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Iterate mutations in all ex directions

cluster algebra := K-subalgebra of F generated by | all clusters

from iterated mutations, together with

v for k in some set inv C [1, V] \ ex
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Some known cluster algebras : homogeneous coordinate rings of
e Grassmannians Gr(m,n) [Scott]
e partial flag varieties in semisimple algebraic groups type ADE
[GeiB-Leclerc-Schroer]

Some known upper cluster algebras : coordinate rings of
e double Bruhat cells in semisimple algebraic groups / C

[Berenstein-Fomin-Zelevinsky|
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and coordinate rings of Poisson subvarieties of M, ,(K),
such as GL,(K), double Bruhat cells of GL,(K)
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Consider a cluster algebra AC F = K(y1,...,yn)

Assume F is a Poisson algebra / K

e acluster (z,...,zy) is log-canonical if {z,zj} € Kzjzj Y i,j

e the cluster structure on A is Poisson-compatible iff

all clusters are log-canonical
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e H acts rationally on R by Poisson automorphisms

o All x, are H-eigenvectors
e All 6, are locally nilpotent

e FEach o, given by action of hy € Lie H, with hy - xx # 0

E.G. R = O(Mpnn(K)) with Sklyanin bracket,
H:(Kx)m-i-n, (alv"wam?ﬂlv"'vﬁn)'xij:ai/Binj
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In a Poisson algebra R :

e Poissonideal < R: {R,1} C1I
e Poisson-normal element c€ R: {c,R} CcR

e Poisson-prime element :  Poisson-normal, prime element

Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an
H-Poisson-UFD : Each nonzero H-stable, prime, Poisson ideal

of R contains a Poisson-prime H-eigenvector.

Consequence : All Poisson-normal H-eigenvectors in R are
products of units and Poisson-prime H-eigenvectors,

unique up to ordering and associates.



Initial clusters :

Thm 2. [Yakimov-K.G.] Let R = K[xy,...,xn] be a

Poisson-nilpotent algebra.

3 Poisson-prime H-eigenvectors yx € K[x1,...,xx] Yk >
e All Poisson-prime H-eigenvectors in K[xi,...,xk] are among
the scalar multiples of y1,...,yx .

e (y1,...,yn) is log-canonical  ( {yk,yi1} € Kyxy1 ) -
4 K[}’17~~7)’N] - R c K[ylilwnﬂyﬁl'
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A Poisson-nilpotent algebra R = K|[x1, ..., xn] is symmetric if :
° 5k(Xj)EK[Xj+1,...,Xk_1] Vk>j
o R=K][xy,xy-1,...,x1] is Poisson-nilpotent with
e The same torus H

e (a compatibility condition on scalars)
=y :={7€ Sy |7([1,k]) = aninterval, ¥ k € [2, N]}

If R is a symmetric Poisson-nilpotent algebra, then V 7 € =y :
o R=K[x(1),%(2): - %(n)] is Poisson-nilpotent.
e The corresponding y-elements from Theorem 2 form a

log-canonical cluster (yr.1,¥r2,...,¥r.n).



Thm 3. [Yakimov-K.G.] Let R = K|xi,...,xy] be a symmetric
Poisson-nilpotent algebra (with mild conditions on scalars).
Set ex := { k € [1, N] | yx is not Poisson-prime in R }.
e R is a Poisson-compatible cluster algebra.
e R = the corresponding upper cluster algebra.
e R s generated by the cluster variables y, , for 7 € =y and
k € [1,N].
e Also true for R[y, ' |k €inv], any invC[1,N]) ex.
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Set ex := { k € [1, N] | yx is not Poisson-prime in R }.
e R is a Poisson-compatible cluster algebra.
e R = the corresponding upper cluster algebra.
e R s generated by the cluster variables y, , for 7 € =y and
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e Also true for R[y, ' |k €inv], any invC[1,N]) ex.

Application : The coord rings of double Bruhat cells in semisimple
algebraic groups / C are Poisson-compatible cluster algebras
(with the inital cluster data of [Berenstein-Fomin-Zelevinsky]).



E.G. R = O(Mpn(K)) with Sklyanin bracket and torus as above.

e R is a symmetric Poisson-nilpotent algebra.

e The cluster variables y. , are precisely the solid minors in R :
[/'| J] with |, J = intervals.
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E.G. R = O(Mpn(K)) with Sklyanin bracket and torus as above.

e R is a symmetric Poisson-nilpotent algebra.

e The cluster variables y. , are precisely the solid minors in R :
[/'| J] with |, J = intervals.

Specialize: Take m = n and
Y ={[1,...,i|n+1—i,....n]|1<i<n}U
{[n+1—i,....n|1,...;i]|1<i<n}

Then R[y~! |y € Y] = the coordinate ring of the
open double Bruhat cell in GL,(K), and
R[y~! |y € Y] is a Poisson-compatible cluster algebra.
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