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2. Introduction

I We are trying to build a bridge between the B-model of mirror symmetry,
and arithmetic geometry. This program was inspired by works of
Candelas, de la Ossa and Rodriguez-Villegas in 2000, where such striking
connections have been observed in an important case via direct
computations. Special cases also appeared in works of Dwork, Katz, C.D.
Yu, etc.

I In the B-model, the central objects of study are period integrals, in
particular their Taylor series expansions at the large complex structure
limit (LCSL) point.

I In arithmetic geometry, we are interested in counting the number of
points of an algebraic variety over a finite field.



3. An example

I f = a1x
2
1 + a0x1x2 + a2x

2
2 : a Calabi-Yau hypersurface in P1: i.e. a Kahler

manifold with c1 = 0.

I Suppose the coefficients a0, a1, a2 live in the finite field Fp, and we
compute the number of points Np of the hypersurface over Fp.

I Np = 1 + (∆
p ), where ( ) is the Legendre symbol.



4. An example

I Next we regard the coefficients in f = a1x
2
1 + a0x1x2 + a2x

2
2 to be

complex numbers. f is a global section of the anticanonical line bundle
over CP1. For generic f the zero loci V (f ) consists of two points on the
Riemann sphere.

I Period integrals for Calabi-Yau hypersurface: integrals of holomorphic top
form over cycles.

I By Leray-Poincare residue, the unique period integral of the hypersurface

I =

∫
γ0

x1dx2 − x2dx1

f
= ∆−

1
2

where γ0 is the unique generator of H1(CP1−V (f )) normalized such that
the constant term of I is 1, and ∆ = a2

0 − 4a1a2.



5. An example

I In mirror symmetry, a particular degenerate anticanonical section called
the large complex structure limit LCSL of of special interest, near which
the mirror map is defined.

I In our case, the LCSL is s0 = x1x2, i.e. a0 = 1, a1 = a2 = 0. For CPn−1 a
LCSL is given by s0 = x1...xn. In general LCSL is characterized by the
property that the period sheaf has maximal unipotent monodromy at the
point.

I Let P = P(a1

a0
, a2

a0
) denote the Taylor series of a0I at the LCSL, then one

checks that
Np − 1 = ∆

p−1
2 = ((p−1)P)ap−1

0 (mod p)

where (p−1)P denotes the truncation of P up to degree p − 1 in 1/a0.

I Thus The analytic period at LCSL and point counting over Fp mod p for
almost all p determine each other.

I Remark: Thinking of f as living in the universal family of Calabi-Yau
hypersurface in P1 parametrized by a0, a1, a2, the local behavior of the
analytic period at the LCSL determines point counting mod p
everywhere/globally in the parameter space.



6. Hasse-Witt and Periods

We prove that the above relation holds for a large class of hypersurfaces.

I Let X = X n be a toric variety or flag variety G/P of dimension n defined
over Z. Consider the universal family of CY hypersurfaces in X , given by
the complete linear system of global sections of the anticanonical line
bundle.

I Remark: The result can be extended to CY or general type complete
intersections.

I Let Y be a smooth hypersurface in the family, taking reduction mod p,
Fulton’s fixed point formula implies 1 + (−1)n−1HWp = Np(mod p),
where HWp is the Hasse-Witt invariant that records the (matrix of) the
action of the Frobenius operator: Hn−1(Y ,OY )→ Hn−1(Y ,OY ).

I Let s0 denote the large complex structure limit (LCSL) in the toric case
given by union of toric divisors, or the candidate LCSL [H-Lian-Zhu’13] in
the X = G/P case given by union of codim=1 strata of the projected
Richardson stratification: e.g. when X = G (2, 4), s0 = x12x23x34x41,
where xij are Plücker coordinates.



7. Main theorem relating Hasse-Witt and periods

I Extend s0 to a basis of Γ(X ,K−1
X ), and let a0, ..., aN denote the dual

basis. Let I denote the unique holomorphic period under the canonical
global normalization of the holomorphic top form given by a global
Poincare residue formula [Lian-Yau’11] at s0, scaled such that the
constant term equals 1. Let P = P(a1/a0, ..., aN/a0) denote the Taylor
series of a0I at the LCSL, and (p−1)P denotes the truncation of P up to
degree p − 1 in 1/a0.

I Theorem [H-Lian-Yau-Yu’18] HWp = ((p−1)P)ap−1
0 (mod p).

I Remark: The result is independent of the choice of extending s0 to a
basis.



8. Global normalization of the holomorphic top form

I Lian-Yau gave a global normalization of the holomorphic top form on the
hypersurface, given by

Res
Ω

f

where Ω is a holomorphic n-form on certain principal bundle over X , such
that Ω/f descends to a rational form on X with pole along the
hypersurface V (f ). Taking residue then gives rise to a holomorphic top
form on the hypersurface.

I For example, when X = Pn, Ω =
∑n

k=0(−1)kxkdx0 ∧ ... ∧ ˆdxk ∧ ... ∧ dxn.



9. Idea of proof

I Proof is based on

I Lemma: if on a local affine chart, f = g(t)(dt1 ∧ ... ∧ dtn)−1, then HWp

is equal to the coefficient of (t1...tn)p−1 in the local expansion of g(t)p−1.

I The lemma relies on the compatibility of Grothendieck duality with Cartier
operator.

I Let X be toric, and f =
∑

I aIx
I . Take the affine torus chart X − V (s0).

The above lemma implies that
(1/ap−1

0 )HWp =

1 +
∑p−1

k=1

∑
k1uI1 +···+kluIl =0,

∑
kj=k,Ij 6=0

(
p−1

k1,k2,··· ,kl ,p−1−k
)
(
aI1
a0

)k1 · · · (aIla0
)kl

where k = k1 + ... + kl .



10. Idea of proof

I On the other hand, the unique analytic period integral at the LCSL

I =
1

(2π
√
−1)n

∫
γ

dt1 ∧ · · · ∧ dtn
t1 · · · tnf (t)

along the cycle γ : |t1| = |t2| = · · · |tn| = 1, where f (t) denotes f /s0

written in terms of the torus t coordinates. So I equals the coefficient of
the constant term in the Laurent expansion of f (t)−1:

I =
1

a0
(1+

∞∑
k=1

(−1)k
∑

k1uI1 +···+kluIl =0,
∑

kj=k,Ij 6=0

(
k

k1, k2, · · · , kl

)
(
aI1
a0

)k1 · · · (aIl
a0

)kl )

I The congruence relation(
p − 1

k1, k2, · · · , kl , p − 1− k

)
≡ (−1)k

(
k

k1, k2, · · · , kl

)
mod p

implies our result.



11. A few corollaries

I There is a version of the result for general type hypersurfaces.

I Corollary [H-Lian-Yau-Yu’18] The Hasse-Witt matrix for a generic
smooth toric hypersurface is invertible.

I This corollary is needed to discuss the p-adic version of the result. When
X = Pn, it was proved by Adolphson.

I The proof is an induction on the size of the toric polytope.

I Remark: From the above local algorithm for HWp applied to the torus
chart, one can verify directly that HWp satisfies a certain linear PDE
system τ called the tautological system mod p. On the other hand,
[H-Lian-Zhu’13] has proved that this τ is equivalent to the Gauss-Manin
connection for period integrals. This generalizes an old result of
Igusa-Manin-Katz that HWp solves the Picard-Fuchs equation mod p.

I It is clear that the combinatorial structure of the LCSL plays an important
role in the proof. It may be worthwhile to investigate this on a more
conceptual level, to further “demystify” the LCSL.



12. Idea of proof: the X = G/P case

I For the case X = G/P , one uses the Bott-Samelson-Demazure-Hansen
resolution of Schubert varieties to construct a torus chart on X − V (s0),
on which s0 = t1...tn(dt1 ∧ ... ∧ dtn)−1, where t1, ..., tn are coordinates on
the torus.

I In addition, it is a resolution of a rational singularity, which allows us to
use differential forms with poles to compute HWp.

I The proof then goes similar to the toric case.



13. Example of G (2, 4)

I Let X be Grassmannian G (2, 4). Then X = G/P with G = SL(4) and

P = {


? ? ? ?
? ? ? ?
0 0 ? ?
0 0 ? ?

}.
I The Weyl group is W = S4 and WP = S2 × S2. A shortest representative

of the longest element in W /WP : wP = (13)(24) = (23)(34)(12)(23).

I The Bott-Samelson-Demazure-Hansen resolution of the Schubert variety
in G/B corresponding to wP : ZwP

= P1 × P2 × P3 × P4/B
4 with

P1 = {


? ? ? ?
0 ? ? ?
0 t1 ? ?
0 0 0 ?

}, P2 = {


? ? ? ?
0 ? ? ?
0 0 ? ?
0 0 t2 ?

},

P3 = {


? ? ? ?
t3 ? ? ?
0 0 ? ?
0 0 0 ?

} and P4 = {


? ? ? ?
0 ? ? ?
0 t4 ? ?
0 0 0 ?

}.



14. Example of G (2, 4)

I The largest Schubert cell is {


a b 1 0
c d 0 1
1 0 0 0
0 1 0 0

}P/P with coordinates

(a, b, c , d).

I The affine coordinate (t1, · · · , t4) ∈ A4 on a chart on ZwP
:

{[


1 0 0 0
0 1 0 0
0 t1 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 t2 1

 ,


1 0 0 0
t3 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 t4 1 0
0 0 0 1

]}.

I So we have a map ψ : ZwP
→ X under this local chart on the torus

t1t2t3t4 6= 0 given by

a =
1

t1t3
, b = − t1 + t4

t1t2t3t4
, c =

1

t1
, d = − 1

t1t2

I ψ restricts to an isomorphism on the torus t1t2t3t4 6= 0.



15. Example of G (2, 4)

I Let

(
a11 a12 a13 a14

a21 a22 a23 a24

)
be the basis of any two plane. The Plücker

coordinates xij are the determinants of i , j columns. The section
s0 = x12x23x34x14.

I We have s0 = −ad(ad − bc)(da ∧ db ∧ dc ∧ dd)−1. A direct calculation
shows that ψ∗s0 = t1t2t3t4(dt1dt2dt3dt4)−1. The other sections of
H0(X , L) can also be written as homogenous polynomials of xij of degree
4, which in turn can be expressed in terms of the torus coordinates.



16. 2nd Main theorem: p-adic version of the result

I Now let aI be p-adic integers. Let g(aI ) := P(aI )
P(apI )

as a power series. Then

g satisfies Dwork congruences

g(aI ) ≡
(ps−1)(P(aI ))

(ps−1−1)(P)((aI )p)
mod ps

I Theorem [H-Lian-Yau-Yu’18] Let âI = lims→∞ ap
s

I , then g(âI ) gives the
unit root of the zeta function of Yf (after reduction mod p). In addition,
the algorithm is effective.

I Remark: For example, for elliptic curves, this unit root gives complete
information of the local zeta function.

I Theorem [H-Lian-Yau-Yu’18] Similar results hold for general type
hypersurfaces in a toric variety.

I For the case of Pn, this was a recent conjecture of Vlasenko.

I A slightly weaker version of the result generalizes to X = G/P .



17. Remarks about the proof

I The proof adopts a method of Katz regarding the formal expansion map
of Crystalline cohomology, in the case with log poles.

I In the case with log poles, we do not have exact understanding of the
kernel of this formal expansion map. A trick is used to get around this
trouble. We also need a convergence result proved by Vlasenko.



18. Concluding remarks

I This work is a first step in our attempt to construct the p-adic B-model.

I The result implies that the fundamental period at the LCSL and the
counting of rational points mod p for almost all p determine each other.
In particular, the local information of this period at LCSL determines the
point counting mod p everywhere on the parameter space.

I The next step is to relate the periods with monodromy at the LCSL with
arithmetic of the hypersurface. The hope is that counting points
determines all the periods at the LCSL. The work of Candelas et al in
2000 gave strong hints in this direction. We expect implications in both
arithmetic geometry and mirror symmetry: in mirror symmetry, the point
counting shall imply strong relations of periods at different LCSL.


