Gorenstein Projective Modules for the Working Algebraist

Xiuhua Luo
Nantong University, China
xiuhualuo@ntu.edu.cn

Maurice Auslander Distinguished Lectures and International Conference
April 26, 2018

Overview

(1) Background

- Definition and Properties
- Applications
(2) The explicit construction of Gorenstein projective modules
- Upper Triangular Matrix Rings
- Path Algebras of Acyclic Quivers
- Tensor Products of algebras

Gorenstein projective modules (Enochs and Jenda 1995)

Let R be a ring. A module M is Gorenstein projective, if there exists a complete projective resolution

$$
P^{\bullet}=\cdots \longrightarrow P^{-1} \longrightarrow P^{0} \xrightarrow{d^{0}} P^{1} \longrightarrow \cdots
$$

such that $M \cong \operatorname{Ker} d^{0}$.

Gorenstein projective modules (Enochs and Jenda 1995)

Let R be a ring. A module M is Gorenstein projective, if there exists a complete projective resolution

$$
P^{\bullet}=\cdots \longrightarrow P^{-1} \longrightarrow P^{0} \xrightarrow{d^{0}} P^{1} \longrightarrow \cdots
$$

such that $M \cong \operatorname{Ker} d^{0}$.

Let $\mathcal{G P}(R)$ be the category of Gorenstein projective modules.

Background

- In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.

Background

- In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.
- In 1969, M. Auslander and M. Bridger generalized these modules to two-sided Noetherian ring.

Background

- In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.
- In 1969, M. Auslander and M. Bridger generalized these modules to two-sided Noetherian ring.
- Avramov, Buchweitz, Martsinkovsky and Reiten proved that a finitely generated module M over Noetherian ring R is Gorenstein projective if and only if $\mathrm{G}-\operatorname{dim}_{R} M=0$.

Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{G P}(R)$ is projectively resolving. That is to say, $\mathcal{G P}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{G P}(R)$ is projectively resolving. That is to say, $\mathcal{G P}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{G P}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{G} \mathcal{P}(R)$ has AR-seqs [Auslander and Smal ϕ 1980].

Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{G} \mathcal{P}(R)$ is projectively resolving. That is to say, $\mathcal{G P}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{G} \mathcal{P}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{G} \mathcal{P}(R)$ has AR-seqs [Auslander and Smal ϕ 1980].

Theorem (Apostolos Beligiannis 2005)

Let R be an Artin Gorenstein ring, then $\mathcal{G P}(R)$ is a Frobenius category whose projective-injective objects are exactly all the projective R-modules.

Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{G} \mathcal{P}(R)$ is projectively resolving. That is to say, $\mathcal{G P}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{G} \mathcal{P}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{G} \mathcal{P}(R)$ has AR-seqs [Auslander and Smal ϕ 1980].

Theorem (Apostolos Beligiannis 2005)

Let R be an Artin Gorenstein ring, then $\mathcal{G P}(R)$ is a Frobenius category whose projective-injective objects are exactly all the projective R-modules.

Applications

- Singularity theory: $\underline{\mathcal{G} \mathcal{P}}(R) \cong D_{s g}(R)$ as triangular categories, Buchweitz: when R is Gorenstein Noetherian ring; Happel: when R is Gorenstein algebra.
Ringel and Pu Zhang: $\underline{\mathcal{G P}}\left(k Q \otimes_{k} k[x] /\left(X^{2}\right)\right) \cong D^{b}(k Q) /[1]$.

Applications

- Singularity theory: $\underline{\mathcal{G} \mathcal{P}}(R) \cong D_{s g}(R)$ as triangular categories, Buchweitz: when R is Gorenstein Noetherian ring; Happel: when R is Gorenstein algebra.
Ringel and Pu Zhang: $\underline{\mathcal{G} \mathcal{P}}\left(k Q \otimes_{k} k[x] /\left(X^{2}\right)\right) \cong D^{b}(k Q) /[1]$.
- Tate cohomology theory: $E \hat{x} t_{R}^{n}(M, N)=\mathrm{H}^{\mathrm{n}} \operatorname{Hom}_{\mathrm{R}}(\mathrm{T}, \mathrm{N})$ where T is a complete projetive resolution in a complete resolution $T \xrightarrow{v} P \xrightarrow{\pi} M$ with v_{n} bijection when $n \gg 0$. [Avramov and Martsinkovsky]

Applications

- Singularity theory: $\underline{\mathcal{G} \mathcal{P}}(R) \cong D_{s g}(R)$ as triangular categories, Buchweitz: when R is Gorenstein Noetherian ring; Happel: when R is Gorenstein algebra.
Ringel and Pu Zhang: $\underline{\mathcal{G} \mathcal{P}}\left(k Q \otimes_{k} k[x] /\left(X^{2}\right)\right) \cong D^{b}(k Q) /[1]$.
- Tate cohomology theory: Ext $\hat{R}_{R}^{n}(M, N)=\mathrm{H}^{\mathrm{n}} \operatorname{Hom}_{\mathrm{R}}(\mathrm{T}, \mathrm{N})$ where T is a complete projetive resolution in a complete resolution $T \xrightarrow{v} P \xrightarrow{\pi} M$ with v_{n} bijection when $n \gg 0$. [Avramov and Martsinkovsky]
- the invariant subspaces of nilpotent operators:

Ringel and Schmidmeier: $\left\{(V, U, T) \mid T: V \rightarrow V, T^{6}=0, U \subset\right.$ $V, T(U) \subset U\}=\mathcal{G} \mathcal{P}\left(k[T] /\left(T^{6}\right) \otimes_{k} k(\bullet \rightarrow \bullet)\right)$;
Kussin, Lenzing and Meltzer showed a surpring link between singularity theory and the invariant subspace problem of nilpotent operators.

The explicit construction of Gorenstein projective modules

Let A and B be rings, M an $A-B$-bimodule, and $T:=\left(\begin{array}{c}A_{A} M_{B} \\ 0\end{array} B_{B}\right)$. Assume that T is an Artin algebra and consider finitely generated T-modules. A T-module can be identified with a triple $\binom{X}{Y}_{\phi}$, where $X \in A$-mod, $Y \in B$-mod, and $\phi: M \otimes_{B} Y \rightarrow X$ is an A-map. $\mathcal{G} p(T)$ is the category of finitely generated Gorenstein proj. T-modules.

The explicit construction of Gorenstein projective modules

Let A and B be rings, M an $A-B$-bimodule, and $T:=\left(\begin{array}{cc}A & A M_{B} \\ 0 & B\end{array}\right)$. Assume that T is an Artin algebra and consider finitely generated T-modules. A T-module can be identified with a triple $\binom{X}{Y}_{\phi}$, where $X \in A$-mod, $Y \in B$-mod, and $\phi: M \otimes_{B} Y \rightarrow X$ is an A-map.
$\mathcal{G} p(T)$ is the category of finitely generated Gorenstein proj. T-modules.

Theorem2.1 (P. Zhang 2013)

Let A and B be algebras and M a $A-B$-bimodule with $\operatorname{pdim}_{\mathrm{A}} \mathrm{M}<\infty$, $\operatorname{pdimM}_{B}<\infty, T:=\left(\begin{array}{c}A_{A} M_{B} \\ 0\end{array} B_{B}\right)$. Then $\binom{X}{Y}_{\phi} \in \mathcal{G} p(T)$ if and only if $\phi: M \otimes_{B} Y \rightarrow X$ is an injective A-map, Coker $\phi \in \mathcal{G} p(A)$ and $Y \in \mathcal{G} p(B)$.

Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1,2, \cdots, n$ such that for each arrow $\alpha, s(\alpha)>e(\alpha)$. Then $A \otimes_{k} k Q$ is equivalent to an upper triangular algebra.

Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1,2, \cdots, n$ such that for each arrow $\alpha, s(\alpha)>e(\alpha)$. Then $A \otimes_{k} k Q$ is equivalent to an upper triangular algebra.

Theorem 2.2 (joint with P.Zhang 2013)

Let Q be a finite acyclic quiver, and A a finite dimensional algebra over a field k. Let $X=\left(X_{i}, X_{\alpha}\right)$ be a representation of Q over A. Then X is Gorenstein projective if and only if X is separated monic, and $\forall i \in Q_{0}$, $X_{i} \in \mathcal{G} p(A), X_{i} /\left(\sum_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} \operatorname{Im} X_{\alpha}\right) \in \mathcal{G} p(A)$.

Let $Q=\left(Q_{0}, Q_{1}, s, e\right)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1,2, \cdots, n$ such that for each arrow $\alpha, s(\alpha)>e(\alpha)$. Then $A \otimes_{k} k Q$ is equivalent to an upper triangular algebra.

Theorem 2.2 (joint with P.Zhang 2013)

Let Q be a finite acyclic quiver, and A a finite dimensional algebra over a field k. Let $X=\left(X_{i}, X_{\alpha}\right)$ be a representation of Q over A. Then X is Gorenstein projective if and only if X is separated monic, and $\forall i \in Q_{0}$, $X_{i} \in \mathcal{G} p(A), \quad X_{i} /\left(\sum_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} \operatorname{Im} X_{\alpha}\right) \in \mathcal{G} p(A)$.

Defintion 2.3 separated monic representation

A representation $X=\left(X_{i}, X_{\alpha}\right)$ of Q over A is separated monic, if for each $i \in Q_{0}$, the A-map $\underset{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}}{ } X_{s(\alpha)} \xrightarrow{\left(X_{\alpha}\right)} X_{i}$ is injective.

In fact, let $\Lambda=A \otimes_{k} k Q, D=\operatorname{Hom}_{\mathrm{k}}(-, \mathrm{k}), \mathrm{S}_{\mathrm{i}}$ is a simple left $k Q$-module,

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} e_{s(\alpha)} k Q \xrightarrow{(\alpha .)} e_{i} k Q \rightarrow D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

In fact, let $\Lambda=A \otimes_{k} k Q, D=\operatorname{Hom}_{\mathrm{k}}(-, \mathrm{k}), \mathrm{S}_{\mathrm{i}}$ is a simple left $k Q$-module,

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} e_{s(\alpha)} k Q \xrightarrow{\left(\alpha_{0}\right)} e_{i} k Q \rightarrow D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} A \otimes e_{s(\alpha)} k Q \xrightarrow{(1 \otimes \alpha .)} A \otimes e_{i} k Q \rightarrow A \otimes D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

In fact, let $\Lambda=A \otimes_{k} k Q, D=\operatorname{Hom}_{\mathrm{k}}(-, \mathrm{k}), \mathrm{S}_{\mathrm{i}}$ is a simple left $k Q$-module,

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} e_{s(\alpha)} k Q \xrightarrow{(\alpha .)} e_{i} k Q \rightarrow D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} A \otimes e_{s(\alpha)} k Q \xrightarrow{(1 \otimes \alpha .)} A \otimes e_{i} k Q \rightarrow A \otimes D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}}\left(1 \otimes e_{s(\alpha)}\right) \Lambda \stackrel{(1 \otimes \alpha .)}{\rightarrow}\left(1 \otimes e_{i}\right) \Lambda \rightarrow A \otimes D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

In fact, let $\Lambda=A \otimes_{k} k Q, D=\operatorname{Hom}_{\mathrm{k}}(-, \mathrm{k}), \mathrm{S}_{\mathrm{i}}$ is a simple left $k Q$-module,

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} e_{s(\alpha)} k Q \xrightarrow{(\alpha .)} e_{i} k Q \rightarrow D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} A \otimes e_{s(\alpha)} k Q \xrightarrow{(1 \otimes \alpha .)} A \otimes e_{i} k Q \rightarrow A \otimes D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}}\left(1 \otimes e_{s(\alpha)}\right) \Lambda \stackrel{(1 \otimes \alpha .)}{\rightarrow}\left(1 \otimes e_{i}\right) \Lambda \rightarrow A \otimes D\left(S_{i}\right) \rightarrow 0, \text { exact }
$$

$$
0 \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} X_{s(\alpha)} \xrightarrow{\left(X_{\alpha}\right)} X_{i} \rightarrow\left(A \otimes D\left(S_{i}\right)\right) \otimes_{\Lambda} X \rightarrow 0 \quad(*)
$$

$(*)$ is exact if and only if $\bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} X_{s(\alpha)} \xrightarrow{\left(X_{\alpha}\right)} X_{i}$ is injective if and only if
$\operatorname{Tor}_{i}^{\wedge}\left(A \otimes_{k} D\left(S_{i}\right), X\right)=0$ for all $i \geq 1$ and all simple left $k Q$-modules S_{i}.
$(*)$ is exact if and only if $\bigoplus_{\substack{\alpha \in Q_{1} \\ e(\alpha)=i}} X_{s(\alpha)} \xrightarrow{\left(X_{\alpha}\right)} X_{i}$ is injective if and only if $e(\alpha)=i$
$\operatorname{Tor}_{i}^{\wedge}\left(A \otimes_{k} D\left(S_{i}\right), X\right)=0$ for all $i \geq 1$ and all simple left $k Q$-modules S_{i}.

Definion 2.4 (Generalized) separated monic representation

Let k be a field, A and B finite dimensional k-algebras, $\Lambda:=A \otimes_{k} B$. A left Λ-module X is called a (generalized) separated monic representation of B over A, if

$$
\operatorname{Tor}_{i}^{\wedge}\left(A \otimes_{k} D(S), X\right)=0
$$

for all $i \geq 1$ and all simple left B-modules S.
smon (B, A) : the category of separated monic representation of B over A.

Define
 $\operatorname{smon}(B, \mathcal{G} p(A)):=\left\{X \in \operatorname{smon}(B, A) \mid\left(A \otimes_{k} V\right) \otimes_{\Lambda} X \in \mathcal{G} p(A), \forall V_{B}\right\}$.

Define

$\operatorname{smon}(B, \mathcal{G} p(A)):=\left\{X \in \operatorname{smon}(B, A) \mid\left(A \otimes_{k} V\right) \otimes_{\Lambda} X \in \mathcal{G} p(A), \forall V_{B}\right\}$.

Propersition 2.5

Let A and B be f. d. k-algebras. Then $\operatorname{smon}(B, \mathcal{G} p(A)) \subset \mathcal{G} p(\Lambda)$.

Define
$\operatorname{smon}(B, \mathcal{G} p(A)):=\left\{X \in \operatorname{smon}(B, A) \mid\left(A \otimes_{k} V\right) \otimes_{\Lambda} X \in \mathcal{G} p(A), \forall V_{B}\right\}$.

Propersition 2.5

Let A and B be f. d. k-algebras. Then $\operatorname{smon}(B, \mathcal{G} p(A)) \subset \mathcal{G} p(\Lambda)$.

Question: When does $\mathcal{G} p(\Lambda)$ coincide with $\operatorname{smon}(B, \mathcal{G} p(A))$?

Define

$\operatorname{smon}(B, \mathcal{G} p(A)):=\left\{X \in \operatorname{smon}(B, A) \mid\left(A \otimes_{k} V\right) \otimes_{\Lambda} X \in \mathcal{G} p(A), \forall V_{B}\right\}$.

Propersition 2.5

Let A and B be f. d. k-algebras. Then $\operatorname{smon}(B, \mathcal{G} p(A)) \subset \mathcal{G} p(\Lambda)$.

Question: When does $\mathcal{G} p(\Lambda)$ coincide with $\operatorname{smon}(B, \mathcal{G} p(A))$?

Theorem 2.6 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Suppose that B is Gorenstein. Then $\operatorname{smon}(B, \mathcal{G} p(A))=\mathcal{G} p(\Lambda)$ if and only if gl.dim(B) $<\infty$.

Define
$\operatorname{smon}(B, \mathcal{G} p(A)):=\left\{X \in \operatorname{smon}(B, A) \mid\left(A \otimes_{k} V\right) \otimes_{\Lambda} X \in \mathcal{G} p(A), \forall V_{B}\right\}$.

Propersition 2.5

Let A and B be f. d. k-algebras. Then $\operatorname{smon}(B, \mathcal{G} p(A)) \subset \mathcal{G} p(\Lambda)$.

Question: When does $\mathcal{G} p(\Lambda)$ coincide with $\operatorname{smon}(B, \mathcal{G} p(A))$?

Theorem 2.6 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Suppose that B is Gorenstein. Then $\operatorname{smon}(B, \mathcal{G} p(A))=\mathcal{G} p(\Lambda)$ if and only if gl.dim(B) $<\infty$.
- Suppose that A is Gorenstein. Then $\operatorname{smon}(B, \mathcal{G} p(A))=\mathcal{G} p(\Lambda)$ if and only if B is $C M$-free.

Via filtration categories

$\mathcal{G} p(A) \otimes \mathcal{G} p(B):=\left\{X \otimes_{k} Y \in A \otimes_{k} B-\bmod \mid X \in \mathcal{G} p(\mathrm{~A}), Y \in \mathcal{G} \mathrm{p}(\mathrm{B})\right\}$ $\widetilde{\text { filt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B)) \subset \mathcal{G} p\left(A \otimes_{k} B\right)$

Via filtration categories

$\mathcal{G} p(A) \otimes \mathcal{G} p(B):=\left\{X \otimes_{k} Y \in A \otimes_{k} B-\bmod \mid X \in \mathcal{G} p(\mathrm{~A}), Y \in \mathcal{G} \mathrm{p}(\mathrm{B})\right\}$ $\widetilde{\text { filt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B)) \subset \mathcal{G} p\left(A \otimes_{k} B\right)$

Quenstion: Does $\mathcal{G} p\left(A \otimes_{k} B\right)$ coincide with $\widetilde{\operatorname{filt}}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$?

Via filtration categories

$\mathcal{G} p(A) \otimes \mathcal{G} p(B):=\left\{X \otimes_{k} Y \in A \otimes_{k} B-\bmod \mid X \in \mathcal{G} p(\mathrm{~A}), Y \in \mathcal{G} p(\mathrm{~B})\right\}$ $\widetilde{\text { filt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B)) \subset \mathcal{G} p\left(A \otimes_{k} B\right)$

Quenstion: Does $\mathcal{G} p\left(A \otimes_{k} B\right)$ coincide with $\widetilde{\text { filt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$?

Theorem 2.7 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Let A and B be Gorenstein algebras. Assume that k is a splitting field for A or B. Then $\mathcal{G} p\left(A \otimes_{k} B\right)=\widetilde{\operatorname{filt}}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$.

Via filtration categories

$\mathcal{G} p(A) \otimes \mathcal{G} p(B):=\left\{X \otimes_{k} Y \in A \otimes_{k} B-\bmod \mid X \in \mathcal{G} p(A), Y \in \mathcal{G} p(B)\right\}$ $\widetilde{\text { fitt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B)) \subset \mathcal{G} p\left(A \otimes_{k} B\right)$

Quenstion: Does $\mathcal{G} p\left(A \otimes_{k} B\right)$ coincide with $\widetilde{\operatorname{Filt}}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$?

Theorem 2.7 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Let A and B be Gorenstein algebras. Assume that k is a splitting field for A or B. Then $\mathcal{G} p\left(A \otimes_{k} B\right)=\widetilde{\text { filt }}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$.
- Let A be an algebra, and let B be a upper triangular algebra such that k is a splitting field for B. Then $\mathcal{G} p\left(A \otimes_{k} B\right)=\widetilde{\operatorname{filt}}(\mathcal{G} p(A) \otimes \mathcal{G} p(B))$.

References

M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94., Amer. Math. Soc., Providence, R.I., 1969.
L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85(3)(2002), 393-440.
R M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86(1991), 111-152.

目 A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137-211.
R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, Hamburg (1987), 155pp.
宣
E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4)(1995), 611-633.

References

O
E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math. 30. Walter De Gruyter Co., 2000.

D D. Happel, On Gorenstein algebras, in: Representation theory of finite groups and finite-dimensional algebras, Prog. Math. 95, 389-404, Birkhaüser, Basel, 1991.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189(1-3) (2004), 167-193.

国 W. Hu, X. Luo, B. Xiong, G. Zhou, Gorenstein projective bimodules via monomorphism categories and filtration categories, to appear in J. Pure Appl. Algebra.
D. Kussin, H. Lenzing, H. Meltzer, Nilpotent operators and weighted projective lines, J. Reine Angew. Math. 685(2013), 33-71.
Z. Li, P. Zhang, A construction of Gorenstein-projective modules, J. Algebra 323 (2010), 1802-1812.

References

䔍
C．M．Ringel，M．Schmidmeier，Submodules categories of wild representation type， J．Pure Appl．Algebra 205（2）（2006），412－422．

國 C．M．Ringel，M．Schmidmeier，Invariant subspaces of nilpotent operators I，J．rein angew．Math． 614 （2008），1－52．

國 C．M．Ringel，P．Zhang，Representations of quivers over the algebras of dual num－ bers，J．Algebra 475 （2017），327－360．

D．Simson，Representation types of the category of subprojective representations of a finite poset over $K[t] /\left(t^{m}\right)$ and a solution of a Birkhoff type problem，J．Algebra 311（2007），1－30．

B．Xiong，P．Zhang，Gorenstein－projective modules over triangular matrix Artin algebras，Algebra Colloquium 23（ 2016），97－104．

T．Zhang，Gorenstein－projective modules and symmetric recollement，J．Algebra 388（2013），65－80．

Thank You!

