d-abelian quotients of $d+2$-angulated categories

Joint work with Peter Jørgensen
Karin M. Jacobsen
Department of mathematical sciences
April 242018

Motivation

Tilting theory is useful when dealing with abelian and triangulated categories.

It would be really neat to be able to use it with d-abelian and $d+2$-angulated categories

This is one step towards that...

Setup

$-k=\bar{k}$ is a field

- All categories are additive and k-linear.
$-d$ is a positive integer (if $d=1$ we get the classical case).

d-cluster-tilting subcategories

Definition (Iyama 2010)

Let \mathscr{C} be an abelian or triangulated category. Let $\mathscr{X} \subseteq \mathscr{C}$ be a full subcategory.

- \mathscr{X} is d-rigid if $\operatorname{Ext}_{\mathscr{C}}^{i}(\mathscr{X}, \mathscr{X})=0$ for $1 \leqslant i \leqslant d-1$
- \mathscr{X} is weakly d-cluster tilting if

$$
\begin{aligned}
\mathscr{X} & =\left\{C \in \mathscr{C} \mid \operatorname{Ext}_{\mathscr{C}}^{i}(C, \mathscr{X})=0 \text { for } 1 \leqslant i \leqslant d-1\right\} \\
& =\left\{C \in \mathscr{C} \mid \operatorname{Ext}_{\mathscr{C}}^{\prime}(\mathscr{X}, C)=0 \text { for } 1 \leqslant i \leqslant d-1\right\} .
\end{aligned}
$$

- \mathscr{X} is d-cluster tilting if it is weakly d-cluster tilting and functorially finite in \mathscr{C}.

Apply the same adjective to an object T if the condition holds for $\mathscr{X}=\operatorname{Add} T$

d-abelian categories

Abelian categories
Short exact sequences
$0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$
Kernels and cokernels Projective resolutions
d-abelian categories
d-exact sequences
$0 \rightarrow X \rightarrow Y_{d} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Z \rightarrow 0$
d-kernels and d-cokernels
Projective resolutions of length at least d

Theorem (Jasso 2016)

Let \mathscr{A} be abelian and let $\mathscr{X} \subseteq \mathscr{A}$ be d-cluster-tilting. Then \mathscr{X} is d-abelian.

Example

Theorem (Vaso 2016)

Let $\Gamma=k \mathbb{A}_{n} /\langle$ paths of length $I\rangle$ with $I=2$ or $n \equiv 1(\bmod I)$.
Let $\mathscr{X} \subseteq \bmod \Gamma$ be all projective and injective modules in mod Γ.
Then \mathscr{X} is d-clustertilting and thus d-abelian.

$$
n=7, l=3: d=4
$$

$d+2$-angulated categories

Definition due to [Geiss, Keller, Oppermann, 2013] Suppose \mathscr{C} is k-linear and Krull-Schmidt.
Let Σ^{d} be an autoequivalence on \mathscr{C}, called a d-suspension.
Suppose we can define a collection of $d+2$-angles,

$$
X_{d+2} \rightarrow X_{d+1} \rightarrow \cdots \rightarrow X_{1} \rightarrow \Sigma^{d} X_{d+2}
$$

that act pretty much like the triangles in a triangulated category
(Don't make me give you the axioms...)
Then we call \mathscr{C} a $d+2$-angulated category.

Theorem (Geiss, Keller, Oppermann 2013)

Let \mathscr{T} be a triangulated category, and let $\mathscr{X} \subseteq \mathscr{C}$ be a d-cluster-tilting subcategory.
Then \mathscr{X} is a d + 2-angulated category.

Example(s)

Theorem (Oppermann, Thomas 2012)

Suppose Γ is d-representation-finite. Let $\mathscr{X} \subseteq \bmod \Gamma$ be d-cluster-tilting. Then

$$
\mathscr{Y}=\{\mathscr{X}[n d] \mid n \in \mathbb{Z}\} \subseteq D^{b}(\bmod \Gamma)
$$

is a d-cluster-tilting subcategory and thus $d+2$-angulated.
The d-suspension functor is [d].
In the case of our previous example we get something that's at least easy to calculate:

Composition of 3 arrows is 0 .

Abelian quotients of triangulated categories

Theorem (Buan, Marsh, Reiten 2006)

Let \wedge be a hereditary algebra. Let $\mathscr{C}=D^{b}(\Lambda) / \tau^{-1}[1]$ (the cluster category). If T is a cluster-tilting (i.e maximally rigid) object, then $\mathscr{C} / \tau T \cong \bmod \operatorname{End}_{\mathscr{C}}(T)$

Theorem (König, Zhu 2007)

Let \mathscr{C} be a triangulated category. Let \mathscr{X} be a maximally rigid subcategory. Then $\mathscr{C} / \mathscr{X}$ is an abelian category.

Theorem (Grimeland, J. 2015)

Let \mathscr{C} be a triangulated category, and let $T \in \mathscr{C}$. Then $\operatorname{Hom}_{\mathscr{C}}(T,-)$ is a full and dense (i.e quotient) functor if and only if:
a If $T_{1} \rightarrow T_{2}$ is a right min. morphism in Add T, then any triangle $T_{1} \rightarrow T_{2} \rightarrow X \xrightarrow{h} \Sigma T_{1}$ satisfies $\operatorname{Hom}_{\mathscr{C}}(T, h)=0$.
b For any T-supported $X \in \mathscr{C}$ we can find a triangle as above with $T_{1}, T_{2} \in \operatorname{Add} T$ and $\operatorname{Hom}_{\mathscr{C}}(T, h)=0$.

d-abelian quotients of $d+2$-angulated categories

\mathscr{C} : a k-linear, Hom-finite, $d+2$-angulated category with split idempotents, d-suspension Σ^{d} and Serre functor S.
T : An object in \mathscr{C} with endomorphism algebra Γ
\mathscr{D} : The essential image of $\operatorname{Hom}_{\mathscr{C}}(T,-): \mathscr{C} \rightarrow \bmod \Gamma$.

Theorem (J., Jørgensen; arxiv:1712:07851)

\mathscr{D} is d-cluster-tilting in $\bmod \Gamma$ and $\operatorname{Hom}_{\mathscr{C}}(T,-)$ is full iff the following conditions are all satisfied:
a Suppose that $M \in \bmod \Gamma$ satisfies $\operatorname{Ext}_{\Gamma}^{j}(\mathscr{D}, M)=0$ for $1 \leqslant j \leqslant d-1$, and that $T_{1} \xrightarrow{f} T_{0}$ is a morphism in Add T for which

$$
\operatorname{Hom}_{\mathscr{C}}\left(T, T_{1}\right) \xrightarrow{\text { Hom }_{\mathscr{C}}(T, f)} \operatorname{Hom}_{\mathscr{C}}\left(T, T_{0}\right) \rightarrow M \rightarrow 0
$$

is a minimal projective presentation in $\bmod \Gamma$. Then there exists a completion of f to $a(d+2)$-angle in \mathscr{T}, $T_{1} \xrightarrow{f} T_{0} \xrightarrow{h_{d+1}} X_{d} \xrightarrow{h_{d}} \cdots \xrightarrow{h_{2}} X_{1} \xrightarrow{h_{1}} \Sigma^{d} T_{1}$, which satisfies Hom $\mathscr{C}\left(T, h_{d}\right)=0$.
\mathbf{a}^{*} Suppose that $N \in \bmod \Gamma$ satisfies $\operatorname{Ext}_{\Gamma}^{j}(N, \mathscr{D})=0$ for $1 \leqslant j \leqslant d-1$, and that $S T_{1} \xrightarrow{g} S T_{0}$ is a morphism in Add ST for which

$$
0 \rightarrow N \rightarrow \operatorname{Hom}_{\mathscr{C}}\left(T, S T_{1}\right) \xrightarrow{\operatorname{Hom}_{\mathscr{C}}(T, g)} \operatorname{Hom}_{\mathscr{C}}\left(T, S T_{0}\right)
$$

is a minimal injective copresentation in mod Γ. Then there exists a completion of g to a $(d+2)$-angle in \mathscr{T}, $\Sigma^{-d} S T_{0} \xrightarrow{h_{d+1}} X_{d} \xrightarrow{h_{d}} \cdots \xrightarrow{h_{2}} X_{1} \xrightarrow{h_{1}} S T_{1} \xrightarrow{g} S T_{0}$, which satisfies $\operatorname{Hom}_{\mathscr{C}}\left(T, h_{2}\right)=0$.
b Suppose that $X \in \mathscr{C}$ is indecomposable and satisfies $\operatorname{Hom}_{\mathscr{C}}(T, X) \neq 0$. Then there exists a $(d+2)$-angle in \mathscr{T},

$$
T_{d} \rightarrow \cdots \rightarrow T_{0} \rightarrow X \xrightarrow{h} \Sigma^{d} T_{d},
$$

with $T_{i} \in \operatorname{Add} T$ for $0 \leqslant i \leqslant d$, which satisfies $\operatorname{Hom}_{\mathscr{C}}(T, h)=0$.

Example

Look at the same example as before: $k \mathbb{A}_{7} /\langle$ paths of length 3\rangle The objects satisfying $\mathbf{a}, \mathbf{a}^{*}$ and \mathbf{b}
Regain the original category:

