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The Top Heavy Conjecture

Conjecture (Dowling–Wilson 1974)

For all k ≤ 1
2 dimV , we have

#(flats of dim k) ≥ #(flats of codim k).
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The Top Heavy Conjecture

Conjecture Theorem (Huh–Wang 2017)

For all k ≤ 1
2 dimV , we have

#(flats of dim k) ≥ #(flats of codim k).
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Some geometry

We have

V ↪→
⊕
H

V /H ∼=
⊕
H

A1 ⊂
∏
H

P1.

Let Y := V ⊂
∏
H

P1.
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∐
F

YF by affine spaces.
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Affine pavings

The stratification by affine cells gives us two things:

1. dimH2k(Y ) = #(flats of codim k).

2. [Björner–Ekedahl 2009] There is an injection

H•(Y ) ↪→ IH•(Y ).

One property of intersection cohomology:

• IH•(Y ) satisfies Hard Lefschetz (since Y is projective).
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Proof of the Top Heavy Conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2 dimV , then consider

the following diagram.

H2(dimV−k)(Y ) IH2(dimV−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(dim V−2k) L2(dim V−2k)∼=
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Proof of the Top Heavy Conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2 dimV , then consider

the following diagram.

H2(dimV−k)(Y ) IH2(dimV−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(dim V−2k) L2(dim V−2k)∼=

=⇒ Top Heavy Conjecture
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Forward to matroids

The Top Heavy Conjecture makes sense for arbitrary matroids!

• Any matroid has a lattice of flats L(M) with a rank function.

Conjecture (Dowling–Wilson 1974)

Let M be an arbitrary matroid. For all k ≤ 1
2rkM, we have

#L(M)rkM−k ≥ #L(M)k .
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The semi-wonderful model (in progress by BHMPW)

Define a resolution

Ỹ −→ Y

by

1. first blowing up the point YV ,

2. then the proper transforms of {YH},
3. then the proper transforms of {YF}, where codimF = 2, and

so on...

• [Huh–Wang 2017] There is a ring B•(M) such that

B•(M) ∼= H•(Y ) when M is realizable.

• [Braden–Huh–M.–Proudfoot–Wang] There is a ring A•(M)

such that A•(M) ∼= H•(Ỹ ) when M is realizable.
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Strategy for the proof (in progress by BHMPW)

Note that

H•(Y ) ⊂ IH•(Y ) ⊂ H•(Ỹ ).

Strategy:

1. Decompose A•(M) as a B•(M)-module.

2. Find the summand I •(M), and get injection B•(M)
PD
↪→ I •(M).

3. Prove “Hard Lefschetz” for I •(M).

4. Run the same argument.

BrkM−k(M) I rkM−k(M)

Bk(M) I k(M)

PD

PD

HL∼=
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4. Run the same argument.

BrkM−k(M) I rkM−k(M)

Bk(M) I k(M)

PD

PD

HL∼=

=⇒ Top Heavy Conjecture for all matroids
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The end

Thanks!
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