool 1: Twisted tensor product resolution (Shepler-Witherspoon '16)

- Let A and B be associative \mathbf{k}-algebras.
- A twisting map $\tau: B \otimes A \rightarrow A \otimes B$ is a bijective \mathbf{k}-linear map that respects the identity and multiplication maps of A and of B.
- The twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ.
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N

Tool 1: Twisted tensor product resolution (Shepler-Witherspoon '16)

- Let A and B be associative \mathbf{k}-algebras.
- A twisting map $\tau: B \otimes A \rightarrow A \otimes B$ is a bijective \mathbf{k}-linear map that respects the identity and multiplication maps of A and of B.
- The twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ.
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N
\Longrightarrow Construct a projective resolution Y_{\bullet} of $A \otimes_{\tau} B$-modules from $P_{\bullet}(M)$ and $P_{\bullet}(N) ? ?$

Tool 1: Twisted tensor product resolution (Shepler-Witherspoon '16)

- Let A and B be associative \mathbf{k}-algebras.
- A twisting map $\tau: B \otimes A \rightarrow A \otimes B$ is a bijective \mathbf{k}-linear map that respects the identity and multiplication maps of A and of B.
- The twisted tensor product algebra $A \otimes_{\tau} B$ is the vector space $A \otimes B$ together with multiplication m_{τ} given by such a twisting map τ.
- Let $P_{\bullet}(M)$ be an A-projective resolution of M and $P_{\bullet}(N)$ be a B-projective resolution of N
\Longrightarrow Construct a projective resolution Y_{\bullet} of $A \otimes_{\tau} B$-modules from $P_{\bullet}(M)$ and $P_{\bullet}(N) ? ?$
- Twisted tensor product resolution: (Shepler-Witherspoon '16) introduced some compatibility conditions that are sufficient for constructing a projective resolution $Y_{\bullet}=\operatorname{Tot}\left(P_{\bullet}(M) \otimes P_{\bullet}(N)\right)$ of $M \otimes N$ as a module over $A \otimes_{\tau} B$.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{H}=\mathcal{B}(V) \# \mathbf{k} C_{q} \cong\left(A \otimes_{\tau} B\right) \otimes_{\mu} C$.
- $A=\mathrm{k}[x] /\left(x^{p}\right), \quad B=\mathrm{k}[y] /\left(y^{p}\right), \quad C=\mathbf{k}[w] /\left(w^{q}\right)$.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{H}=\mathcal{B}(V) \# \mathbf{k} C_{q} \cong\left(A \otimes_{\tau} B\right) \otimes_{\mu} C$.
- $A=\mathrm{k}[x] /\left(x^{p}\right), \quad B=\mathbf{k}[y] /\left(y^{p}\right), \quad C=\mathbf{k}[w] /\left(w^{q}\right)$.
- The twisting $\operatorname{map} \tau: B \otimes A \rightarrow A \otimes B$:

$$
\tau\left(y^{r} \otimes x^{\ell}\right)=\sum_{t=0}^{r}\binom{r}{t} \frac{\ell(\ell+1)(\ell+2) \cdots(\ell+t-1)}{2^{t}} x^{\ell+t} \otimes y^{r-t} .
$$

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{H}=\mathcal{B}(V) \# \mathbf{k} C_{q} \cong\left(A \otimes_{\tau} B\right) \otimes_{\mu} C$.
- $A=\mathrm{k}[x] /\left(x^{p}\right), \quad B=\mathbf{k}[y] /\left(y^{p}\right), \quad C=\mathbf{k}[w] /\left(w^{q}\right)$.
- The twisting $\operatorname{map} \tau: B \otimes A \rightarrow A \otimes B$:

$$
\tau\left(y^{r} \otimes x^{\ell}\right)=\sum_{t=0}^{r}\binom{r}{t} \frac{\ell(\ell+1)(\ell+2) \cdots(\ell+t-1)}{2^{t}} x^{\ell+t} \otimes y^{r-t}
$$

- Let $P_{0}^{A}(\mathrm{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow$

$$
P_{0}^{B}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow
$$

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{H}=\mathcal{B}(V) \# \mathbf{k} C_{q} \cong\left(A \otimes_{\tau} B\right) \otimes_{\mu} C$.
- $A=\mathrm{k}[x] /\left(x^{p}\right), \quad B=\mathbf{k}[y] /\left(y^{p}\right), \quad C=\mathbf{k}[w] /\left(w^{q}\right)$.
- The twisting $\operatorname{map} \tau: B \otimes A \rightarrow A \otimes B$:

$$
\tau\left(y^{r} \otimes x^{\ell}\right)=\sum_{t=0}^{r}\binom{r}{t} \frac{\ell(\ell+1)(\ell+2) \cdots(\ell+t-1)}{2^{t}} x^{\ell+t} \otimes y^{r-t}
$$

- Let $P_{0}^{A}(\mathrm{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow$,

$$
P_{0}^{B}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow \mathbf{~} .
$$

- The total complex: $\mathcal{K}_{\bullet}:=\operatorname{Tot}\left(P_{\bullet}^{A}(\mathbf{k}) \otimes P_{\bullet}^{B}(\mathbf{k})\right)$ with differential

$$
d_{n}=\sum_{i+j=n}\left(d_{i} \otimes 1+(-1)^{i} \otimes d_{j}\right)
$$

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{H}=\mathcal{B}(V) \# \mathbf{k} C_{q} \cong\left(A \otimes_{\tau} B\right) \otimes_{\mu} C$.
- $A=\mathrm{k}[x] /\left(x^{p}\right), \quad B=\mathbf{k}[y] /\left(y^{p}\right), \quad C=\mathbf{k}[w] /\left(w^{q}\right)$.
- The twisting map $\tau: B \otimes A \rightarrow A \otimes B$:

$$
\tau\left(y^{r} \otimes x^{\ell}\right)=\sum_{t=0}^{r}\binom{r}{t} \frac{\ell(\ell+1)(\ell+2) \cdots(\ell+t-1)}{2^{t}} x^{\ell+t} \otimes y^{r-t}
$$

- Let $P_{0}^{A}(\mathrm{k}): \cdots \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{x^{p-1}} A \xrightarrow{x \cdot} A \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow$,

$$
P_{0}^{B}(\mathbf{k}): \cdots \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{y^{p-1}} B \xrightarrow{y \cdot} B \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow
$$

- The total complex: $\mathcal{K}_{\bullet}:=\operatorname{Tot}\left(P_{\bullet}^{A}(\mathbf{k}) \otimes P_{\bullet}^{B}(\mathbf{k})\right)$ with differential

$$
d_{n}=\sum_{i+j=n}\left(d_{i} \otimes 1+(-1)^{i} \otimes d_{j}\right)
$$

- $\left(\mathcal{K}_{\bullet}, d\right)$ is a resolution of \mathbf{k} over $A \otimes_{\tau} B$.
- $\mathbf{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathrm{H}^{*}(A \otimes B, \mathbf{k}) \cong \mathrm{H}^{*}(A, \mathbf{k}) \otimes \mathrm{H}^{*}(B, \mathbf{k})$.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{K}_{n}=\bigoplus_{i+j=n} P_{i}^{A}(\mathbf{k}) \otimes P_{j}^{B}(\mathbf{k}) \cong \bigoplus_{i+j=n}\left(A \otimes_{\tau} B\right) \phi_{i j}$.
- $\mathbf{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathbf{H}^{*}\left(A \otimes_{\tau} B, \mathbf{k}\right)$.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{K}_{n}=\bigoplus_{i+j=n} P_{i}^{A}(\mathbf{k}) \otimes P_{j}^{B}(\mathbf{k}) \cong \bigoplus_{i+j=n}\left(A \otimes_{\tau} B\right) \phi_{i j}$.
- $\mathbf{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathrm{H}^{*}\left(A \otimes_{\tau} B, \mathbf{k}\right)$.
- \mathcal{K}_{\bullet} is $C_{q}=\langle g\rangle$-equivariant.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{K}_{n}=\bigoplus_{i+j=n} P_{i}^{A}(\mathbf{k}) \otimes P_{j}^{B}(\mathbf{k}) \cong \bigoplus_{i+j=n}\left(A \otimes_{\tau} B\right) \phi_{i j}$.
- $\mathrm{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathrm{H}^{*}\left(A \otimes_{\tau} B, \mathbf{k}\right)$.
- \mathcal{K}_{\bullet} is $C_{q}=\langle g\rangle$-equivariant.
- $P_{\cdot}^{\mathrm{k} C_{q}}(\mathbf{k}): \cdots \mathbf{k} C_{q} \xrightarrow{(g-1) .} \mathbf{k} C_{q} \xrightarrow{\left(\sum_{s=0}^{q-1} g^{s}\right) .} \mathbf{k} C_{q} \xrightarrow{(g-1) .} \mathbf{k} C_{q} \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow \mathbf{0}$.
- Twisted tensor resolution $\mathcal{Y}_{\bullet}:=\operatorname{Tot}\left(\mathcal{K} \bullet \otimes P_{\bullet}^{\mathbf{k} C_{q}}(\mathbf{k})\right)$ with twisted chain map $\mu_{\bullet}: \mathbf{k} C_{q} \otimes K_{\bullet} \rightarrow K_{\bullet} \otimes \mathbf{k} C_{q}$ given by the C_{q}-action.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{K}_{n}=\bigoplus_{i+j=n} P_{i}^{A}(\mathbf{k}) \otimes P_{j}^{B}(\mathbf{k}) \cong \bigoplus_{i+j=n}\left(A \otimes_{\tau} B\right) \phi_{i j}$.
- $\mathbf{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathbf{H}^{*}\left(A \otimes_{\tau} B, \mathbf{k}\right)$.
- \mathcal{K}_{\bullet} is $C_{q}=\langle g\rangle$-equivariant.
- $P_{\bullet}^{\mathrm{k}} C_{q}(\mathbf{k}): \cdots \mathbf{k} C_{q} \xrightarrow{(g-1) .} \mathbf{k} C_{q} \xrightarrow{\left(\sum_{s=0}^{q-1} g^{s}\right)} \mathbf{k} C_{q} \xrightarrow{(g-1) \cdot} \mathbf{k} C_{q} \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow$.
- Twisted tensor resolution $\mathcal{Y}_{\bullet}:=\operatorname{Tot}\left(\mathcal{K} \bullet \otimes P_{\bullet}^{\mathbf{k} C_{q}}(\mathbf{k})\right)$ with twisted chain map $\mu_{\bullet}: \mathbf{k} C_{q} \otimes K_{\bullet} \rightarrow K_{\bullet} \otimes \mathbf{k} C_{q}$ given by the C_{q}-action.
- Described all $\mathrm{H}^{n}\left(\mathcal{B}(V) \# \mathbf{k} C_{q}, \mathbf{k}\right)$ as \mathbf{k}-vector space.
- Found $\xi_{w}, \xi_{x}, \xi_{y} \in \mathrm{H}^{2}\left(\mathcal{B}(V) \# \mathbf{k} C_{q}, \mathbf{k}\right)$, needed permanent cocycles.

Twisted tensor product resolutions over $\mathcal{B}(V) \# \mathbf{k} C_{q}$

- $\mathcal{K}_{n}=\underset{i+j=n}{\oplus} P_{i}^{A}(\mathbf{k}) \otimes P_{j}^{B}(\mathbf{k}) \cong \underset{i+j=n}{\oplus}\left(A \otimes_{\tau} B\right) \phi_{i j}$.
- $\mathbf{H}^{*}\left(\mathcal{K}_{\bullet}\right)=\mathbf{H}^{*}\left(A \otimes_{\tau} B, \mathbf{k}\right)$.
- \mathcal{K}. is $C_{q}=\langle g\rangle$-equivariant.
- $P_{\bullet}^{\mathrm{k} C_{q}}(\mathrm{k}): \cdots \mathrm{k} C_{q} \xrightarrow{(\mathrm{~g}-1) .} \mathrm{k} C_{q} \xrightarrow{\left(\sum_{s=0}^{q-1} g^{s}\right)} \mathrm{k} C_{q} \xrightarrow{(g-1) \cdot} \mathrm{k} C_{q} \xrightarrow{\varepsilon} \mathrm{k} \longrightarrow 0$.
- Twisted tensor resolution $\mathcal{Y}_{\bullet}:=\operatorname{Tot}\left(\mathcal{K} \bullet \otimes P_{\bullet}^{\mathbf{k} C_{q}}(\mathbf{k})\right)$ with twisted chain map $\mu_{\bullet}: \mathbf{k} C_{q} \otimes K_{\bullet} \rightarrow K_{\bullet} \otimes \mathbf{k} C_{q}$ given by the C_{q}-action.
- Described all $\mathrm{H}^{n}\left(\mathcal{B}(V) \# \mathbf{k} C_{q}, \mathbf{k}\right)$ as \mathbf{k}-vector space.
- Found $\xi_{w}, \xi_{x}, \xi_{y} \in \mathrm{H}^{2}\left(\mathcal{B}(V) \# \mathbf{k} C_{q}, \mathbf{k}\right)$, needed permanent cocycles.

Theorem (N-Wang-Witherspoon '17)

$\mathrm{H}^{*}\left(\mathcal{B}(V) \# \mathbf{k} C_{q}, \mathbf{k}\right)$ is finitely generated as a \mathbf{k}-algebra.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.
- $\mathcal{T}=\{$ tips $\}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (I).

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.
- $\mathcal{T}=\{$ tips $\}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (I).
- $\mathcal{R}=\{$ all proper prefixes (left factors) of the tips $\}$.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.
- $\mathcal{T}=\{$ tips $\}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (I).
- $\mathcal{R}=\{$ all proper prefixes (left factors) of the tips $\}$.
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q}=\mathbf{Q}(\mathcal{B}, \mathcal{T})$:
- Vertices: $\{1\} \cup \mathcal{R}$.
- Arrows: $1 \rightarrow v$ for $v \in \mathcal{B}$ and all $f \rightarrow g$ for $f, g \in \mathcal{R}$ where $g f$ uniquely contains a tip as a prefix.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.
- $\mathcal{T}=\{$ tips $\}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (I).
- $\mathcal{R}=\{$ all proper prefixes (left factors) of the tips $\}$.
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q}=\mathbf{Q}(\mathcal{B}, \mathcal{T})$:
- Vertices: $\{1\} \cup \mathcal{R}$.
- Arrows: $1 \rightarrow v$ for $v \in \mathcal{B}$ and all $f \rightarrow g$ for $f, g \in \mathcal{R}$ where $g f$ uniquely contains a tip as a prefix.
- In each homological degree n of the Anick resolution, define a free basis $C_{n}=\{$ all paths of length n starting from 1 in $\mathbf{Q}\}$.

Tool 2: Anick resolution (Anick '86)

- $\mathcal{H}=H(\epsilon, \mu, \tau)=T(V) /(I)$.
- $\mathcal{B}=\{w, x, y\}$, a basis of V with the ordering $w<x<y$.
- $\mathcal{T}=\{$ tips $\}$, reduced words (monomials) whose all proper subwords are irreducible; $\mathcal{T} \longleftrightarrow$ relations (I).
- $\mathcal{R}=\{$ all proper prefixes (left factors) of the tips $\}$.
- (Cojocaru-Ufnarovski '97): Quiver $\mathbf{Q}=\mathbf{Q}(\mathcal{B}, \mathcal{T})$:
- Vertices: $\{1\} \cup \mathcal{R}$.
- Arrows: $1 \rightarrow v$ for $v \in \mathcal{B}$ and all $f \rightarrow g$ for $f, g \in \mathcal{R}$ where $g f$ uniquely contains a tip as a prefix.
- In each homological degree n of the Anick resolution, define a free basis $C_{n}=\{$ all paths of length n starting from 1 in $\mathbf{Q}\}$.
- The differentials d are defined recursively, with a simultaneous recursive definition of a contracting homotopy s :

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

Example $(\mathcal{H}=H(\epsilon, \mu, \tau) \cong \mathbf{k}\langle\boldsymbol{w}, x, y\rangle$ subject to)

$$
\begin{gathered}
w^{3}=0, x^{3}=\epsilon x, y^{3}=-\epsilon y^{2}-\left(\mu \epsilon-\tau-\mu^{2}\right) y \\
y w-w y=w x+x-(\mu-\epsilon)\left(w^{2}+w\right), x w-w x=\epsilon\left(w^{2}+w\right) \\
y x-x y=-x^{2}+(\mu+\epsilon) x+\epsilon y-\tau\left(w^{2}-w\right)
\end{gathered}
$$

with $\epsilon \in\{0,1\}$ and $\tau, \mu \in \mathbf{k}$.

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

$$
\begin{aligned}
& C_{1}=\{w, x, y\}=\mathcal{B} \\
& C_{2}=\left\{w^{3}, x^{3}, y^{3}, x w, y w, y x\right\}=\mathcal{T} \\
& C_{3}=\left\{w^{3+1}, x^{3+1}, y^{3+1}, x w^{3}, y w^{3}, y x^{3}, x^{3} w, y^{3} w, y^{3} x, y x w\right\}
\end{aligned}
$$

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

$$
\begin{aligned}
& C_{1}=\{w, x, y\}=\mathcal{B} \\
& C_{2}=\left\{w^{3}, x^{3}, y^{3}, x w, y w, y x\right\}=\mathcal{T} \\
& C_{3}=\left\{w^{3+1}, x^{3+1}, y^{3+1}, x w^{3}, y w^{3}, y x^{3}, x^{3} w, y^{3} w, y^{3} x, y x w\right\}
\end{aligned}
$$

Define differentials, $\cdots \underset{s_{2}}{\stackrel{d_{3}}{\rightleftarrows}} \mathcal{H} \otimes \mathbf{k} C_{2} \underset{s_{1}}{\stackrel{d_{2}}{\rightleftarrows}} \mathcal{H} \otimes \mathbf{k} C_{1} \underset{s_{0}}{\stackrel{d_{1}}{\rightleftarrows}} \mathcal{H} \underset{\eta}{\stackrel{\varepsilon}{\rightleftarrows}} \mathbf{k} \longrightarrow 0$.

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

$$
\begin{aligned}
& C_{1}=\{w, x, y\}=\mathcal{B} \\
& C_{2}=\left\{w^{3}, x^{3}, y^{3}, x w, y w, y x\right\}=\mathcal{T} \\
& C_{3}=\left\{w^{3+1}, x^{3+1}, y^{3+1}, x w^{3}, y w^{3}, y x^{3}, x^{3} w, y^{3} w, y^{3} x, y x w\right\}
\end{aligned}
$$

Define differentials, $\cdots \underset{s_{2}}{\stackrel{d_{3}}{\gtrless}} \mathcal{H} \otimes \mathbf{k} C_{2} \underset{s_{1}}{\stackrel{d_{2}}{\rightleftarrows}} \mathcal{H} \otimes \mathbf{k} C_{1} \underset{s_{0}}{\stackrel{d_{1}}{\rightleftarrows}} \mathcal{H} \underset{\eta}{\underset{s_{0}}{\gtrless}} \mathbf{k} \longrightarrow 0$.
\Longrightarrow Found $\xi_{w}, \xi_{x}, \xi_{y} \in \mathrm{H}^{2}(H(\epsilon, \mu, \tau), \mathbf{k})$, needed permanent cocycles.

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

$$
\begin{aligned}
& C_{1}=\{w, x, y\}=\mathcal{B} \\
& C_{2}=\left\{w^{3}, x^{3}, y^{3}, x w, y w, y x\right\}=\mathcal{T} \\
& C_{3}=\left\{w^{3+1}, x^{3+1}, y^{3+1}, x w^{3}, y w^{3}, y x^{3}, x^{3} w, y^{3} w, y^{3} x, y x w\right\}
\end{aligned}
$$

Define differentials, $\cdots \underset{s_{2}}{\stackrel{d_{3}}{\rightleftarrows}} \mathcal{H} \otimes \mathbf{k} C_{2} \underset{s_{1}}{\stackrel{d_{2}}{\rightleftarrows}} \mathcal{H} \otimes \mathbf{k} C_{1} \underset{s_{0}}{\stackrel{d_{1}}{\rightleftarrows}} \mathcal{H} \underset{\eta}{\stackrel{\varepsilon}{\gtrless}} \mathbf{k} \longrightarrow 0$.
\Longrightarrow Found $\xi_{w}, \xi_{x}, \xi_{y} \in \mathrm{H}^{2}(H(\epsilon, \mu, \tau), \mathbf{k})$, needed permanent cocycles.

Theorem (N-Wang-Witherspoon '17)

$\mathrm{H}^{*}(H(\epsilon, \mu, \tau), \mathbf{k})$ is finitely generated as a \mathbf{k}-algebra.

Anick resolution for some liftings $\mathcal{H}=H(\epsilon, \mu, \tau)$

$$
\begin{aligned}
d_{2}\left(1 \otimes w^{3}\right)= & w^{2} \otimes w, \\
d_{2}\left(1 \otimes x^{3}\right)= & x^{2} \otimes x-\epsilon \otimes x, \\
d_{2}\left(1 \otimes y^{3}\right)= & y^{2} \otimes y+\epsilon y \otimes y+\left(\mu \epsilon-\tau-\mu^{2}\right) \otimes y, \\
d_{2}(1 \otimes x w)= & x \otimes w-w \otimes x-\epsilon w \otimes w-\epsilon \otimes w, \\
d_{2}(1 \otimes y w)= & y \otimes w-w \otimes y-w \otimes x-1 \otimes x+(\mu-\epsilon) w \otimes w+(\mu-\epsilon) \otimes w, \\
d_{2}(1 \otimes y x)= & y \otimes x-x \otimes y+x \otimes x-(\mu+\epsilon) \otimes x-\epsilon \otimes y+\tau w \otimes w-\tau \otimes w, \\
d_{3}\left(1 \otimes w^{4}\right)= & w \otimes w^{3}, d_{3}\left(1 \otimes x^{4}\right)=x \otimes x^{3}, \quad d_{3}\left(1 \otimes y^{4}\right)=y \otimes y^{3}, \\
d_{3}\left(1 \otimes x w^{3}\right)= & x \otimes w^{3}-w^{2} \otimes x w, \\
d_{3}\left(1 \otimes x^{3} w\right)= & x^{2} \otimes x w+w \otimes x^{3}+\epsilon w x \otimes x w+\epsilon x \otimes x w+\epsilon w \otimes x w, \\
d_{3}\left(1 \otimes y w^{3}\right)= & y \otimes w^{3}-w^{2} \otimes y w+w^{2} \otimes x w+w \otimes x w, \\
d_{3}(1 \otimes y x w)= & y \otimes x w-x \otimes y w+w \otimes y x+\epsilon w \otimes y w+x \otimes x w+(\mu+\epsilon) w \otimes x w, \\
d_{3}\left(1 \otimes y^{3} w\right)= & y^{2} \otimes y w+w \otimes y^{3}+w y \otimes y x+w x \otimes y x+(\epsilon-\mu) w y \otimes y w \\
& +(\mu-\epsilon) w x \otimes y w-\tau w^{2} \otimes y w+y \otimes y x-(\epsilon+\mu) y \otimes y w \\
& +\tau w^{2} \otimes x w+x \otimes y x+(\mu-\epsilon) x \otimes y w+\left(\mu^{2}-\epsilon \mu\right) w \otimes y w+\tau w \otimes x w, \\
& y \otimes x^{3}-x^{2} \otimes y x+\tau w x \otimes x w+\epsilon x \otimes y x-\tau x \otimes x w+\epsilon \tau w \otimes x w, \\
& y^{2} \otimes y x+x \otimes y^{3}-x y \otimes y x-\tau w x \otimes y w-\tau w y \otimes y w \\
& +\tau w^{2} \otimes y x+\tau w x \otimes x w+\epsilon \tau w^{2} \otimes y w+(\epsilon \tau+\mu \tau) w^{2} \otimes x w \\
& +\mu y \otimes y x+\tau y \otimes y w-\mu x \otimes y x+\tau x \otimes x w \\
d_{3}\left(1 \otimes y x^{3}\right)= & +\tau w \otimes y x+(\epsilon \tau+\mu \tau) w \otimes y w+\epsilon \tau w \otimes x w .
\end{aligned}
$$

Recap - The Menu

References

D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641-659.

S. Cojocaru and V. Ufnarovski, BERGMAN under MS-DOS and Anick's resolution, Discrete Math. Theoretical Comp. Sci. 1 (1997), 139-147.
E. E. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math., 127 (1997), no. 2, 209-270.
J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146.

目 V. C. Nguyen and X. Wang, Pointed p^{3}-dimensional Hopf algebras in positive characteristic, to appear in Alg. Colloq., arXiv:1609.03952.
A. A. Shepler and S. Witherspoon, Resolutions for twisted tensor products, preprint, arXiv:1610.00583.

Thank You! ©

