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Consider the quiver ¢ —> ¢ — .. — o,
Notation:

Q@ E(w) - space of representations for dimension vector
W= (wp,...,wy)
@ G(w) = GL(w;) x -+ x GL(w,)

@ w* = (wy,...,w) - the reverse dimension vector
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Consider the quiver ¢ —> ¢ — .. — o,

Notation:

Q@ E(w) - space of representations for dimension vector

W= (wp,...,wy)
@ G(w) = GL(w;) x -+ x GL(w,)
@ w* = (wy,...,w) - the reverse dimension vector

Can we give a combinatorial description of the Fourier—Sato
transform:

DYy (E(W) —— DY (E(WF))
F — gq2q](F)[dimE(w)]

for simple perverse sheaves F?
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Quiver representations

Consider the type A, equioriented quiver

O, =e—e— ... —>oe.

A quiver representation is:

@ A finite-dimensional

X1 X2 Xn—1

C-vector space M; for M,

M,
each vertex.

@ A linear map x; for each

arrow.
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Quiver representations

Consider the type A, equioriented quiver

O, =e—e— ... —>oe.

A quiver representation is:

@ A finite-dimensional

X1 X2 Xn—1

C-vector space M; for M,

M,
each vertex.

@ A linear map x; for each

arrow.

Rep(Q,) - abelian category of finite-dimensional complex
representations of Q,
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Quiver representation varieties

Fix a dimension vector w = (wy, wa, ..., wp).

A quiver representation variety E(w) is the space of all quiver
representations for a fixed dimension vector w.

Note that E(w) is an affine variety:

E(W) a Aw1w2+w2u/3+-~+w,,,1wn )



Quiver representation varieties

Fix a dimension vector w = (wy, wa, ..., wp).

A quiver representation variety E(w) is the space of all quiver
representations for a fixed dimension vector w.

Note that E(w) is an affine variety:

E(W) a Aw1w2+w2u/3+-~+w,,,1wn )

G(w) = GL(w;) x - -+ x GL(w,) acts on E(w) by

(g1y--,8n) - (XI5 ey Xneg) = (ggxlgl_l, e ,gnxn_lg;ll)

giving it a stratification by orbits.

Note that two points x,y € E(w) are in the same G(w)-orbit if and
only if they are isomorphic objects of Rep(Qy,).



Classifying the orbits

Theorem (Gabriel’s Theorem)
There is a bijection
{indec. objects in Rep(Q,)}/~ Rl {pos. roots for A, root system}.



Classifying the orbits

Theorem (Gabriel’s Theorem)
There is a bijection
{indec. objects in Rep(Q,)}/~ Rl {pos. roots for A, root system}.

To an indecomposable representation
Rj=0>-->0—> C d o4 L05...50.

vertex i vertex j

we associate its dimension vector, the positive root

v=0,...,0, 1 ..., 1 ,0,...,0).

position i position j



Classifying the orbits

Theorem (Gabriel’s Theorem)
There is a bijection
{indec. objects in Rep(Q,)}/~ & {pos. roots for A, root system}.

To an indecomposable representation
Rj=0>-->0—> C d o4 L05...50.

vertex i vertex j

we associate its dimension vector, the positive root

v=0,...,0, 1 ..., 1 ,0,...,0).

position i position j
Corollary

There is a bijection

{G(w)-orbits in E(W)} <= B(w) := {b; | Y by = w}.
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Triangular arrays

ladder )
Define the set P(w) of triangular arrays of

nonnegative integers such that:
@ Vj, the entries in the j chute sum to wj.

chute @ Ladders are weakly decreasing.
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Triangular arrays

ladder )
Define the set P(w) of triangular arrays of
nonnegative integers such that:
@ Vj, the entries in the j chute sum to wj.
chute @ Ladders are weakly decreasing.
Forw = (1,1,2), € P(w)

We will write y;; for the entry in the i chute and j column.
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Classifying the orbits combinatorially

Lemma (Achar-K.-Matherne)

There is a bijection

B(w) := {byj | Y, biyy = W} <= P(w).

by b1
[ ] [ ]
22
b1y + by b3 / b3
[ ] [ ] [ ] b23 [ ]
b3 J.r b3 /

b1z + 1923 + b33 /



Running Example (A5)

Letw = (1,1,2).
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Partial orders on P(w)

If Y € P(w), we write Oy for the corresponding G(w)-orbit in E(w).
LetY,Y € P(w).
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Partial orders on P(w)

If Y € P(w), we write Oy for the corresponding G(w)-orbit in E(w).
LetY,Y € P(w).

Geometric partial order on P(w):

Y<gV if and only if Oy < Oy.

Combinatorial partial order on P(w):

J
Y<c Y ifforalliandj,  Y.ya= D Vi
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Partial orders on P(w)

If Y € P(w), we write Oy for the corresponding G(w)-orbit in E(w).
LetY,Y € P(w).

Geometric partial order on P(w):

Y<gV if and only if Oy < Oy.

Combinatorial partial order on P(w):

j j
Y <. Y if for all i and j, Z Vik = Z

Theorem (Achar-K.—-Matherne)

The geometric and combinatorial partial orders coincide.
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Some observations from the combinatorics

Let Y € P(w). Denote by M(Y) a representation in the orbit Oy.
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Some observations from the combinatorics

Let Y € P(w). Denote by M(Y) a representation in the orbit Oy.
Theorem (Achar-K.—-Matherne)
Q dimOy = Z Yiiik + Z Vit 1,jYik-

1<i<n—1 1<i<n—1
1<j<k<sn—i+1 I1<j<k<n—i+1



Some observations from the combinatorics

Let Y € P(w). Denote by M(Y) a representation in the orbit Oy.
Theorem (Achar-K.—-Matherne)

Q@ dimOy = Z YiiYik + Z Vit 1,Yik-
1<i<n—1 1<i<n—1
I<j<k<n—i+1 1<j<k<n—i+1

© M(Y) is an injective object in Rep(Q,,) if and only if Y is
constant along ladders.
© M(Y) is a projective object in Rep(Qy,) if and only if Y has

nonzero entries only in the last ladder.



Fourier—Sato transform
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Some basics about perverse sheaves

Perverse sheaves - complexes of sheaves that encode information
about the singularities of a space (intersection cohomology)

16/27



Some basics about perverse sheaves

Perverse sheaves - complexes of sheaves that encode information
about the singularities of a space (intersection cohomology)

{G(w)-orbits in E(w)} i {simple perverse sheaves on E(w)}.
Oy +— IC(Oy)
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Some basics about perverse sheaves

Perverse sheaves - complexes of sheaves that encode information
about the singularities of a space (intersection cohomology)

{G(w)-orbits in E(w)} i {simple perverse sheaves on E(w)}.
Oy +— IC(Oy)

So, get a bijection:

P(w) it {simple perverse sheaves on E(w)}.
Y — I(:(C)y)
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Fourier-Sato transform

Can we give a combinatorial description of the Fourier—Sato
transform:

DYy (E(W)) — D% (E(WH))
F +— FM[dimE(w)]

for simple perverse sheaves F?
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NOO
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Running example
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Some properties and applications of the Fourier transform

Properties:

@ r-exact for the perverse
t-structure and sends simples
to simples.

@ equivalence of categories

@ “almost” an involution
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Some properties and applications of the Fourier transform

Properties: Applications:

@ r-exact for the perverse @ character formula for
t-structure and sends simples quantum loop algebras uses
to simples. Fourier transform on graded

@ equivalence of categories quiver varieties (Nakajima)

e “almost” an involution @ monoidal categorification of

certain cluster algebras
(Nakajima)
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Combinatorial Fourier transform
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Combinatorial Fourier transform

Theorem (Achar-K.—-Matherne)

There is a bijection

P(w) — P(w")

defined inductively by

1 2.n—1 Y1 1= Yn—1,2
T et

where T(a) = a.



Sliding at j

7™ chute
Define 75 : P(w) — P(w +e; + ... + ¢;) by:

@ Add I as far down the j™ chute as possible,

drawing an impassable vertical line there.

@ Repeat for chutes j — 1,.. ., 1 not crossing
lines.

22727






Running example

NOO

P(w) P(w*)
2
0 0
0 Y ioo
1\ /11
09 }00
2
) sl0 90
1/ \11
1
(1)1 0(1)1
1
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Theorem (Achar-K.—-Matherne)
The bijection T : P(w) — P(w™*) determines
T: Dg(w) (E(w)) — Dg(w*)(E (W*)) for simple perverse sheaves;
that is,
T(IC(Oy)) = IC(O1(y))-
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Outline of the proof

Geometric

pyasetskl! Fourier transform

Unique dense

open orbit in the

commuting variety

Combinatorial

Knight-Zelevinsky Fourier transform

Multisegment duality

B(w) — B(w*)

Inverse combinatorial

Fourier transform
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. Thanks!
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