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Definition and Motivation

Let R be a commutative Noetherian ring. The nth cohomology annihilator
ideal of R is defined to be

M

for n ≥ 1.
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Let R be a commutative Noetherian ring. The nth cohomology annihilator
ideal of R is defined to be

annR ExtnR(M,N)
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Definition and Motivation

Let R be a commutative Noetherian ring. The nth cohomology annihilator
ideal of R is defined to be

can(R) =
⋂

M,N∈modR

annR ExtnR(M,N)

for n ≥ 1.

Definition

The cohomology annihilator ideal is the union

ca(R) =
⋃
n≥1

can(R).
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For any n ≥ 1 and M,N ∈ modR, we have

Extn+1
R (M,N) ∼= ExtnR(ΩM,N)

where ΩM is a syzygy of M.

Therefore, we have an increasing chain

ca1(R) ⊆ ca2(R) ⊆ . . . ⊆ can(R) ⊆ can+1(R) ⊆ . . .

As R is Noetherian, we have

ca(R) = cas(R)

for s � 0.
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Finite Global Dimension

Suppose that R has finite global dimension d .

Extd+1
R (M,N) = 0 for all M,N ∈ modR

annR Extd+1
R (M,N) = R for all M,N ∈ modR

Therefore,

ca(R) = R.

So, this ideal is only interesting in the case of infinite global
dimension.
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Özgür Esentepe (University of Toronto) Annihilation of Cohomology over Curve Singularities April 29, 2018 10 / 33



Finite Global Dimension

Suppose that R has finite global dimension d .

Extd+1
R (M,N) = 0 for all M,N ∈ modR

annR Extd+1
R (M,N) = R for all M,N ∈ modR

Therefore,

ca(R) = R.

So, this ideal is only interesting in the case of infinite global
dimension.
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In fact, the cohomology annihilator is closely related to the singularities of
the corresponding geometric object.

Theorem (Iyengar-Takahashi)

Let R be an equicharacteristic excellent local ring or a localization of a
finitely generated algebra over a field - of Krull dimension d. Then, the
vanishing locus of ca(R) is equal to the singular locus of R.

Theorem (Iyengar-Takahashi)

Let R be an equicharacteristic complete local ring or an affine algebra over
a field - of Krull dimension d. Then, the Jacobian ideal of R is contained
in ca(R).
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An Example

Let k be an algebraically closed field of characteristic zero, f = x3− y5 and

R =
k[[x , y ]]

(f )
.

Then, the Jacobian and the cohomology annihilator ideals are

Jac(R) = (x2, y4) (= (∂x f , ∂y f ))

ca(R) = (x2, xy , y3)

(Details on computations later.)
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Ragnar’s Observation

Jac(R) = (x2, y4) ca(R) = (x2, xy , y3)

1

x y

xy y2

xy2 y3

xy3

This is how the Jacobian algebra R/ Jac(R) looks like.
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Ragnar’s Observation

Jac(R) = (x2, y4) ca(R) = (x2, xy , y3)

1

x y

xy y2

xy2 y3

xy3

This is how R/ ca(R) looks like inside the Jacobian algebra.

8 = 2× 4.

That is, the vector space dimensions have the relation

dimk(R/ Jac(R)) = 2× dimk(R/ ca(R)).
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Ragnar’s Observation

The same phenomenon can also be seen in the following examples:

k[[x , y ]]/(x2 − yn) (n odd),

k[[x , y ]]/(x3 − y4),

k[[x , y , z ]]/(x3 + y3 + z3 − λxyz) (λ3 6= 27).

Why? This was the question Ragnar asked me.
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Figure: (Up to isomorphism of pictures) From left to right: Ragnar Buchweitz,
Louis-Philippe Thibault, Vincent Gelinas, Ben Briggs and me.
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The Singularity Category

From now on, we will assume that R is a commutative Gorenstein ring of
Krull dimension d .

MCM(R) : stable category of maximal Cohen-Macaulay modules.

Dsg(R) : the singularity category - the bounded derived category
modulo perfect complexes.

Theorem (Buchweitz)

MCM(R) ∼= Dsg(R) as triangulated categories.

For M ∈ modR, we denote by Mst the maximal Cohen-Macaulay
approximation of M.
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Stable Ext

The usual Ext groups:

ExtnR(M,N) = HomDb(R)(M,N[n]).

The stable Ext groups are defined similarly:

ExtnR(M,N) = HomDsg(R)(M,N[n]).

For any M,N ∈ mod(R), one has

ExtnR(M,N) = ExtnR(M,N) for any n > d ,

ExtnR(M,N) = HomR(ΩnMst,Nst) for any n ∈ Z.
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Back to the Problem

Lemma (?)

Let R be a commutative Gorenstein ring. Then,

ca(R) =
⋂

M∈MCM(R)

annR(M)

where annR(M) = ann EndR(M) is the stable annihilator of M.
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Proof.

We know that ca(R) = cas(R) for s � 0. Pick s > d . We have

ExtsR(M,N) = ExtsR(M,N) = HomR(ΩsMst,Nst)

So,

ca(R) =
⋂

M,N∈MCM(R)

annR HomR(ΩsM,N)

=
⋂

M,N∈MCM(R)

annR HomR(M,N)

=
⋂

M∈MCM(R)

annR EndR(M)
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Remarks

Note that r ∈ annR(M) iff multiplication with r factors through a
projective R-module.

Notation annR(M) := annR EndR(M). Because for any commutative
ring A and any module X one has annA(X ) = annA EndA(X ).

This description is useful in computations. Indeed, one can compute
cohomology annihilator over a hypersurface ring using matrix
factorizations.

In terms of matrix factorizations, r is in the cohomology annihilator if
and only if multiplication with r is null-homotopic for every matrix
factorization.
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Özgür Esentepe (University of Toronto) Annihilation of Cohomology over Curve Singularities April 29, 2018 22 / 33



Remarks

Note that r ∈ annR(M) iff multiplication with r factors through a
projective R-module.

Notation annR(M) := annR EndR(M). Because for any commutative
ring A and any module X one has annA(X ) = annA EndA(X ).

This description is useful in computations. Indeed, one can compute
cohomology annihilator over a hypersurface ring using matrix
factorizations.

In terms of matrix factorizations, r is in the cohomology annihilator if
and only if multiplication with r is null-homotopic for every matrix
factorization.
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Remarks - II

With this description, it is easy to show that if r stably annihilates M,
then it annihilates every object in the smallest subcategory of
MCM(R) containing M and closed under finite direct sums, direct
summands, syzygies, cosyzygies and duals. We will revisit this later.

So,

annR(M) = annR

⊕
n∈Z

Hom(ΩnM,M)
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The Coin Problem

Question. We know that we can write any integer as an integer linear
combination of 3 and 5(Euclidean algorithm). Which numbers can we
write using only non-negative linear combinations?

0 1 2

3 4 5

6 7 8

9 10 11

any number after 7 can be obtained this way. On the other hand, notice
that we have

0 1 2 3

7 6 5 4
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0 1 2 3

7 6 5 4

For any two integers a, b with a + b = 7; we have exactly one of a
and b in the semigroup generated by 3 and 5.

Every number after 7 is in the semigroup and every number before 0
is not.

The only interesting part is between 0 and 7.

There are 8 numbers here and exactly 4 of them are in the semigroup.

8 = 2× 4.
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Conductor

Let T = k[[t3, t5]] be the corresponding semigroup algebra - which is
isomorphic to R = k[[x , y ]]/(x3 − y5).

“Ragnar! I think the cohomology annihilator of R is the image of the
ideal in T generated by the powers of t which come after the last
number that we can not write as a linear combination of 3 and 5!”.

“That ideal has a name: the conductor ideal! And you should look up
Wang’s paper.”
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Wang’s paper.”
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Conductor

Let R be a commutative Noetherian ring and let R̄ be its normalization:
the integral closure of R inside its total quotient ring. Then, the conductor
ideal co(R) is

co(R) =
{
r ∈ R̄ : r R̄ ⊆ R

}
co(R) is the largest subset of R̄ which is both an ideal of R and R̄.

Theorem (Wang)

Let R be a one-dimensional reduced complete Noetherian local ring.
Then, co(R) ⊆ annR Ext2(M,N) for any M,N ∈ modR.

In other words, for a one-dimensional reduced complete Noetherian local
ring R ; co(R) ⊆ ca(R).
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Conductor

Lemma

Let R be any Japanese ring. Then,

EndR(R̄) ∼=
R̄

coR

as R-modules via the isomorphism f 7→ f (1).

If R is a one or two dimensional Gorenstein ring, then R̄ is maximal
Cohen-Macaulay over R.

Hence,

ca(R) ⊆ annR R̄ = annR
R̄

coR
= co(R)
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Theorem (E.)

Let R be a one-dimensional complete local Gorenstein ring. Then,

ca(R) ⊆ co(R).

If R is also reduced then there is equality.
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Back to Ragnar’s Observation

Ragnar’s observation is now explained via the famous Milnor-Jung formula
for algebraic curves:

Theorem (Milnor-Jung Formula)

Let C be a reduced irreducible curve with an isolated singular point. Let R
be the coordinate ring of C - localized at this singular point. Then,

dimk
R

Jac(R)
= 2 dimk

R

co(R)
− r + 1

where r is the number of branches at the singular point.
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Özgür Esentepe (University of Toronto) Annihilation of Cohomology over Curve Singularities April 29, 2018 30 / 33



Stably Annihilating an Algebra of Finite Global Dimension

Are there other examples?

Example

Let G be a finite subgroup of SL(2,C), S = k[[x , y ]] and R = SG be the
invariant ring. Then,

ca(R) = annR(S) = annR(S ∗ G )

In general?
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Theorem (E.)

Let R be a commutative Gorenstein ring and Λ be a finite R-algebra of
finite global dimension. Suppose that R is a direct summand in Λ. Then,

annR EndDsg (R)(Λ)gldim Λ+1 ⊆ ca(R) ⊆ annR EndDsg (R)(Λ)

If, in addition, Λ ∈ MCM(R) then

annR(Λ)gldim Λ+1 ⊆ ca(R) ⊆ annR(Λ)

In particular, up to radicals, in order to annihilate the singularity category,
it is enough to stably annihilate a noncommutative resolution.
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Thank you!
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