# Annihilation of Cohomology over Curve Singularities 

Maurice Auslander International Conference

Özgür Esentepe<br>University of Toronto

April 29, 2018


## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

$$
M
$$

for $n \geq 1$.

## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

M N

for $n \geq 1$.

## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

$$
\operatorname{Ext}_{R}^{n}(M, N)
$$

for $n \geq 1$.

## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

$$
\operatorname{ann}_{R} \operatorname{Ext}_{R}^{n}(M, N)
$$

for $n \geq 1$.

## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

$$
\operatorname{ca}^{n}(R)=\bigcap_{M, N \in \bmod R} \operatorname{ann}_{R} \operatorname{Ext}_{R}^{n}(M, N)
$$

for $n \geq 1$.

## Definition and Motivation

Let $R$ be a commutative Noetherian ring. The $n$th cohomology annihilator ideal of $R$ is defined to be

$$
\operatorname{ca}^{n}(R)=\bigcap_{M, N \in \bmod R} \operatorname{ann}_{R} \operatorname{Ext}_{R}^{n}(M, N)
$$

for $n \geq 1$.

## Definition

The cohomology annihilator ideal is the union

$$
\mathrm{ca}(R)=\bigcup_{n \geq 1} \mathrm{ca}^{n}(R)
$$

- For any $n \geq 1$ and $M, N \in \bmod R$, we have

$$
\operatorname{Ext}_{R}^{n+1}(M, N) \cong \operatorname{Ext}_{R}^{n}(\Omega M, N)
$$

where $\Omega M$ is a syzygy of $M$.

- For any $n \geq 1$ and $M, N \in \bmod R$, we have

$$
\operatorname{Ext}_{R}^{n+1}(M, N) \cong \operatorname{Ext}_{R}^{n}(\Omega M, N)
$$

where $\Omega M$ is a syzygy of $M$.

- Therefore, we have an increasing chain

$$
\mathrm{ca}^{1}(R) \subseteq \mathrm{ca}^{2}(R) \subseteq \ldots \subseteq \mathrm{ca}^{n}(R) \subseteq \mathrm{ca}^{n+1}(R) \subseteq \ldots
$$

- For any $n \geq 1$ and $M, N \in \bmod R$, we have

$$
\operatorname{Ext}_{R}^{n+1}(M, N) \cong \operatorname{Ext}_{R}^{n}(\Omega M, N)
$$

where $\Omega M$ is a syzygy of $M$.

- Therefore, we have an increasing chain

$$
\mathrm{ca}^{1}(R) \subseteq \mathrm{ca}^{2}(R) \subseteq \ldots \subseteq \mathrm{ca}^{n}(R) \subseteq \mathrm{ca}^{n+1}(R) \subseteq \ldots
$$

- As $R$ is Noetherian, we have

$$
\mathrm{ca}(R)=\mathrm{ca}^{\mathrm{s}}(R)
$$

for $s \gg 0$.

## Finite Global Dimension

- Suppose that $R$ has finite global dimension $d$.


## Finite Global Dimension

- Suppose that $R$ has finite global dimension $d$.

$$
\operatorname{Ext}_{R}^{d+1}(M, N)=0 \quad \text { for all } M, N \in \bmod R
$$

## Finite Global Dimension

- Suppose that $R$ has finite global dimension $d$.

$$
\operatorname{Ext}_{R}^{d+1}(M, N)=0 \quad \text { for all } M, N \in \bmod R
$$

$$
\operatorname{ann}_{R} \operatorname{Ext}_{R}^{d+1}(M, N)=R \quad \text { for all } M, N \in \bmod R
$$

## Finite Global Dimension

- Suppose that $R$ has finite global dimension $d$.

$$
\begin{array}{cc}
\operatorname{Ext}_{R}^{d+1}(M, N)=0 & \text { for all } M, N \in \bmod R \\
\operatorname{ann}_{R} \operatorname{Ext}_{R}^{d+1}(M, N)=R & \text { for all } M, N \in \bmod R
\end{array}
$$

- Therefore,

$$
\mathrm{ca}(R)=R
$$

## Finite Global Dimension

- Suppose that $R$ has finite global dimension $d$.

$$
\operatorname{Ext}_{R}^{d+1}(M, N)=0 \quad \text { for all } M, N \in \bmod R
$$

$$
\operatorname{ann}_{R} \operatorname{Ext}_{R}^{d+1}(M, N)=R \quad \text { for all } M, N \in \bmod R
$$

- Therefore,

$$
\operatorname{ca}(R)=R
$$

- So, this ideal is only interesting in the case of infinite global dimension.

In fact, the cohomology annihilator is closely related to the singularities of the corresponding geometric object.

In fact, the cohomology annihilator is closely related to the singularities of the corresponding geometric object.

## Theorem (lyengar-Takahashi)

Let $R$ be an equicharacteristic excellent local ring or a localization of a finitely generated algebra over a field - of Krull dimension d. Then, the vanishing locus of $\mathrm{ca}(R)$ is equal to the singular locus of $R$.

In fact, the cohomology annihilator is closely related to the singularities of the corresponding geometric object.

## Theorem (lyengar-Takahashi)

Let $R$ be an equicharacteristic excellent local ring or a localization of a finitely generated algebra over a field - of Krull dimension d. Then, the vanishing locus of $\mathrm{ca}(R)$ is equal to the singular locus of $R$.

## Theorem (lyengar-Takahashi)

Let $R$ be an equicharacteristic complete local ring or an affine algebra over a field - of Krull dimension $d$. Then, the Jacobian ideal of $R$ is contained in $\mathrm{ca}(R)$.

In fact, the cohomology annihilator is closely related to the singularities of the corresponding geometric object.

## Theorem (lyengar-Takahashi)

Let $R$ be an equicharacteristic excellent local ring or a localization of a finitely generated algebra over a field - of Krull dimension d. Then, the vanishing locus of $\mathrm{ca}(R)$ is equal to the singular locus of $R$.

## Theorem (lyengar-Takahashi)

Let $R$ be an equicharacteristic complete local ring or an affine algebra over a field - of Krull dimension $d$. Then, the Jacobian ideal of $R$ is contained in $\mathrm{ca}(R)$.

## An Example

Let $k$ be an algebraically closed field of characteristic zero, $f=x^{3}-y^{5}$ and

$$
R=\frac{k \llbracket x, y \rrbracket}{(f)} .
$$

Then, the Jacobian and the cohomology annihilator ideals are

$$
\begin{array}{rlr}
\operatorname{Jac}(R) & =\left(x^{2}, y^{4}\right) \quad\left(=\left(\partial_{x} f, \partial_{y} f\right)\right) \\
\operatorname{ca}(R) & =\left(x^{2}, x y, y^{3}\right)
\end{array}
$$

(Details on computations later.)

## Ragnar's Observation

$$
\begin{array}{cc}
\operatorname{Jac}(R)=\left(x^{2}, y^{4}\right) & \operatorname{ca}(R)=\left(x^{2}, x y, y^{3}\right) \\
1 \\
x \quad y \\
x y \quad y^{2} \\
x y^{2} y^{3} \\
x y^{3}
\end{array}
$$

This is how the Jacobian algebra $R / \operatorname{Jac}(R)$ looks like.

## Ragnar's Observation

$$
\begin{array}{cc}
\operatorname{Jac}(R)=\left(x^{2}, y^{4}\right) & \operatorname{ca}(R)=\left(x^{2}, x y, y^{3}\right) \\
1 \\
x \quad y \\
x y \quad y^{2} \\
x y^{2} y^{3} \\
x y^{3}
\end{array}
$$

This is how $R / \mathrm{ca}(R)$ looks like inside the Jacobian algebra.

## Ragnar's Observation

$$
\operatorname{Jac}(R)=\left(x^{2}, y^{4}\right) \quad \mathrm{ca}(R)=\left(x^{2}, x y, y^{3}\right)
$$

\[

\]

This is how $R / \mathrm{ca}(R)$ looks like inside the Jacobian algebra.

## Ragnar's Observation

$$
\operatorname{Jac}(R)=\left(x^{2}, y^{4}\right) \quad \mathrm{ca}(R)=\left(x^{2}, x y, y^{3}\right)
$$

\[

\]

This is how $R / \mathrm{ca}(R)$ looks like inside the Jacobian algebra.

$$
8=2 \times 4
$$

## Ragnar's Observation

$$
\operatorname{Jac}(R)=\left(x^{2}, y^{4}\right) \quad \mathrm{ca}(R)=\left(x^{2}, x y, y^{3}\right)
$$

\[

\]

This is how $R / \mathrm{ca}(R)$ looks like inside the Jacobian algebra.

$$
8=2 \times 4
$$

That is, the vector space dimensions have the relation

$$
\operatorname{dim}_{k}(R / \operatorname{Jac}(R))=2 \times \operatorname{dim}_{k}(R / \operatorname{ca}(R))
$$

## Ragnar's Observation

- The same phenomenon can also be seen in the following examples:

$$
\begin{aligned}
& k \llbracket x, y \rrbracket /\left(x^{2}-y^{n}\right) \quad(n \text { odd }), \\
& k \llbracket x, y \rrbracket /\left(x^{3}-y^{4}\right), \\
& k \llbracket x, y, z \rrbracket /\left(x^{3}+y^{3}+z^{3}-\lambda x y z\right) \quad\left(\lambda^{3} \neq 27\right) .
\end{aligned}
$$

## Ragnar's Observation

- The same phenomenon can also be seen in the following examples:

$$
\begin{aligned}
& k \llbracket x, y \rrbracket /\left(x^{2}-y^{n}\right) \quad(n \text { odd }), \\
& k \llbracket x, y \rrbracket /\left(x^{3}-y^{4}\right), \\
& k \llbracket x, y, z \rrbracket /\left(x^{3}+y^{3}+z^{3}-\lambda x y z\right) \quad\left(\lambda^{3} \neq 27\right) .
\end{aligned}
$$

- Why? This was the question Ragnar asked me.


Figure: (Up to isomorphism of pictures) From left to right: Ragnar Buchweitz, Louis-Philippe Thibault, Vincent Gelinas, Ben Briggs and me.

## The Singularity Category

From now on, we will assume that $R$ is a commutative Gorenstein ring of Krull dimension $d$.

- MCM $(R)$ : stable category of maximal Cohen-Macaulay modules.
- $D_{\mathrm{sg}}(R)$ : the singularity category - the bounded derived category modulo perfect complexes.


## The Singularity Category

From now on, we will assume that $R$ is a commutative Gorenstein ring of Krull dimension $d$.

- MCM $(R)$ : stable category of maximal Cohen-Macaulay modules.
- $D_{\mathrm{sg}}(R)$ : the singularity category - the bounded derived category modulo perfect complexes.


## Theorem (Buchweitz)

MCM $(R) \cong D_{\mathrm{sg}}(R)$ as triangulated categories.

## The Singularity Category

From now on, we will assume that $R$ is a commutative Gorenstein ring of Krull dimension $d$.

- MCM $(R)$ : stable category of maximal Cohen-Macaulay modules.
- $D_{\mathrm{sg}}(R)$ : the singularity category - the bounded derived category modulo perfect complexes.


## Theorem (Buchweitz) <br> MCM $(R) \cong D_{\mathrm{sg}}(R)$ as triangulated categories.

- For $M \in \bmod R$, we denote by $M^{\text {st }}$ the maximal Cohen-Macaulay approximation of $M$.


## Stable Ext

- The usual Ext groups:

$$
\operatorname{Ext}_{R}^{n}(M, N)=\operatorname{Hom}_{D^{b}(R)}(M, N[n])
$$

## Stable Ext

- The usual Ext groups:

$$
\operatorname{Ext}_{R}^{n}(M, N)=\operatorname{Hom}_{D^{b}(R)}(M, N[n])
$$

- The stable Ext groups are defined similarly:

$$
\underline{\operatorname{Ext}}_{R}^{n}(M, N)=\operatorname{Hom}_{D_{\mathrm{sg}}(R)}(M, N[n])
$$

## Stable Ext

- The usual Ext groups:

$$
\operatorname{Ext}_{R}^{n}(M, N)=\operatorname{Hom}_{D^{b}(R)}(M, N[n])
$$

- The stable Ext groups are defined similarly:

$$
\underline{\operatorname{Ext}}_{R}^{n}(M, N)=\operatorname{Hom}_{D_{\mathrm{sg}}(R)}(M, N[n])
$$

- For any $M, N \in \bmod (R)$, one has

$$
\begin{aligned}
& \underline{\operatorname{Ext}}_{R}^{n}(M, N)=\operatorname{Ext}_{R}^{n}(M, N) \text { for any } n>d, \\
& \underline{\operatorname{Ext}}_{R}^{n}(M, N)=\underline{\operatorname{Hom}_{R}\left(\Omega^{n} M^{\text {st }}, N^{\text {st }}\right) \text { for any } n \in \mathbb{Z}} .
\end{aligned}
$$

## Stable Ext

- The usual Ext groups:

$$
\operatorname{Ext}_{R}^{n}(M, N)=\operatorname{Hom}_{D^{b}(R)}(M, N[n])
$$

- The stable Ext groups are defined similarly:

$$
\underline{\operatorname{Ext}}_{R}^{n}(M, N)=\operatorname{Hom}_{D_{\mathrm{sg}}(R)}(M, N[n])
$$

- For any $M, N \in \bmod (R)$, one has

$$
\begin{aligned}
& \underline{\operatorname{Ext}}_{R}^{n}(M, N)=\operatorname{Ext}_{R}^{n}(M, N) \quad \text { for any } n>d, \\
& \underline{\operatorname{Ext}}_{R}^{n}(M, N)=\underline{\operatorname{Hom}_{R}}\left(\Omega^{n} M^{\text {st }}, N^{\text {st }}\right) \text { for any } n \in \mathbb{Z} .
\end{aligned}
$$

## Back to the Problem

## Lemma (?)

Let $R$ be a commutative Gorenstein ring. Then,

$$
\mathrm{ca}(R)=\bigcap_{M \in M C M(R)} \underline{\mathrm{ann}}_{R}(M)
$$

where $\underline{\operatorname{ann}}_{R}(M)=$ ann End $\underline{E}_{R}(M)$ is the stable annihilator of $M$.

## Proof.

We know that $\mathrm{ca}(R)=\mathrm{ca}^{s}(R)$ for $s \gg 0$. Pick $s>d$. We have

## Proof.

We know that $\mathrm{ca}(R)=\mathrm{ca}^{s}(R)$ for $s \gg 0$. Pick $s>d$. We have

$$
\operatorname{Ext}_{R}^{s}(M, N)=\underline{\operatorname{Ext}}_{R}^{s}(M, N)=\underline{\operatorname{Hom}}_{R}\left(\Omega^{s} M^{\mathrm{st}}, N^{\mathrm{st}}\right)
$$

## Proof.

We know that $\mathrm{ca}(R)=\mathrm{ca}^{s}(R)$ for $s \gg 0$. Pick $s>d$. We have

$$
\operatorname{Ext}_{R}^{s}(M, N)=\underline{\operatorname{Ext}}_{R}^{s}(M, N)=\underline{\operatorname{Hom}}_{R}\left(\Omega^{s} M^{\text {st }}, N^{s \mathrm{t}}\right)
$$

So,

$$
\begin{aligned}
\mathrm{ca}(R) & =\bigcap_{M, N \in M C M(R)} \operatorname{ann}_{R} \underline{\operatorname{Hom}_{R}\left(\Omega^{s} M, N\right)} \\
& =\bigcap_{M, N \in M C M(R)} \operatorname{ann}_{R} \underline{\operatorname{Hom}}_{R}(M, N) \\
& =\bigcap_{M \in M C M(R)} \operatorname{ann}_{R} \underline{E n d}_{R}(M)
\end{aligned}
$$

## Remarks

- Note that $r \in \operatorname{ann}_{R}(M)$ iff multiplication with $r$ factors through a projective $R$-module.


## Remarks

- Note that $r \in \underline{\operatorname{ann}}_{R}(M)$ iff multiplication with $r$ factors through a projective $R$-module.
- Notation $\underline{\operatorname{ann}}_{R}(M):=\operatorname{ann}_{R} \underline{E n d}_{R}(M)$. Because for any commutative ring $A$ and any module $X$ one has $\operatorname{ann}_{A}(X)=\operatorname{ann}_{A} \operatorname{End}_{A}(X)$.


## Remarks

- Note that $r \in \operatorname{ann}_{R}(M)$ iff multiplication with $r$ factors through a projective $R$-module.
- Notation $\underline{\operatorname{ann}}_{R}(M):=\operatorname{ann}_{R} \underline{E n d}_{R}(M)$. Because for any commutative ring $A$ and any module $X$ one has $\operatorname{ann}_{A}(X)=\operatorname{ann}_{A} \operatorname{End}_{A}(X)$.
- This description is useful in computations. Indeed, one can compute cohomology annihilator over a hypersurface ring using matrix factorizations.


## Remarks

- Note that $r \in \underline{a n n}_{R}(M)$ iff multiplication with $r$ factors through a projective $R$-module.
- Notation $\underline{\operatorname{ann}}_{R}(M):=\operatorname{ann}_{R} \underline{\text { End }}_{R}(M)$. Because for any commutative ring $A$ and any module $X$ one has $\operatorname{ann}_{A}(X)=\operatorname{ann}_{A} \operatorname{End}_{A}(X)$.
- This description is useful in computations. Indeed, one can compute cohomology annihilator over a hypersurface ring using matrix factorizations.
- In terms of matrix factorizations, $r$ is in the cohomology annihilator if and only if multiplication with $r$ is null-homotopic for every matrix factorization.


## Remarks - II

- With this description, it is easy to show that if $r$ stably annihilates $M$, then it annihilates every object in the smallest subcategory of MCM $(R)$ containing $M$ and closed under finite direct sums, direct summands, syzygies, cosyzygies and duals. We will revisit this later.


## Remarks - II

- With this description, it is easy to show that if $r$ stably annihilates $M$, then it annihilates every object in the smallest subcategory of MCM $(R)$ containing $M$ and closed under finite direct sums, direct summands, syzygies, cosyzygies and duals. We will revisit this later.
- So,

$$
\underline{\mathrm{ann}}_{R}(M)=\operatorname{ann}_{R} \bigoplus_{n \in \mathbb{Z}} \underline{\operatorname{Hom}}\left(\Omega^{n} M, M\right)
$$

## The Coin Problem

Question. We know that we can write any integer as an integer linear combination of 3 and 5(Euclidean algorithm). Which numbers can we write using only non-negative linear combinations?

## The Coin Problem

Question. We know that we can write any integer as an integer linear combination of 3 and 5(Euclidean algorithm). Which numbers can we write using only non-negative linear combinations?

| 0 | 1 | 2 |
| :---: | :---: | :---: |
| 3 | 4 | 5 |
| 6 | 7 | 8 |
| 9 | 10 | 11 |

any number after 7 can be obtained this way.

## The Coin Problem

Question. We know that we can write any integer as an integer linear combination of 3 and 5(Euclidean algorithm). Which numbers can we write using only non-negative linear combinations?

| 0 | 1 | 2 |
| :---: | :---: | :---: |
| 3 | 4 | 5 |
| 6 | 7 | 8 |
| 9 | 10 | 11 |

any number after 7 can be obtained this way. On the other hand, notice that we have

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |


| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |

- For any two integers $a, b$ with $a+b=7$; we have exactly one of $a$ and $b$ in the semigroup generated by 3 and 5 .

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |

- For any two integers $a, b$ with $a+b=7$; we have exactly one of $a$ and $b$ in the semigroup generated by 3 and 5 .
- Every number after 7 is in the semigroup and every number before 0 is not.

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |

- For any two integers $a, b$ with $a+b=7$; we have exactly one of $a$ and $b$ in the semigroup generated by 3 and 5 .
- Every number after 7 is in the semigroup and every number before 0 is not.
- The only interesting part is between 0 and 7 .

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |

- For any two integers $a, b$ with $a+b=7$; we have exactly one of $a$ and $b$ in the semigroup generated by 3 and 5 .
- Every number after 7 is in the semigroup and every number before 0 is not.
- The only interesting part is between 0 and 7 .
- There are 8 numbers here and exactly 4 of them are in the semigroup.

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 |

- For any two integers $a, b$ with $a+b=7$; we have exactly one of $a$ and $b$ in the semigroup generated by 3 and 5 .
- Every number after 7 is in the semigroup and every number before 0 is not.
- The only interesting part is between 0 and 7 .
- There are 8 numbers here and exactly 4 of them are in the semigroup.

$$
8=2 \times 4
$$

## Conductor

- Let $T=k \llbracket t^{3}, t^{5} \rrbracket$ be the corresponding semigroup algebra - which is isomorphic to $R=k \llbracket x, y \rrbracket /\left(x^{3}-y^{5}\right)$.


## Conductor

- Let $T=k \llbracket t^{3}, t^{5} \rrbracket$ be the corresponding semigroup algebra - which is isomorphic to $R=k \llbracket x, y \rrbracket /\left(x^{3}-y^{5}\right)$.
- "Ragnar! I think the cohomology annihilator of $R$ is the image of the ideal in $T$ generated by the powers of $t$ which come after the last number that we can not write as a linear combination of 3 and $5!$ ".


## Conductor

- Let $T=k \llbracket t^{3}, t^{5} \rrbracket$ be the corresponding semigroup algebra - which is isomorphic to $R=k \llbracket x, y \rrbracket /\left(x^{3}-y^{5}\right)$.
- "Ragnar! I think the cohomology annihilator of $R$ is the image of the ideal in $T$ generated by the powers of $t$ which come after the last number that we can not write as a linear combination of 3 and $5!$ ".
- "That ideal has a name: the conductor ideal! And you should look up Wang's paper."


## Conductor

- Let $T=k \llbracket t^{3}, t^{5} \rrbracket$ be the corresponding semigroup algebra - which is isomorphic to $R=k \llbracket x, y \rrbracket /\left(x^{3}-y^{5}\right)$.
- "Ragnar! I think the cohomology annihilator of $R$ is the image of the ideal in $T$ generated by the powers of $t$ which come after the last number that we can not write as a linear combination of 3 and $5!$ ".
- "That ideal has a name: the conductor ideal! And you should look up Wang's paper."


## Conductor

Let $R$ be a commutative Noetherian ring and let $\bar{R}$ be its normalization: the integral closure of $R$ inside its total quotient ring. Then, the conductor ideal $\operatorname{co}(R)$ is

$$
\operatorname{co}(R)=\{r \in \bar{R}: r \bar{R} \subseteq R\}
$$

$\operatorname{co}(R)$ is the largest subset of $\bar{R}$ which is both an ideal of $R$ and $\bar{R}$.

## Theorem (Wang)

Let $R$ be a one-dimensional reduced complete Noetherian local ring. Then, $\operatorname{co}(R) \subseteq \operatorname{ann}_{R} \operatorname{Ext}^{2}(M, N)$ for any $M, N \in \bmod R$.

In other words, for a one-dimensional reduced complete Noetherian local ring $R ; \operatorname{co}(R) \subseteq \mathrm{ca}(R)$.

## Conductor

## Lemma

Let $R$ be any Japanese ring. Then,

$$
\operatorname{End}_{R}(\bar{R}) \cong \frac{\bar{R}}{\operatorname{coR}}
$$

as $R$-modules via the isomorphism $f \mapsto \overline{f(1)}$.

## Conductor

## Lemma

Let $R$ be any Japanese ring. Then,

$$
\operatorname{End}_{R}(\bar{R}) \cong \frac{\bar{R}}{\operatorname{coR}}
$$

as $R$-modules via the isomorphism $f \mapsto \overline{f(1)}$.

- If $R$ is a one or two dimensional Gorenstein ring, then $\bar{R}$ is maximal Cohen-Macaulay over $R$.


## Conductor

## Lemma

Let $R$ be any Japanese ring. Then,

$$
\operatorname{End}_{R}(\bar{R}) \cong \frac{\bar{R}}{\operatorname{coR}}
$$

as $R$-modules via the isomorphism $f \mapsto \overline{f(1)}$.

- If $R$ is a one or two dimensional Gorenstein ring, then $\bar{R}$ is maximal Cohen-Macaulay over $R$.
- Hence,

$$
\mathrm{ca}(R) \subseteq{\underset{\operatorname{ann}}{R}} \bar{R}=\operatorname{ann}_{R} \frac{\bar{R}}{\operatorname{coR}}=\operatorname{co}(R)
$$

Theorem (E.)
Let $R$ be a one-dimensional complete local Gorenstein ring. Then,

$$
\mathrm{ca}(R) \subseteq \operatorname{co}(R)
$$

If $R$ is also reduced then there is equality.

## Back to Ragnar's Observation

Ragnar's observation is now explained via the famous Milnor-Jung formula for algebraic curves:

## Back to Ragnar's Observation

Ragnar's observation is now explained via the famous Milnor-Jung formula for algebraic curves:

## Theorem (Milnor-Jung Formula)

Let $C$ be a reduced irreducible curve with an isolated singular point. Let $R$ be the coordinate ring of $C$ - localized at this singular point. Then,

$$
\operatorname{dim}_{k} \frac{R}{\operatorname{Jac}(R)}=2 \operatorname{dim}_{k} \frac{R}{\operatorname{co}(R)}-r+1
$$

where $r$ is the number of branches at the singular point.

## Stably Annihilating an Algebra of Finite Global Dimension

- Are there other examples?


## Stably Annihilating an Algebra of Finite Global Dimension

- Are there other examples?


## Example

Let $G$ be a finite subgroup of $\operatorname{SL}(2, \mathbb{C}), S=k \llbracket x, y \rrbracket$ and $R=S^{G}$ be the invariant ring. Then,

$$
\mathrm{ca}(R)=\operatorname{ann}_{R}(S)={\underset{\mathrm{ann}}{R}}(S * G)
$$

## Stably Annihilating an Algebra of Finite Global Dimension

- Are there other examples?


## Example

Let $G$ be a finite subgroup of $\operatorname{SL}(2, \mathbb{C}), S=k \llbracket x, y \rrbracket$ and $R=S^{G}$ be the invariant ring. Then,

$$
\mathrm{ca}(R)=\operatorname{ann}_{R}(S)=\operatorname{ann}_{R}(S * G)
$$

- In general?


## Theorem (E.)

Let $R$ be a commutative Gorenstein ring and $\Lambda$ be a finite $R$-algebra of finite global dimension. Suppose that $R$ is a direct summand in $\Lambda$. Then,

$$
\operatorname{ann}_{R} \operatorname{End}_{D_{s g}(R)}(\Lambda)^{\operatorname{gldim} \Lambda+1} \subseteq \operatorname{ca}(R) \subseteq \operatorname{ann}_{R} \operatorname{End}_{D_{s g}(R)}(\Lambda)
$$

If, in addition, $\Lambda \in \operatorname{MCM}(R)$ then

$$
\underline{\operatorname{ann}}_{R}(\Lambda)^{\text {gldim } \Lambda+1} \subseteq \mathrm{ca}(R) \subseteq \underline{\operatorname{ann}}_{R}(\Lambda)
$$

In particular, up to radicals, in order to annihilate the singularity category, it is enough to stably annihilate a noncommutative resolution.

## Thank you!

