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Motivation

Tilting theory is useful when dealing with
abelian and triangulated categories.

It would be really neat to be able to use it with
d-abelian and d + 2-angulated categories

This is one step towards that...
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Setup

— k = k is a field
— All categories are additive and k -linear.
— d is a positive integer (if d = 1 we get the classical case).
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d-cluster-tilting subcategories

Definition (Iyama 2010)

Let C be an abelian or triangulated category. Let X ⊆ C be a full
subcategory.
— X is d-rigid if ExtiC (X ,X ) = 0 for 1 6 i 6 d − 1
— X is weakly d-cluster tilting if

X = {C ∈ C | ExtiC (C,X ) = 0 for 1 6 i 6 d − 1}
= {C ∈ C | ExtiC (X ,C) = 0 for 1 6 i 6 d − 1}.

— X is d-cluster tilting if it is weakly d-cluster tilting and
functorially finite in C .

Apply the same adjective to an object T if the condition holds for
X = Add T
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d-abelian categories

Abelian categories d-abelian categories
Short exact sequences d-exact sequences
0→ X → Y → Z → 0 0→ X → Yd → · · · → Y1 → Z → 0
Kernels and cokernels d-kernels and d-cokernels
Projective resolutions Projective resolutions of length at least d

Theorem (Jasso 2016)

Let A be abelian and let X ⊆ A be d-cluster-tilting. Then X is
d-abelian.
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Example

Theorem (Vaso 2016)

Let Γ = kAn/〈paths of length l〉 with l = 2 or n ≡ 1 (mod l).
Let X ⊆ modΓ be all projective and injective modules in modΓ.
Then X is d-clustertilting and thus d-abelian.

n = 7, l = 3: d = 4

• • • • • • •

• • • • • •

• • • • •
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d + 2-angulated categories

Definition due to [Geiss, Keller, Oppermann, 2013]
Suppose C is k -linear and Krull-Schmidt.
Let Σd be an autoequivalence on C , called a d-suspension.
Suppose we can define a collection of d + 2-angles,

Xd+2 → Xd+1 → · · · → X1 → ΣdXd+2,

that act pretty much like the triangles in a triangulated category
(Don’t make me give you the axioms...)
Then we call C a d + 2-angulated category.

Theorem (Geiss, Keller, Oppermann 2013)

Let T be a triangulated category, and let X ⊆ C be a
d-cluster-tilting subcategory.
Then X is a d + 2-angulated category.
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Example(s)

Theorem (Oppermann, Thomas 2012)

Suppose Γ is d-representation-finite. Let X ⊆ modΓ be
d-cluster-tilting. Then

Y = {X [nd ] | n ∈ Z} ⊆ Db(modΓ)

is a d-cluster-tilting subcategory and thus d + 2-angulated.
The d-suspension functor is [d ].

In the case of our previous example we get something that’s at
least easy to calculate:

· · · · · ·• • • • • • • • • •[d ]

Composition of 3 arrows is 0.
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Abelian quotients of triangulated categories

Theorem (Buan, Marsh, Reiten 2006)

Let Λ be a hereditary algebra. Let C = Db(Λ)/τ−1[1] (the cluster
category). If T is a cluster-tilting (i.e maximally rigid) object, then
C /τT ∼= mod EndC (T )

Theorem (König, Zhu 2007)

Let C be a triangulated category. Let X be a maximally rigid
subcategory. Then C /X is an abelian category.

Theorem (Grimeland, J. 2015)

Let C be a triangulated category, and let T ∈ C . Then HomC (T ,−) is a
full and dense (i.e quotient) functor if and only if:

a If T1 → T2 is a right min. morphism in Add T , then any triangle
T1 → T2 → X h−→ ΣT1 satisfies HomC (T ,h) = 0.

b For any T -supported X ∈ C we can find a triangle as above with
T1,T2 ∈ Add T and HomC (T ,h) = 0.
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d-abelian quotients of d + 2-angulated categories

C : a k -linear, Hom-finite, d + 2-angulated category with split idempotents, d-suspension Σd and Serre functor S.
T : An object in C with endomorphism algebra Γ

D: The essential image of HomC (T ,−) : C → modΓ.

Theorem (J., Jørgensen; arxiv:1712:07851)
D is d-cluster-tilting in modΓ and HomC (T ,−) is full iff the following conditions are all satisfied:

a Suppose that M ∈ modΓ satisfies Extj
Γ

(D, M) = 0 for 1 6 j 6 d − 1, and that T1
f−→ T0 is a morphism in

Add T for which
HomC (T , T1)

HomC (T ,f )
−−−−−−−→ HomC (T , T0)→ M → 0

is a minimal projective presentation in modΓ. Then there exists a completion of f to a (d + 2)-angle in T ,

T1
f−→ T0

hd+1−−−→ Xd
hd−−→ · · ·

h2−−→ X1
h1−−→ Σd T1, which satisfies HomC (T , hd ) = 0.

a* Suppose that N ∈ modΓ satisfies Extj
Γ

(N, D) = 0 for 1 6 j 6 d − 1, and that ST1
g
−→ ST0 is a morphism in

Add ST for which

0→ N → HomC (T , ST1)
HomC (T ,g)
−−−−−−−→ HomC (T , ST0)

is a minimal injective copresentation in modΓ. Then there exists a completion of g to a (d + 2)-angle in T ,

Σ−d ST0
hd+1−−−→ Xd

hd−−→ · · ·
h2−−→ X1

h1−−→ ST1
g
−→ ST0, which satisfies HomC (T , h2) = 0.

b Suppose that X ∈ C is indecomposable and satisfies HomC (T , X) 6= 0. Then there exists a (d + 2)-angle in T ,

Td → · · · → T0 → X h−→ Σd Td ,

with Ti ∈ Add T for 0 6 i 6 d, which satisfies HomC (T , h) = 0.
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Example

· · · · · ·• • • • • • • • • •[d ]

Look at the same example as before: kA7/〈paths of length 3〉
The objects satisfying a, a* and b
Regain the original category:

• • • • • • •

• • • • • •

• • • • •

11


