Auslander's formula and the MacPherson-Vilonen Construction

Samuel Dean (some joint with Jeremy Russell)

April 23, 2018

Throughout this talk, \mathcal{A} denotes an abelian category with enough projectives.

A functor $F : \mathcal{A}^{\mathrm{op}} \to \mathrm{Ab}$ is **finitely presented** (or **coherent**) if there is a morphism $f : A \to B \in \mathcal{A}$ and an exact sequence

$$\operatorname{Hom}_{\mathcal{A}}(-,A) \xrightarrow{f_*} \operatorname{Hom}_{\mathcal{A}}(-,B) \longrightarrow F \longrightarrow 0.$$

We write $fp(\mathcal{A}^{op}, Ab)$ for the category of all finitely presented functors $\mathcal{A}^{op} \to Ab$ and natural transformations between them. Theorem (Auslander, 1965) $fp(\mathcal{A}^{op}, Ab)$ is an abelian category with global dimension 0 or 2.

Theorem (Auslander)

The Yoneda embedding $Y : \mathcal{A} \to fp(\mathcal{A}^{op}, Ab)$ has an exact left adjoint

$$w: \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) \to \mathcal{A}.$$

That is, for any $F \in fp(\mathcal{A}^{op}, Ab)$ and $A \in \mathcal{A}$, there is an isomorphism

$$\operatorname{Hom}_{\mathcal{A}}(wF,A) \cong \operatorname{Hom}_{\operatorname{fp}(\mathcal{A}^{\operatorname{op}},\operatorname{Ab})}(F,\operatorname{Hom}_{\mathcal{A}}(-,A))$$

which is natural in F and A.

The counit of the adjunction $w \dashv Y$ is an isomorphism $wY \cong 1$. The unit of adjunction is the canonical map

$$1_{\mathrm{fp}(\mathcal{A}^{\mathrm{op}},\mathrm{Ab})} \to R^0 \cong Yw.$$

Since the functor $w : \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) \to \mathcal{A}$ is exact and has a fully faithful right adjoint $Y : \mathcal{A} \to \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$. Therefore, it is a localisation, and in particular it is a Serre quotient. Therefore, we obtain **Auslander's formula**

$$\frac{\mathrm{fp}(\mathcal{A}^{\mathrm{op}},\mathrm{Ab})}{\mathrm{fp}_0(\mathcal{A}^{\mathrm{op}},\mathrm{Ab})} \simeq \mathcal{A},$$

where $\operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) = \operatorname{Ker}(w)$.

Theorem (Auslander)

For any $F \in fp(\mathcal{A}^{op}, Ab)$, the following are equivalent.

1. $F \in \operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}), i.e. wF = 0.$

2. For any projective presentation

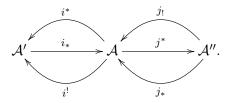
$$\operatorname{Hom}_{\mathcal{A}}(-,A) \xrightarrow{f_*} \operatorname{Hom}_{\mathcal{A}}(-,B) \longrightarrow F \longrightarrow 0.$$

the morphism $f: A \to B$ is an epimorphism

3. $\operatorname{Hom}_{\operatorname{fp}(\mathcal{A}^{\operatorname{op}},\operatorname{Ab})}(F,\operatorname{Hom}_{\mathcal{A}}(-,X)) = 0$ for any $X \in \mathcal{A}$.

Abelian recollements

A recollement (of abelian categories) is a situation

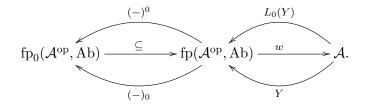


in which \mathcal{A}' , \mathcal{A} and \mathcal{A}'' are abelian categories and the following hold:

- $\blacktriangleright i^* \dashv i_* \dashv i^!$
- $\blacktriangleright j_* \dashv j^* \dashv j_!$
- $i_*, j_!$ and j_* are fully faithful.
- $\operatorname{Im}(i_*) = \operatorname{Ker}(j^*).$

Auslander's formula – recollement form

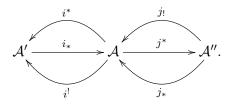
Theorem (SD, Jeremy Russell) There is a recollement



- ► $L_0(Y)(P) = \operatorname{Hom}_{\mathcal{A}}(-, P)$ for any projective $P \in \mathcal{A}$.
- $(\operatorname{Hom}_{\mathcal{A}}(-,A))^0 = \operatorname{\underline{Hom}}_{\mathcal{A}}(-,A)$ for any $A \in \mathcal{A}$.
- ► $F_0A = (\underline{\operatorname{Hom}}_{\mathcal{A}}(-, A), F)$ for any $F \in \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$ and $A \in \mathcal{A}$.

Pre-hereditary recollements

A recollement

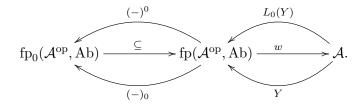


is said to be **pre-hereditary** if $L_2(i^*)(i_*V) = 0$ for each projective object $V \in \mathcal{A}'$.

Who cares? If \mathcal{B}' , and \mathcal{B}'' are triangulated categories and \mathcal{B}_1 and \mathcal{B}_2 are recollements of \mathcal{B}' and \mathcal{B}'' , then any functor $\mathcal{B}_1 \to \mathcal{B}_2$ which respects all of the recollement structures is a triangulated equivalence. This doesn't hold for recollements of abelian categories, but it does hold for pre-hereditary recollements.

When is our recollement pre-hereditary?

In the recollement



 $i^* = (-)^0$ so it is pre-hereditary if and only if

$$L_2((-)^0)(V) = 0$$

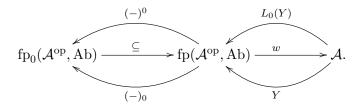
for every projective $V = \underline{\operatorname{Hom}}_{\mathcal{A}}(-, A)$ of $\operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$.

When is our recollement pre-hereditary?

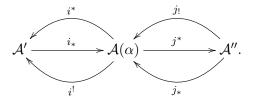
Lemma $L_2((-)^0)(\underline{\operatorname{Hom}}_{\mathcal{A}}(-,A)) = \underline{\operatorname{Hom}}_{\mathcal{A}}(-,\Omega A) \text{ for every } A \in \mathcal{A}.$

Corollary

 $The \ recollement$



is pre-hereditary if and only if \mathcal{A} has global dimension at most one (i.e. \mathcal{A} is a hereditary abelian category). Let \mathcal{A}' and \mathcal{A}'' be abelian categories, let $F : \mathcal{A}'' \to \mathcal{A}'$ be a right exact functor, let $G : \mathcal{A}'' \to \mathcal{A}'$ be a left exact functor, and let $\alpha : F \to G$ be a natural transformation. The **MacPherson-Vilonen construction** for α is recollement of abelian categories



given by the following data...

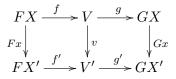
The MacPherson-Vilonen construction

• Objects (X, V, g, f) given by an object $X \in \mathcal{A}''$, an object $V \in \mathcal{A}'$ and morphisms

$$FX \xrightarrow{f} V \xrightarrow{g} GX$$

such that $gf = \alpha_X$.

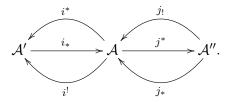
• Morphisms $(x, v) : (X, V, g, f) \to (X', V', g', f')$ given by morphisms $x : X \to X' \in \mathcal{A}'$ and $v : V \to V' \in \mathcal{A}''$ such that the diagram



commutes.

When is our recollement MP-V?

We will apply the following result. Theorem (Franjou, Pirashvili) A recolleement



is an instance of the MacPherson-Vilonen construction if and only if the following hold:

- 1. It is pre-hereditary.
- 2. There is an exact functor $p: \mathcal{A} \to \mathcal{A}'$ such that $pi_* \cong 1_{\mathcal{A}'}$.

Answer: Pre-hereditary implies MP-V for our recollement

Lemma

If \mathcal{A} is hereditary then the functor $\mathcal{A} \to \operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) : \mathcal{A} \mapsto \operatorname{\underline{Hom}}_{\mathcal{A}}(-, \mathcal{A})$ is left exact.

Proof.

There is an equivalence $W : (\operatorname{fp}_0(\mathcal{A}, \operatorname{Ab}))^{\operatorname{op}} \to \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$ such that $W\operatorname{Ext}^1(A, -) = \operatorname{\underline{Hom}}_{\mathcal{A}}(-, A)$ for all $A \in \mathcal{A}$. Since $A \mapsto \operatorname{Ext}^1(A, -)$ is right exact, this is enough.

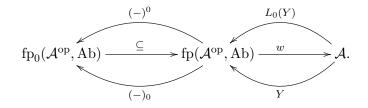
Lemma

If \mathcal{A} is hereditary then the functor $(-)^0 : \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) \to \operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$ is exact.

Proof.

Using above result, one can show that $L_1((-)^0) = 0$.

The final result



Theorem

The following are equivalent for the above recollement.

- 1. The recollement is pre-hereditary.
- 2. The recollement is MacPherson-Vilonen.
- 3. The category \mathcal{A} is hereditary.

If it is MacPherson-Vilonen, then it is the MacPherson-Vilonen construction for $0 \to \underline{Y}$, where $\underline{Y} : \mathcal{A} \to \mathrm{fp}_0(\mathcal{A}^{\mathrm{op}}, \mathrm{Ab})$ is given by $\underline{Y}\mathcal{A} = \underline{\mathrm{Hom}}_{\mathcal{A}}(-, \mathcal{A})$ for $\mathcal{A} \in \mathcal{A}$.

During this talk, we showed that if $\mathcal A$ is hereditary then the functor

$$(-)^0: \operatorname{fp}(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab}) \to \operatorname{fp}_0(\mathcal{A}^{\operatorname{op}}, \operatorname{Ab})$$

is exact. It also has a fully faithful right adjoint – the embedding $fp_0(\mathcal{A}^{op}, Ab) \hookrightarrow fp(\mathcal{A}^{op}, Ab)$. Therefore, if \mathcal{A} is hereditary, $(-)^0$ is a localisation, hence a Serre quotient, and we obtain an equivalence

$$\frac{\mathrm{fp}(\mathcal{A}^{\mathrm{op}},\mathrm{Ab})}{\mathrm{fp}_1(\mathcal{A}^{\mathrm{op}},\mathrm{Ab})} \simeq \mathrm{fp}_0(\mathcal{A}^{\mathrm{op}},\mathrm{Ab}),$$

where

$$\operatorname{fp}_1(\mathcal{A}^{\operatorname{op}},\operatorname{Ab}) = \operatorname{Ker}((-)^0).$$

A description of $fp_1(\mathcal{A}^{op}, Ab)$

Now we drop the assumption that \mathcal{A} is hereditary.

Theorem

For any functor $F \in fp(\mathcal{A}^{op}, Ab)$, the following are equivalent.

- 1. $F \in fp_1(\mathcal{A}^{op}, Ab), i.e. F^0 = 0.$
- 2. For any projective presentation

$$\operatorname{Hom}_{\mathcal{A}}(-,A) \xrightarrow{f_*} \operatorname{Hom}_{\mathcal{A}}(-,B) \longrightarrow F \longrightarrow 0$$

the map $f:\underline{A}\to\underline{B}$ is a split epimorphism in \underline{A} .

3. $\operatorname{Hom}_{\operatorname{fp}(\mathcal{A}^{\operatorname{op}},\operatorname{Ab})}(F,\operatorname{Ext}^{1}_{\mathcal{A}}(-,A)) = 0$ for any $A \in \mathcal{A}$.

Theorem

If \mathcal{A} has enough injectives then $(fp_1(\mathcal{A}^{op}, Ab), fp_0(\mathcal{A}^{op}, Ab))$ is a torsion theory in $fp(\mathcal{A}^{op}, Ab)$.