Singular Hodge theory of matroids

Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, Botong Wang

University of Massachusetts Amherst, Institute for Advanced Study,
University of Oregon, University of Wisconsin Madison

Auslander International Conference 2018

Hyperplane arrangements and flats

Hyperplane arrangements and flats

Hyperplane arrangements and flats

$$
6 \geq 4
$$

The Top Heavy Conjecture

Conjecture (Dowling-Wilson 1974)

For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have
\#(flats of $\operatorname{dim} k) \geq \#(f l a t s$ of codim $k)$.

The Top Heavy Conjecture

Conjecture Theorem (Huh-Wang 2017)

For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have
$\#(f l a t s$ of $\operatorname{dim} k) \geq \#(f l a t s$ of $\operatorname{codim} k)$.

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H} V / H \cong \bigoplus_{H} \mathbb{A}^{1} \subset \prod_{H} \mathbb{P}^{1} .
$$

Let $Y:=\bar{V} \subset \prod_{H} \mathbb{P}^{1}$.

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H} V / H \cong \bigoplus_{H} \mathbb{A}^{1} \subset \prod_{H} \mathbb{P}^{1} .
$$

Let $Y:=\bar{V} \subset \prod_{H} \mathbb{P}^{1}$.

neighborhood of $(0,0,0)$

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H} V / H \cong \bigoplus_{H} \mathbb{A}^{1} \subset \prod_{H} \mathbb{P}^{1} .
$$

Let $Y:=\bar{V} \subset \prod_{H} \mathbb{P}^{1}$.

neighborhood of $(0,0,0)$

Y has a stratification $Y=\coprod_{F} Y_{F}$ by affine spaces.

Affine pavings

The stratification by affine cells gives us two things:

1. $\operatorname{dim} H^{2 k}(Y)=\#(f l a t s$ of codim $k)$.
2. [Björner-Ekedahl 2009] There is an injection

$$
H^{\bullet}(Y) \hookrightarrow \mathrm{IH}^{\bullet}(Y) .
$$

Affine pavings

The stratification by affine cells gives us two things:

1. $\operatorname{dim} H^{2 k}(Y)=\#(f l a t s$ of codim $k)$.
2. [Björner-Ekedahl 2009] There is an injection

$$
H^{\bullet}(Y) \hookrightarrow \mathrm{IH}^{\bullet}(Y)
$$

One property of intersection cohomology:

- $\mathrm{IH}^{\bullet}(Y)$ satisfies Hard Lefschetz (since Y is projective).

Proof of the Top Heavy Conjecture

Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \operatorname{dim} V$, then consider the following diagram.

$$
\begin{array}{r}
H^{2(\operatorname{dim} V-k)}(Y) \xrightarrow[L^{2(\operatorname{dim} V-2 k)} \uparrow]{\stackrel{\mathrm{B}-\mathrm{E} 09}{\longrightarrow} \mathrm{IH}^{2(\operatorname{dim} V-k)}(Y)} \\
\cong \uparrow^{L^{2(\operatorname{dim} V-2 k)}} \\
H^{2 k}(Y) \xrightarrow[\mathrm{B}-\mathrm{E} 09]{\longrightarrow} \mathrm{IH}^{2 k}(Y)
\end{array}
$$

Proof of the Top Heavy Conjecture

Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \operatorname{dim} V$, then consider the following diagram.

$$
\begin{aligned}
& H^{2(\operatorname{dim} V-k)}(Y) \xrightarrow{\text { B-E } 09} \mathrm{IH}^{2(\operatorname{dim} V-k)}(Y) \\
& L^{2(\operatorname{dim} V-2 k)} \uparrow \quad \cong \AA^{2(\operatorname{dim} V-2 k)} \\
& \mathrm{H}^{2 \mathrm{k}}(Y) \xrightarrow[\text { B-E } 09]{ } \mathrm{IH}^{2 \mathrm{k}}(Y)
\end{aligned}
$$

\Longrightarrow Top Heavy Conjecture

Forward to matroids

The Top Heavy Conjecture makes sense for arbitrary matroids!

- Any matroid has a lattice of flats $L(M)$ with a rank function.

Forward to matroids

The Top Heavy Conjecture makes sense for arbitrary matroids!

- Any matroid has a lattice of flats $L(M)$ with a rank function.

Conjecture (Dowling-Wilson 1974)

Let M be an arbitrary matroid. For all $k \leq \frac{1}{2} \operatorname{rk} M$, we have

$$
\# L(M)^{\mathrm{rk} M-k} \geq \# L(M)^{k}
$$

The semi-wonderful model (in progress by BHMPW)

Define a resolution

$$
\widetilde{Y} \longrightarrow Y
$$

by

1. first blowing up the point Y_{V},
2. then the proper transforms of $\left\{Y_{H}\right\}$,
3. then the proper transforms of $\left\{Y_{F}\right\}$, where $\operatorname{codim} F=2$, and so on...

The semi-wonderful model (in progress by BHMPW)

Define a resolution

$$
\widetilde{Y} \longrightarrow Y
$$

by

1. first blowing up the point Y_{V},
2. then the proper transforms of $\left\{Y_{H}\right\}$,
3. then the proper transforms of $\left\{Y_{F}\right\}$, where $\operatorname{codim} F=2$, and so on...

- [Huh-Wang 2017] There is a ring $B^{\bullet}(M)$ such that $B^{\bullet}(M) \cong H^{\bullet}(Y)$ when M is realizable.
- [Braden-Huh-M.-Proudfoot-Wang] There is a ring $A^{\bullet}(M)$ such that $A^{\bullet}(M) \cong H^{\bullet}(\widetilde{Y})$ when M is realizable.

Strategy for the proof (in progress by BHMPW)

Note that

$$
H^{\bullet}(Y) \subset I H^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y}) .
$$

Strategy for the proof (in progress by BHMPW)

Note that

$$
H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y})
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \stackrel{P D}{\hookrightarrow} I^{\bullet}(M)$.

Strategy for the proof (in progress by BHMPW)

Note that

$$
H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y})
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \stackrel{P D}{\hookrightarrow} I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\bullet}(M)$.

Strategy for the proof (in progress by BHMPW)

Note that

$$
H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y})
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \stackrel{P D}{\hookrightarrow} I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\bullet}(M)$.
4. Run the same argument.

$$
\begin{aligned}
& B^{\mathrm{rk} M-k}(M) \xrightarrow{P D} I^{\mathrm{rk} M-k}(M) \\
& \uparrow \quad \cong \uparrow H L \\
& B^{k}(M) \xrightarrow[P D]{ } I^{k}(M)
\end{aligned}
$$

Strategy for the proof (in progress by BHMPW)

Note that

$$
H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y})
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \stackrel{P D}{\hookrightarrow} I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\bullet}(M)$.
4. Run the same argument.

$$
\begin{aligned}
& B^{\mathrm{rk} M-k}(M) \xrightarrow{P D} I^{\mathrm{rk} M-k}(M) \\
& \begin{array}{l}
\uparrow \\
\left.B^{k}(M) \underset{P D}{ } \begin{array}{l}
\\
\\
I^{k}(M L
\end{array}\right)
\end{array}
\end{aligned}
$$

\Longrightarrow Top Heavy Conjecture for all matroids

The end

Thanks!

