Poisson Clusters and Unique Factorization

Ken Goodearl University of California at Santa Barbara

[joint work with Milen Yakimov]

Quick cluster algebra sketch (geometric type; coeffs \in field)

```
Quick cluster algebra sketch (geometric type; coeffs \in field)
K \subset F = K(y_1, \dots, y_N) = \text{rational function field}
  clusters = transcendence bases for F/K
     initial cluster = (y_1, \dots, y_N)
  [1, N] \supseteq ex = set of exchangeable indices (others are frozen)
  M_{N \times ex}(\mathbb{Z}) \ni B = exchange matrix (with some conditions)
mutation in direction k \in \underline{ex}:
  cluster (y_1, \ldots, y_N) \sim \sim \text{cluster}(y_1, \ldots, y_{k-1}, y'_k, y_{k+1}, \ldots, y_N)
  and B \sim B' (by formulas involving B)
```

```
Quick cluster algebra sketch (geometric type; coeffs \in field)
K \subset F = K(y_1, \dots, y_N) = \text{rational function field}
   clusters = transcendence bases for F/K
     initial cluster = (y_1, \dots, y_N)
   [1, N] \supseteq ex = set of exchangeable indices (others are frozen)
   M_{N \times ex}(\mathbb{Z}) \ni B = \text{exchange matrix} (with some conditions)
mutation in direction k \in \underline{ex}:
   cluster (y_1, \ldots, y_N) \sim \sim \text{cluster}(y_1, \ldots, y_{k-1}, y'_k, y_{k+1}, \ldots, y_N)
   and B \sim B' (by formulas involving B)
Iterate mutations in all ex directions
cluster algebra := K-subalgebra of F generated by [] all clusters
      from iterated mutations, together with
   y_k^{-1} for k in some set \underline{inv} \subseteq [1, N] \setminus \underline{ex}
```

upper cluster algebra :=

 $\bigcap \text{ of } K[z_i^{\pm 1} \mid i \in \underline{\text{ex}} \sqcup \underline{\text{inv}}][z_i \mid i \notin \underline{\text{ex}} \sqcup \underline{\text{inv}}]$

for original cluster and one-step mutations in all ex directions

upper cluster algebra :=

 \bigcap of $K[z_i^{\pm 1} \mid i \in \underline{ex} \sqcup \underline{inv}][z_i \mid i \notin \underline{ex} \sqcup \underline{inv}]$ for original cluster and one-step mutations in all \underline{ex} directions

Laurent Phenomenon [Fomin-Zelevinsky]

cluster algebra \subseteq upper cluster algebra \subseteq $K[y_1^{\pm 1}, \ldots, y_N^{\pm 1}]$

upper cluster algebra :=

 \bigcap of $K[z_i^{\pm 1} \mid i \in \underline{ex} \sqcup \underline{inv}][z_i \mid i \notin \underline{ex} \sqcup \underline{inv}]$ for original cluster and one-step mutations in all ex directions

Some known cluster algebras: homogeneous coordinate rings of

- Grassmannians Gr(m, n) [Scott]
- partial flag varieties in semisimple algebraic groups type ADE [Geiß-Leclerc-Schröer]

Some known upper cluster algebras: coordinate rings of

ullet double Bruhat cells in semisimple algebraic groups / $\mathbb C$ [Berenstein-Fomin-Zelevinsky]

Assume char(K) = 0 from now on [K = base field]

Poisson algebra = a commutative algebra R with Lie bracket

 $\{-,-\}:R\times R\longrightarrow R$ such that all $\{r,-\}$ are derivations

(\ \ a Poisson bracket)

Assume char(K) = 0 from now on [K = base field]

Poisson algebra = a commutative algebra R with Lie bracket $\{-,-\}: R \times R \longrightarrow R$ such that all $\{r,-\}$ are derivations (\ \ a Poisson bracket)

E.G. $\mathcal{O}(M_{m,n}(K))$ with the standard Sklyanin bracket :

$$\begin{aligned}
\{X_{ij}, X_{il}\} &= X_{ij} X_{il} & (j < l) \\
\{X_{ij}, X_{kj}\} &= X_{ij} X_{kj} & (i < k) \\
\{X_{ij}, X_{kl}\} &= \begin{cases} 0 & (i < k, j > l) \\ 2X_{il} X_{kj} & (i < k, j < l) \end{cases}
\end{aligned}$$

Assume char(K) = 0 from now on [K = base field]

Poisson algebra = a commutative algebra R with Lie bracket $\{-,-\}: R \times R \longrightarrow R$ such that all $\{r,-\}$ are derivations

(\ \ a Poisson bracket)

E.G. $\mathcal{O}(M_{m,n}(K))$ with the standard Sklyanin bracket :

$$\begin{aligned} &\{X_{ij}, X_{il}\} = X_{ij} X_{il} & (j < l) \\ &\{X_{ij}, X_{kj}\} = X_{ij} X_{kj} & (i < k) \\ &\{X_{ij}, X_{kl}\} = \begin{cases} 0 & (i < k, j > l) \\ 2X_{il} X_{kj} & (i < k, j < l) \end{cases} \end{aligned}$$

and coordinate rings of Poisson subvarieties of $M_{m,n}(K)$, such as $GL_n(K)$, double Bruhat cells of $GL_n(K)$

Consider a cluster algebra $A \subseteq F = K(y_1, \dots, y_N)$ Assume F is a Poisson algebra / K

Consider a cluster algebra $A \subseteq F = K(y_1, \dots, y_N)$ Assume F is a Poisson algebra / K

- a cluster $(z_1, ..., z_N)$ is log-canonical if $\{z_i, z_j\} \in Kz_iz_j \ \forall i, j$
- the cluster structure on A is <u>Poisson-compatible</u> iff all clusters are log-canonical

Poisson polynomial algebra (Poisson version of skew poly ring)

$$R = K[x_1][x_2; \sigma_2, \delta_2]_p \cdots [x_N; \sigma_N, \delta_N]_p$$
:

a polynomial ring $K[x_1, \dots, x_N]$ with Poisson bracket \ni
 $\{x_k, r\} = \sigma_k(r)x_k + \delta_k(r) \text{ for all } r \in K[x_1, \dots, x_{k-1}]$
 $(\sigma_k = a \text{ Poisson derivation; suitable identities for } \delta_k)$

Poisson polynomial algebra (Poisson version of skew poly ring)

$$R = K[x_1][x_2; \sigma_2, \delta_2]_p \cdots [x_N; \sigma_N, \delta_N]_p :$$
a polynomial ring $K[x_1, \dots, x_N]$ with Poisson bracket \ni

$$\{x_k, r\} = \sigma_k(r)x_k + \delta_k(r) \text{ for all } r \in K[x_1, \dots, x_{k-1}]$$

$$(\sigma_k = a \text{ Poisson derivation}; \text{ suitable identities for } \delta_k)$$

$$R$$
 (\uparrow) is a Poisson-nilpotent algebra iff \exists K -torus $H = (K^{\times})^r \ni$

- *H* acts rationally on *R* by Poisson automorphisms
- All x_k are H-eigenvectors
- All δ_k are locally nilpotent
- Each σ_k given by action of $h_k \in \text{Lie } H$, with $h_k \cdot x_k \neq 0$

Poisson polynomial algebra (Poisson version of skew poly ring)

$$R = K[x_1][x_2; \sigma_2, \delta_2]_p \cdots [x_N; \sigma_N, \delta_N]_p :$$
a polynomial ring $K[x_1, \dots, x_N]$ with Poisson bracket \ni

$$\{x_k, r\} = \sigma_k(r)x_k + \delta_k(r) \text{ for all } r \in K[x_1, \dots, x_{k-1}]$$

$$(\sigma_k = a \text{ Poisson derivation}; \text{ suitable identities for } \delta_k)$$

$$R \uparrow (\uparrow)$$
 is a Poisson-nilpotent algebra iff $\exists K$ -torus $H = (K^{\times})^r \ni K$

- H acts rationally on R by Poisson automorphisms
- All x_k are H-eigenvectors
- All δ_k are locally nilpotent
- Each σ_k given by action of $h_k \in \text{Lie } H$, with $h_k \cdot x_k \neq 0$

E.G.
$$R = \mathcal{O}(M_{m,n}(K))$$
 with Sklyanin bracket, $H = (K^{\times})^{m+n}$, $(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n) \cdot X_{ij} = \alpha_i \beta_j X_{ij}$

In a Poisson algebra R:

- Poisson ideal $I \triangleleft R$: $\{R, I\} \subseteq I$
- Poisson-normal element $c \in R$: $\{c, R\} \subseteq cR$
- Poisson-prime element : Poisson-normal, prime element

In a Poisson algebra R:

- Poisson ideal $I \triangleleft R$: $\{R, I\} \subseteq I$
- Poisson-normal element $c \in R$: $\{c, R\} \subseteq cR$
- Poisson-prime element : Poisson-normal, prime element

Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H-Poisson-UFD: Each nonzero H-stable, prime, Poisson ideal of R contains a Poisson-prime H-eigenvector.

In a Poisson algebra R:

- Poisson ideal $I \triangleleft R$: $\{R, I\} \subseteq I$
- Poisson-normal element $c \in R$: $\{c, R\} \subseteq cR$
- Poisson-prime element : Poisson-normal, prime element

Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H-Poisson-UFD: Each nonzero H-stable, prime, Poisson ideal of R contains a Poisson-prime H-eigenvector.

<u>Consequence</u>: All Poisson-normal *H*-eigenvectors in *R* are products of units and Poisson-prime *H*-eigenvectors, unique up to ordering and associates.

Initial clusters:

- Thm 2. [Yakimov-K.G.] Let $R = K[x_1, ..., x_N]$ be a Poisson-nilpotent algebra.
- \exists Poisson-prime *H*-eigenvectors $y_k \in K[x_1, \dots, x_k] \ \forall \ k \ni$
 - All Poisson-prime *H*-eigenvectors in $K[x_1, ..., x_k]$ are among the scalar multiples of $y_1, ..., y_k$.
 - (y_1, \ldots, y_N) is log-canonical $(\{y_k, y_l\} \in Ky_ky_l)$.
 - $K[y_1,\ldots,y_N] \subseteq R \subseteq K[y_1^{\pm 1},\ldots,y_N^{\pm 1}].$

A Poisson-nilpotent algebra $R = K[x_1, \dots, x_N]$ is symmetric if :

- $\delta_k(x_i) \in K[x_{i+1}, \dots, x_{k-1}] \quad \forall \ k > j$
- $R = K[x_N, x_{N-1}, \dots, x_1]$ is Poisson-nilpotent with
 - The same torus *H*
 - (a compatibility condition on scalars)

A Poisson-nilpotent algebra $R = K[x_1, \dots, x_N]$ is symmetric if :

- $\delta_k(x_i) \in K[x_{i+1}, \dots, x_{k-1}] \quad \forall \ k > j$
- $R = K[x_N, x_{N-1}, \dots, x_1]$ is Poisson-nilpotent with
 - The same torus *H*
 - (a compatibility condition on scalars)

$$\Xi_N := \{ \tau \in S_N \mid \tau([1, k]) = \text{ an interval}, \ \forall \ k \in [2, N] \}$$

A Poisson-nilpotent algebra $R = K[x_1, ..., x_N]$ is symmetric if:

- $\delta_k(x_j) \in K[x_{j+1}, \ldots, x_{k-1}] \quad \forall \ k > j$
- $R = K[x_N, x_{N-1}, \dots, x_1]$ is Poisson-nilpotent with
 - The same torus *H*
 - (a compatibility condition on scalars)

$$\mathbf{\Xi}_{\mathit{N}} := \{ au \in \mathcal{S}_{\mathit{N}} \mid \tau([1,k]) = \text{ an interval}, \ \forall \ k \in [2,N] \}$$

If R is a symmetric Poisson-nilpotent algebra, then $\forall \tau \in \Xi_N$:

- $R = K[x_{\tau(1)}, x_{\tau(2)}, \dots, x_{\tau(N)}]$ is Poisson-nilpotent.
- The corresponding y-elements from Theorem 2 form a log-canonical cluster $(y_{\tau,1}, y_{\tau,2}, \dots, y_{\tau,N})$.

Thm 3. [Yakimov-K.G.] Let $R = K[x_1, ..., x_N]$ be a symmetric Poisson-nilpotent algebra (with mild conditions on scalars). Set $\underline{ex} := \{ k \in [1, N] \mid y_k \text{ is } not \text{ Poisson-prime in } R \}.$

- R is a Poisson-compatible cluster algebra.
- R = the corresponding upper cluster algebra.
- R is generated by the cluster variables $y_{\tau,k}$ for $\tau \in \Xi_N$ and $k \in [1, N].$
- Also true for $R[y_k^{-1} \mid k \in \underline{inv}]$, any $\underline{inv} \subseteq [1, N] \setminus \underline{ex}$.

Thm 3. [Yakimov-K.G.] Let $R = K[x_1, ..., x_N]$ be a symmetric Poisson-nilpotent algebra (with mild conditions on scalars). Set $\underline{\text{ex}} := \{ k \in [1, N] \mid y_k \text{ is not Poisson-prime in } R \}$.

- *R* is a Poisson-compatible cluster algebra.
- R = the corresponding upper cluster algebra.
- R is generated by the cluster variables $y_{\tau,k}$ for $\tau \in \Xi_N$ and $k \in [1, N]$.
- Also true for $R[y_k^{-1} \mid k \in \underline{inv}]$, any $\underline{inv} \subseteq [1, N] \setminus \underline{ex}$.

 $\frac{\text{Application}}{\text{algebraic groups}}: \text{ The coord rings of double Bruhat cells in semisimple} \\ \text{algebraic groups} \ / \ \mathbb{C} \text{ are Poisson-compatible cluster algebras} \\ \text{(with the inital cluster data of [Berenstein-Fomin-Zelevinsky])}.$

E.G. $R = \mathcal{O}(M_{m,n}(K))$ with Sklyanin bracket and torus as above.

- ullet R is a symmetric Poisson-nilpotent algebra.
- The cluster variables $y_{\tau,k}$ are precisely the solid minors in R: $[I \mid J]$ with I, J = intervals.

E.G. $R = \mathcal{O}(M_{m,n}(K))$ with Sklyanin bracket and torus as above.

- *R* is a symmetric Poisson-nilpotent algebra.
- The cluster variables $y_{\tau,k}$ are precisely the solid minors in R: $[I \mid J]$ with I, J = intervals.

Specialize: Take m = n and

$$Y := \{ [1, \dots, i \mid n+1-i, \dots, n] \mid 1 \le i \le n \} \cup \{ [n+1-i, \dots, n \mid 1, \dots, i] \mid 1 \le i \le n \}$$

Then $R[y^{-1} \mid y \in Y]$ = the coordinate ring of the open double Bruhat cell in $GL_n(K)$, and $R[y^{-1} \mid y \in Y]$ is a Poisson-compatible cluster algebra.