Biclosed sets in representation theory

Al Garver, UQAM (joint with Thomas McConville and Kaveh Mousavand)

Maurice Auslander Distinguished Lectures and International Conference, WHOI

April 25, 2018

- Congruence-uniform lattices L
- Biclosed sets
- Shard intersection order $\Psi(L)$
- Applications

A finite lattice *L* is **congruence-uniform** if it may be constructed by a sequence of interval doublings from the one element lattice.

Theorem (Demonet-Iyama-Reading-Reiten-Thomas, 2017)

The lattice of torsion classes of a representation finite algebra Λ , denoted tors(Λ), is congruence-uniform.

A full, additive subcategory $\mathcal{T} \subset \operatorname{mod}(\Lambda)$ is a **torsion class** if the following hold:

- if $X \twoheadrightarrow Z$ and $X \in \mathcal{T}$, then $Z \in \mathcal{T}$, and
- if $0 \to X \to Z \to Y \to 0$ and $X, Y \in \mathcal{T}$, then $Z \in \mathcal{T}$.

$$\Lambda = \Bbbk (1 \longleftarrow 2)$$

A finite lattice *L* is **congruence-uniform** if it may be constructed by a sequence of interval doublings from the one element lattice.

Theorem (Demonet–Iyama–Reading–Reiten–Thomas, 2017)

The lattice of torsion classes of a representation finite algebra Λ , denoted tors(Λ), is congruence-uniform.

A full, additive subcategory $\mathcal{T} \subset \operatorname{mod}(\Lambda)$ is a **torsion class** if the following hold:

• if
$$X \rightarrow Z$$
 and $X \in \mathcal{T}$, then $Z \in \mathcal{T}$, and

• if
$$0 \to X \to Z \to Y \to 0$$
 and $X, Y \in \mathcal{T}$, then $Z \in \mathcal{T}$.

$$\Lambda = \Bbbk (1 \longleftarrow 2)$$

Goal: Find other examples of congruence-uniform lattices appearing in representation theory.

Assume $\Lambda = \mathbb{k}Q/I$ is a **gentle algebra**. The indecomposable Λ -modules are **string** and **band modules** [Wald–Waschbusch, 1985]. A word $w = \gamma_d^{\epsilon_d} \cdots \gamma_1^{\epsilon_1}$ with $\gamma_i \in Q_1$ and $\epsilon_i \in \{\pm 1\}$ is a **string** in Λ if

- w defines an irredundant walk in Q, and
- w and $w^{-1} := \gamma_1^{-\epsilon_1} \cdots \gamma_d^{-\epsilon_d}$ do not contain a subpath in *I*.

Example

 $\operatorname{Str}(\Lambda) := \{\operatorname{strings} \operatorname{in} \Lambda\}$

 $B \subset \text{Str}(\Lambda)$ is closed if $w_1, w_2 \in B, w_1 \alpha^{\pm 1} w_2 \in \text{Str}(\Lambda)$ for some $\alpha \in Q_1 \implies w_1 \alpha^{\pm 1} w_2 \in B$ $Bic(\Lambda) := {biclosed sets} = {B \subset Str(\Lambda) : B, Str(\Lambda) \setminus B are closed}$ Example $Str(\Lambda)$ $\Lambda = \mathbb{k}(1 \xleftarrow{\alpha} 2)$ $Str(\Lambda) = \{1, 2, \alpha\}$ $1, \alpha$ $Bic(1 \leftarrow \alpha 2) =$ 0

Exercise

The weak order on \mathfrak{S}_{n+1} is isomorphic to $Bic(1 \leftarrow 2 \leftarrow \cdots \leftarrow n)$.

Theorem (Palu–Pilaud–Plamondon, 2017)

If Λ is gentle and $|Str(\Lambda)| < \infty$, then $Bic(\Lambda)$ is congruence-uniform.

Why study biclosed sets?

- The poset of finite biclosed sets of positive roots is isomorphic to the weak order on the corresponding Coxeter group [Kostant, 1961].
- The biclosed sets in this talk were introduced to understand the lattice structure on a **lattice quotient** of biclosed sets [McConville, 2015], [Garver–McConville, 2015].
- A geometric analogue of our lattice quotient map had already been studied for generalized permutahedra and generalized associahedra [Hohlweg–Lange–Thomas, 2007].

Lattice quotient maps

 $\Lambda = \mathbb{k} \left(\begin{array}{c} 1 \xrightarrow{\alpha} \\ \overbrace{\beta} \\ \end{array} \right) / \langle \alpha \beta, \beta \alpha \rangle \text{ (any gentle algebra can be expressed as} \\ \mathbb{k}Q/I \text{ where } I = \langle \alpha_1 \beta_1, \dots, \alpha_k \beta_k \rangle \text{)} \\ \Pi(\Lambda) = \mathbb{k} \left(\begin{array}{c} 1 \xrightarrow{\frac{\alpha^*}{\alpha}} \\ \overbrace{\beta^*} \\ \overbrace{\beta^*} \\ \end{array} \right) / \langle \alpha \beta, \beta \alpha, \beta^* \alpha^*, \alpha^* \beta^* \rangle \\ \overbrace{\text{Str}} \\ \widetilde{\text{Str}}(\Lambda) := \{ \text{strings } \widetilde{w} \text{ in } \Pi(\Lambda) \text{ mapping to } \text{Str}(\Lambda) \text{ via } (\alpha^*)^{\pm 1} \mapsto \alpha^{\pm 1} \} \end{array}$

Example

String
$$\alpha^{-1}\alpha^* \in \operatorname{Str}(\Pi(\Lambda))$$
, but $\alpha^{-1}\alpha^* \notin \widetilde{\operatorname{Str}}(\Lambda)$ since $\alpha^{-1}\alpha \notin \operatorname{Str}(\Lambda)$.

Theorem (G.–McConville–Mousavand)

If Λ is a gentle algebra with no **ouroboros**, then there is an isomorphism of posets $Bic(\Lambda) \cong \{\mathcal{T} \cap \mathcal{M}_{\Lambda} : \mathcal{T} \in tors(\Pi(\Lambda))\}$ where

$$\mathcal{M}_{\Lambda} := add \left(\bigoplus_{\widetilde{w} \in \widetilde{Str}(\Lambda)} M(\widetilde{w}) \right).$$

Theorem (G.-McConville-Mousavand)

If Λ is a gentle algebra with no **ouroboros**, then there is an isomorphism of posets $Bic(\Lambda) \cong \{\mathcal{T} \cap \mathcal{M}_{\Lambda} : \mathcal{T} \in tors(\Pi(\Lambda))\}$. We refer to the categories $\mathcal{T} \cap \mathcal{M}_{\Lambda}$ as **torsion shadows** and denote the lattice of torsion shadows by torshad(Λ).

A string $w \in Str(\Lambda)$ is an **ouroboros** if it starts and ends at the same vertex.

Example

String $\beta \alpha$ is an our oboros in

$$\Lambda = \mathbb{k} \left(\begin{array}{c} 1 \xrightarrow{\alpha} \\ \swarrow \\ \end{array} \right) / \langle \alpha \beta \rangle.$$

Proposition (G.-McConville-Mousavand)

A gentle algebra Λ has no ouroboros if and only if every indecomposable Λ -module M is a **brick** (i.e., $End_{\Lambda}(M)$ is a division algebra). The isomorphism is given by $B \mapsto \operatorname{add}(\bigoplus_{\widetilde{w}} M(\widetilde{w}))$ where

- $\widetilde{w} \in \widetilde{\operatorname{Str}}(\Lambda)$ and
- if $M(\widetilde{w}) \twoheadrightarrow M(\widetilde{u})$, then \widetilde{u} maps to $u \in B$ via $(\alpha^*)^{\pm 1} \mapsto \alpha^{\pm 1}$.

Congruence-uniformity is equivalent to a function $\lambda : Cov(L) \rightarrow P$ with certain properties. Say λ is a **CU-labeling** of *L*.

- *L* a congruence-uniform lattice,
- $\lambda : \operatorname{Cov}(L) \to P$ a CU-labeling,

•
$$x \in L$$
 and covers $y_1, \ldots y_k \in L$,

•
$$\lambda_{\downarrow}(x) := \{\lambda(y_i, x)\}_{i=1}^k$$

The shard intersection order of L, denoted $\Psi(L)$, is the collection of sets

$$\psi(x) := \left\{ \text{labels on covering relations in } \left[\bigwedge_{i=1}^{k} y_i, x \right] \right\}$$

partially ordered by inclusion.

Goal: Describe $\Psi(torshad(\Lambda))$ using the representation theory of Λ . Here the CU-labeling is given by

$$\begin{array}{ccc} \lambda: \operatorname{Cov}(\operatorname{torshad}(\Lambda)) & \longrightarrow & \mathcal{M}_{\Lambda} \\ (\mathcal{T}_1 \cap \mathcal{M}_{\Lambda}, \mathcal{T}_2 \cap \mathcal{M}_{\Lambda}) & \longmapsto & M(\widetilde{w}) \end{array}$$

where $\widetilde{w} \in \text{Str}(\Pi(\Lambda))$ is the unique string satisfying

$$\operatorname{ind}(\mathcal{T}_2 \cap \mathcal{M}_\Lambda) = \operatorname{ind}(\mathcal{T}_1 \cap \mathcal{M}_\Lambda) \cup \{M(\widetilde{w})\}$$

Recall that a full, additive subcategory $\mathcal{W} \subset \operatorname{mod}(\Lambda)$ is wide if

- W is abelian and
- if $0 \to X \to Z \to Y \to 0$ with $X, Y \in \mathcal{W}$, then $Z \in \mathcal{W}$.

Theorem (G.–McConville–Mousavand)

If Λ is a gentle algebra with no ouroboros, then there is an isomorphism $\Psi(torshad(\Lambda)) \cong \{\mathcal{W} \cap \mathcal{M}_{\Lambda} : \mathcal{W} \in wide(\Pi(\Lambda))\}.$

Theorem (G.–McConville–Mousavand)

If Λ is a gentle algebra with no ouroboros, then there is an isomorphism $\Psi(torshad(\Lambda)) \cong \{W \cap \mathcal{M}_{\Lambda} : W \in wide(\Pi(\Lambda))\}$. We refer to the categories $W \cap \mathcal{M}_{\Lambda}$ as wide shadows and denote the lattice of wide shadows by widshad(Λ).

Idea of the proof

- For any $M(\widetilde{w}) \in \mathcal{M}_{\Lambda}, M(\widetilde{w})$ is a brick.
- For any distinct $M(\widetilde{w}_1), M(\widetilde{w}_2) \in \lambda_{\downarrow}(\mathcal{T} \cap \mathcal{M}_{\Lambda})$ where $\mathcal{T} \cap \mathcal{M}_{\Lambda} \in \text{torshad}(\Lambda)$, one has

 $\operatorname{Hom}_{\Pi(\Lambda)}(M(\widetilde{w}_i), M(\widetilde{w}_j)) = 0.$

• By a theorem of Ringel, the category

 $filt(\lambda_{\downarrow}(\mathcal{T} \cap \mathcal{M}_{\Lambda}))$

consisting of modules *X* with a filtration $0 = X_0 \subset X_1 \subset \cdots \subset X_k = X$ such that $X_i/X_{i-1} \in \lambda_{\downarrow}(\mathcal{T} \cap \mathcal{M}_{\Lambda})$ is wide.

• Show that

 $\mathrm{add}(\oplus M(\widetilde{w}): M(\widetilde{w}) \in \psi(\mathcal{T} \cap \mathcal{M}_{\Lambda})) = filt(\lambda_{\downarrow}(\mathcal{T} \cap \mathcal{M}_{\Lambda})) \cap \mathcal{M}_{\Lambda}.$

Theorem (Marks-Št'ovíček, 2015)

When Λ is an algebra of finite representation type, there is a bijection between torsion classes and wide subcategories given by

$$\begin{array}{cccc} tors(\Lambda) & \longrightarrow & wide(\Lambda) \\ \mathcal{T} & \longmapsto & \{X \in \mathcal{T} : (g : Y \to X) \in \mathcal{T}, ker(g) \in \mathcal{T}\} \\ filt(gen(\mathcal{W})) & \longleftarrow & \mathcal{W}. \end{array}$$

Corollary

There is a bijection from torsion shadows to wide shadows given by

$$\begin{array}{cccc} torshad(\Lambda) & \longrightarrow & widshad(\Lambda) \\ \mathcal{T} \cap \mathcal{M}_{\Lambda} & \longmapsto & add(\oplus M(\widetilde{w}) : M(\widetilde{w}) \in \psi(\mathcal{T} \cap \mathcal{M}_{\Lambda})) \\ filt(gen(\mathcal{W})) \cap \mathcal{M}_{\Lambda} & \longleftarrow & \mathcal{W} \cap \mathcal{M}_{\Lambda}. \end{array}$$

Corollary

The poset widshad(Λ) *is a lattice.*

Proof.

- The category \mathcal{M}_{Λ} is the unique maximal element.
- The poset widshad(Λ) is closed under intersections
 (W₁ ∩ M_Λ) ∩ (W₂ ∩ M_Λ) = (W₁ ∩ W₂) ∩ M_Λ.
- The poset widshad(Λ) is finite.

Problem (Reading, 2016)

For which class of finite lattices L is $\Psi(L)$ a lattice? (If L is congruence-uniform, then $\Psi(L)$ is a partial order.)

