Poisson Clusters and Unique Factorization

Ken Goodearl
University of California at Santa Barbara

[joint work with Milen Yakimov]

Quick cluster algebra sketch (geometric type; coeffs \in field)
$K \subset F=K\left(y_{1}, \ldots, y_{N}\right)=$ rational function field $\underline{\text { clusters }}=$ transcendence bases for F / K initial cluster $=\left(y_{1}, \ldots, y_{N}\right)$
$[1, N] \supseteq \underline{\text { ex }}=$ set of exchangeable indices (others are frozen) $M_{N \times \underline{e x}}(\mathbb{Z}) \ni B=\underline{\text { exchange matrix }}$ (with some conditions)

Quick cluster algebra sketch (geometric type; coeffs \in field)
$K \subset F=K\left(y_{1}, \ldots, y_{N}\right)=$ rational function field $\underline{\text { clusters }}=$ transcendence bases for F / K initial cluster $=\left(y_{1}, \ldots, y_{N}\right)$
$[1, N] \supseteq \underline{\text { ex }}=$ set of exchangeable indices (others are frozen) $M_{N \times \text { ex }}(\mathbb{Z}) \ni B=\underline{\text { exchange matrix }}$ (with some conditions)
mutation in direction $k \in \underline{\underline{e x}}$:
cluster $\left(y_{1}, \ldots, y_{N}\right) \sim \rightsquigarrow$ cluster $\left(y_{1}, \ldots, y_{k-1}, y_{k}^{\prime}, y_{k+1}, \ldots, y_{N}\right)$ and $B \sim \rightsquigarrow B^{\prime} \quad$ (by formulas involving B)

Quick cluster algebra sketch (geometric type; coeffs \in field)
$K \subset F=K\left(y_{1}, \ldots, y_{N}\right)=$ rational function field
$\underline{\text { clusters }}=$ transcendence bases for F / K
initial cluster $=\left(y_{1}, \ldots, y_{N}\right)$
$[1, N] \supseteq \underline{e x}=$ set of exchangeable indices (others are frozen) $M_{N \times \underline{e x}}(\mathbb{Z}) \ni B=\underline{\text { exchange matrix }} \quad$ (with some conditions)
mutation in direction $k \in \underline{\underline{e x}}$:
cluster $\left(y_{1}, \ldots, y_{N}\right) \sim \rightsquigarrow$ cluster $\left(y_{1}, \ldots, y_{k-1}, y_{k}^{\prime}, y_{k+1}, \ldots, y_{N}\right)$ and $B \sim B^{\prime} \quad$ (by formulas involving B)

Iterate mutations in all ex directions
cluster algebra $:=K$-subalgebra of F generated by \bigcup all clusters
from iterated mutations, together with
y_{k}^{-1} for k in some set inv $\subseteq[1, N] \backslash \underline{\text { ex }}$
upper cluster algebra $:=$
\bigcap of $K\left[z_{i}^{ \pm 1} \mid i \in \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]\left[z_{i} \mid i \notin \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]$
for original cluster and one-step mutations in all ex directions
upper cluster algebra $:=$
\bigcap of $K\left[z_{i}^{ \pm 1} \mid i \in \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]\left[z_{i} \mid i \notin \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]$
for original cluster and one-step mutations in all ex directions
Laurent Phenomenon [Fomin-Zelevinsky]
cluster algebra \subseteq upper cluster algebra $\subseteq K\left[y_{1}^{ \pm 1}, \ldots, y_{N}^{ \pm 1}\right]$
upper cluster algebra :=
\bigcap of $K\left[z_{i}^{ \pm 1} \mid i \in \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]\left[z_{i} \mid i \notin \underline{\text { ex }} \sqcup \underline{\text { inv }}\right]$ for original cluster and one-step mutations in all ex directions

Laurent Phenomenon [Fomin-Zelevinsky]

 cluster algebra \subseteq upper cluster algebra $\subseteq K\left[y_{1}^{ \pm 1}, \ldots, y_{N}^{ \pm 1}\right]$Some known cluster algebras: homogeneous coordinate rings of

- Grassmannians $\operatorname{Gr}(m, n) \quad$ [Scott]
- partial flag varieties in semisimple algebraic groups type ADE [Geiß-Leclerc-Schröer]

Some known upper cluster algebras: coordinate rings of

- double Bruhat cells in semisimple algebraic groups / \mathbb{C} [Berenstein-Fomin-Zelevinsky]

Assume $\operatorname{char}(K)=0$ from now on $\quad[K=$ base field $]$
$\underline{\text { Poisson algebra }}=$ a commutative algebra R with Lie bracket $\{-,-\}: R \times R \longrightarrow R$ such that all $\{r,-\}$ are derivations (\uparrow a Poisson bracket)

Assume $\operatorname{char}(K)=0$ from now on $\quad[K=$ base field $]$
$\underline{\text { Poisson algebra }}=$ a commutative algebra R with Lie bracket $\{-,-\}: R \times R \longrightarrow R$ such that all $\{r,-\}$ are derivations (\uparrow a Poisson bracket)
E.G. $\mathcal{O}\left(M_{m, n}(K)\right)$ with the standard Sklyanin bracket :

$$
\begin{array}{rlrl}
\left\{X_{i j}, X_{i l}\right\} & =X_{i j} X_{i l} & & (j<I) \\
\left\{X_{i j}, X_{k j}\right\} & =X_{i j} X_{k j} & (i<k) \\
\left\{X_{i j}, X_{k l}\right\} & = \begin{cases}0 & (i<k, j>I) \\
2 X_{i l} X_{k j} & (i<k, j<I)\end{cases}
\end{array}
$$

Assume $\operatorname{char}(K)=0$ from now on $\quad[K=$ base field $]$
$\underline{\text { Poisson algebra }}=$ a commutative algebra R with Lie bracket $\{-,-\}: R \times R \longrightarrow R$ such that all $\{r,-\}$ are derivations (\uparrow a Poisson bracket)
E.G. $\mathcal{O}\left(M_{m, n}(K)\right)$ with the standard Sklyanin bracket:

$$
\begin{array}{rlrl}
\left\{X_{i j}, X_{i l}\right\} & =X_{i j} X_{i I} & (j<I) \\
\left\{X_{i j}, X_{k j}\right\} & =X_{i j} X_{k j} & (i<k) \\
\left\{X_{i j}, X_{k l}\right\} & = \begin{cases}0 & (i<k, j>I) \\
2 X_{i l} X_{k j} & (i<k, j<I)\end{cases}
\end{array}
$$

and coordinate rings of Poisson subvarieties of $M_{m, n}(K)$,
such as $G L_{n}(K)$, double Bruhat cells of $G L_{n}(K)$

Consider a cluster algebra $A \subseteq F=K\left(y_{1}, \ldots, y_{N}\right)$
Assume F is a Poisson algebra / K

Consider a cluster algebra $A \subseteq F=K\left(y_{1}, \ldots, y_{N}\right)$
Assume F is a Poisson algebra / K

- a cluster $\left(z_{1}, \ldots, z_{N}\right)$ is log-canonical if $\left\{z_{i}, z_{j}\right\} \in K z_{i} z_{j} \forall i, j$
- the cluster structure on A is Poisson-compatible iff all clusters are log-canonical

Poisson polynomial algebra (Poisson version of skew poly ring) $R=K\left[x_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right]_{p} \cdots\left[x_{N} ; \sigma_{N}, \delta_{N}\right]_{p}:$
a polynomial ring $K\left[x_{1}, \ldots, x_{N}\right]$ with Poisson bracket \ni

$$
\left\{x_{k}, r\right\}=\sigma_{k}(r) x_{k}+\delta_{k}(r) \text { for all } r \in K\left[x_{1}, \ldots, x_{k-1}\right]
$$

($\sigma_{k}=$ a Poisson derivation; suitable identities for δ_{k})

Poisson polynomial algebra (Poisson version of skew poly ring)
$R=K\left[x_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right]_{\rho} \cdots\left[x_{N} ; \sigma_{N}, \delta_{N}\right]_{p}:$
a polynomial ring $K\left[x_{1}, \ldots, x_{N}\right]$ with Poisson bracket \ni $\left\{x_{k}, r\right\}=\sigma_{k}(r) x_{k}+\delta_{k}(r)$ for all $r \in K\left[x_{1}, \ldots, x_{k-1}\right]$ ($\sigma_{k}=$ a Poisson derivation; suitable identities for δ_{k})
$R(\uparrow)$ is a Poisson-nilpotent algebra iff $\exists K$-torus $H=\left(K^{\times}\right)^{r} \ni$

- H acts rationally on R by Poisson automorphisms
- All x_{k} are H-eigenvectors
- All δ_{k} are locally nilpotent
- Each σ_{k} given by action of $h_{k} \in \operatorname{Lie} H$, with $h_{k} \cdot x_{k} \neq 0$

Poisson polynomial algebra (Poisson version of skew poly ring)
$R=K\left[x_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right]_{\rho} \cdots\left[x_{N} ; \sigma_{N}, \delta_{N}\right]_{p}:$
a polynomial ring $K\left[x_{1}, \ldots, x_{N}\right]$ with Poisson bracket \ni

$$
\left\{x_{k}, r\right\}=\sigma_{k}(r) x_{k}+\delta_{k}(r) \text { for all } r \in K\left[x_{1}, \ldots, x_{k-1}\right]
$$

($\sigma_{k}=$ a Poisson derivation; suitable identities for δ_{k})
$R(\uparrow)$ is a Poisson-nilpotent algebra iff $\exists K$-torus $H=\left(K^{\times}\right)^{r} \ni$

- H acts rationally on R by Poisson automorphisms
- All x_{k} are H-eigenvectors
- All δ_{k} are locally nilpotent
- Each σ_{k} given by action of $h_{k} \in \operatorname{Lie} H$, with $h_{k} \cdot x_{k} \neq 0$
E.G. $R=\mathcal{O}\left(M_{m, n}(K)\right)$ with Sklyanin bracket,

$$
H=\left(K^{\times}\right)^{m+n}, \quad\left(\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right) \cdot X_{i j}=\alpha_{i} \beta_{j} X_{i j}
$$

In a Poisson algebra R :

- Poisson ideal $I \triangleleft R: \quad\{R, I\} \subseteq I$
- Poisson-normal element $c \in R: \quad\{c, R\} \subseteq c R$
- Poisson-prime element : Poisson-normal, prime element

In a Poisson algebra R :

- Poisson ideal $I \triangleleft R: \quad\{R, I\} \subseteq I$
- Poisson-normal element $c \in R:\{c, R\} \subseteq c R$
- Poisson-prime element : Poisson-normal, prime element

Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H-Poisson-UFD : Each nonzero H-stable, prime, Poisson ideal of R contains a Poisson-prime H-eigenvector.

In a Poisson algebra R :

- Poisson ideal $I \triangleleft R: \quad\{R, I\} \subseteq I$
- Poisson-normal element $c \in R: \quad\{c, R\} \subseteq c R$
- Poisson-prime element : Poisson-normal, prime element

Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H-Poisson-UFD : Each nonzero H-stable, prime, Poisson ideal of R contains a Poisson-prime H-eigenvector.

Consequence: All Poisson-normal H-eigenvectors in R are products of units and Poisson-prime H-eigenvectors, unique up to ordering and associates.

Initial clusters :

Thm 2. [Yakimov-K.G.] Let $R=K\left[x_{1}, \ldots, x_{N}\right]$ be a Poisson-nilpotent algebra.
\exists Poisson-prime H-eigenvectors $y_{k} \in K\left[x_{1}, \ldots, x_{k}\right] \forall k \quad \ni$

- All Poisson-prime H-eigenvectors in $K\left[x_{1}, \ldots, x_{k}\right]$ are among the scalar multiples of y_{1}, \ldots, y_{k}.
- $\left(y_{1}, \ldots, y_{N}\right)$ is log-canonical $\quad\left(\left\{y_{k}, y_{l}\right\} \in K y_{k} y_{l}\right)$.
- $K\left[y_{1}, \ldots, y_{N}\right] \subseteq R \subseteq K\left[y_{1}^{ \pm 1}, \ldots, y_{N}^{ \pm 1}\right]$.

A Poisson-nilpotent algebra $R=K\left[x_{1}, \ldots, x_{N}\right]$ is symmetric if :

- $\delta_{k}\left(x_{j}\right) \in K\left[x_{j+1}, \ldots, x_{k-1}\right] \quad \forall k>j$
- $R=K\left[x_{N}, x_{N-1}, \ldots, x_{1}\right]$ is Poisson-nilpotent with
- The same torus H
- (a compatibility condition on scalars)

A Poisson-nilpotent algebra $R=K\left[x_{1}, \ldots, x_{N}\right]$ is symmetric if:

- $\delta_{k}\left(x_{j}\right) \in K\left[x_{j+1}, \ldots, x_{k-1}\right] \quad \forall k>j$
- $R=K\left[x_{N}, x_{N-1}, \ldots, x_{1}\right]$ is Poisson-nilpotent with
- The same torus H
- (a compatibility condition on scalars)

$$
\bar{\Xi}_{N}:=\left\{\tau \in S_{N} \mid \tau([1, k])=\text { an interval, } \forall k \in[2, N]\right\}
$$

A Poisson-nilpotent algebra $R=K\left[x_{1}, \ldots, x_{N}\right]$ is symmetric if :

- $\delta_{k}\left(x_{j}\right) \in K\left[x_{j+1}, \ldots, x_{k-1}\right] \quad \forall k>j$
- $R=K\left[x_{N}, x_{N-1}, \ldots, x_{1}\right]$ is Poisson-nilpotent with
- The same torus H
- (a compatibility condition on scalars)
$\bar{\Xi}_{N}:=\left\{\tau \in S_{N} \mid \tau([1, k])=\right.$ an interval, $\left.\forall k \in[2, N]\right\}$

If R is a symmetric Poisson-nilpotent algebra, then $\forall \tau \in \Xi_{N}$:

- $R=K\left[x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(N)}\right]$ is Poisson-nilpotent.
- The corresponding y-elements from Theorem 2 form a \log-canonical cluster $\left(y_{\tau, 1}, y_{\tau, 2}, \ldots, y_{\tau, N}\right)$.

Thm 3. [Yakimov-K.G.] Let $R=K\left[x_{1}, \ldots, x_{N}\right]$ be a symmetric Poisson-nilpotent algebra (with mild conditions on scalars). Set ex $:=\left\{k \in[1, N] \mid y_{k}\right.$ is not Poisson-prime in $\left.R\right\}$.

- R is a Poisson-compatible cluster algebra.
- $R=$ the corresponding upper cluster algebra.
- R is generated by the cluster variables $y_{\tau, k}$ for $\tau \in \bar{\Xi}_{N}$ and $k \in[1, N]$.
- Also true for $R\left[y_{k}^{-1} \mid k \in \underline{\text { inv }}\right]$, any $\underline{\text { inv }} \subseteq[1, N] \backslash \underline{\text { ex. }}$.

Thm 3. [Yakimov-K.G.] Let $R=K\left[x_{1}, \ldots, x_{N}\right]$ be a symmetric Poisson-nilpotent algebra (with mild conditions on scalars). Set ex $:=\left\{k \in[1, N] \mid y_{k}\right.$ is not Poisson-prime in $\left.R\right\}$.

- R is a Poisson-compatible cluster algebra.
- $R=$ the corresponding upper cluster algebra.
- R is generated by the cluster variables $y_{\tau, k}$ for $\tau \in \bar{\Xi}_{N}$ and $k \in[1, N]$.
- Also true for $R\left[y_{k}^{-1} \mid k \in \underline{\text { inv }}\right]$, any $\underline{\text { inv }} \subseteq[1, N] \backslash \underline{\text { ex. }}$.

Application: The coord rings of double Bruhat cells in semisimple algebraic groups / \mathbb{C} are Poisson-compatible cluster algebras (with the inital cluster data of [Berenstein-Fomin-Zelevinsky]).
E.G. $R=\mathcal{O}\left(M_{m, n}(K)\right)$ with Sklyanin bracket and torus as above.

- R is a symmetric Poisson-nilpotent algebra.
- The cluster variables $y_{\tau, k}$ are precisely the solid minors in R :
$[I \mid J]$ with $I, J=$ intervals.
E.G. $R=\mathcal{O}\left(M_{m, n}(K)\right)$ with Sklyanin bracket and torus as above.
- R is a symmetric Poisson-nilpotent algebra.
- The cluster variables $y_{\tau, k}$ are precisely the solid minors in R : $[I \mid J]$ with $I, J=$ intervals.

Specialize: Take $m=n$ and

$$
\begin{aligned}
Y:=\{ & {[1, \ldots, i \mid n+1-i, \ldots, n] \mid 1 \leq i \leq n\} \cup } \\
& \{[n+1-i, \ldots, n \mid 1, \ldots, i] \mid 1 \leq i \leq n\}
\end{aligned}
$$

Then $R\left[y^{-1} \mid y \in Y\right]=$ the coordinate ring of the open double Bruhat cell in $G L_{n}(K)$, and $R\left[y^{-1} \mid y \in Y\right]$ is a Poisson-compatible cluster algebra.

