Localizable and Weakly Left Localizable Rings

V. V. Bavula (University of Sheffield) *

*1. V. V. Bavula, Left localizable rings and their characterizations, *J. Pure Appl. Algebra*, to appear, Arxiv:math.RA:1405.4552.

2. V. V. Bavula, Weakly left localizable rings, *Comm. Algebra*, **45** (2017) no. 9, 3798-3815.

talk-WLL-Rings(2015).tex

Aim:

- to introduce new classes of rings: left localizable rings and weakly left localizable rings, and
- to give several characterizations of them.

R is a ring with 1, R^{\ast} is its group of units,

 $\mathcal{C} = \mathcal{C}_R$ is the set of regular elements of R,

 $Q = Q_{l,cl}(R) := C^{-1}R$ is the **left quotient ring** (the **classical left ring of fractions**) of R (if it exists),

 $\operatorname{Ore}_{l}(R)$ is the set of **left Ore sets** S (i.e. for all $s \in S$ and $r \in R$: $Sr \cap Rs \neq \emptyset$),

 $ass(S) := \{r \in R | sr = 0 \text{ for some } s \in S\}, an ideal of R,$

 $Den_l(R)$ is the set of **left denominator sets** S of R (i.e. $S \in Ore_l(R)$, and rs = 0 implies s'r = 0 for some $s' \in S$),

max.Den $_l(R)$ is the set of maximal left denominator sets of R (it is always a non-empty set). $\mathfrak{l}_R := \bigcap_{S \in \max. \operatorname{Den}_l(R)} \operatorname{ass}(S)$ is the left localization radical of R.

Theorem (B.'2014). If *R* is a left Noetherian ring then $|\max.\text{Den}_l(R)| < \infty$.

A ring R is called a **left localizable ring** (resp. a **weakly left localizable ring**) if each <u>nonzero</u> (resp. <u>non-nilpotent</u>) element of R is a <u>unit</u> in some left localization $S^{-1}R$ of R (equiv., $r \in S$ for some $S \in \text{Den}_l(R)$).

Let $\mathcal{L}_l(R)$ be the set of left localizable elements and $\mathcal{NL}_l(R) := R \setminus \mathcal{L}_l(R)$ be the set of left non-localizable elements of R.

R is left localizable iff $\mathcal{L}_l(R) = R \setminus \{0\}.$

R is weakly left localizable iff $\mathcal{L}_l(R) = R \setminus Nil(R)$ where Nil(*R*) is the set of nilpotent elements of *R*.

Characterizations of left localizable rings

- **Theorem** Let *R* be a ring. The following statements are equivalent.
 - 1. The ring R is a left localizable ring with $n := |\max.\text{Den}_l(R)| < \infty.$
 - 2. $Q_{l,cl}(R) = R_1 \times \cdots \times R_n$ where R_i are division rings.
 - 3. The ring R is a semiprime left Goldie ring with udim(R) = |Min(R)| = n where Min(R) is the set of minimal prime ideals of the ring R.
 - 4. $Q_l(R) = R_1 \times \cdots \times R_n$ where R_i are division rings.

• Theorem Let R be a ring with max.Den_l(R) = $\{S_1, \ldots, S_n\}$. Let $\mathfrak{a}_i := \operatorname{ass}(S_i)$,

$$\sigma_i : R \to R_i := S_i^{-1} R, \ r \mapsto \frac{r}{1} = r_i,$$

and $\sigma := \prod_{i=1}^{n} \sigma_i : R \to \prod_{i=1}^{n} R_i, r \mapsto (r_1, \dots, r_n).$ The following statements are equivalent.

- 1. The ring R is a left localizable ring.
- 2. $l_R = 0$ and the rings R_1, \ldots, R_n are division rings.
- 3. The homomorphism σ is an injection and the rings R_1, \ldots, R_n are division rings.

Characterizations of weakly left localizable rings

R is a **local ring** if $R \setminus R^*$ is an ideal of *R* (\Leftrightarrow R/rad(R) is a division ring).

- **Theorem** Let *R* be a ring. The following statements are equivalent.
 - 1. The ring R is a weakly left localizable ring such that
 - (a) $l_R = 0$,
 - (b) $|\max.\mathsf{Den}_l(R)| < \infty$,
 - (c) for every $S \in \max.\text{Den}_l(R)$, $S^{-1}R$ is a weakly left localizable ring, and
 - (d) for all $S,T \in \max.\text{Den}_l(R)$ such that $S \neq T$, $\operatorname{ass}(S)$ is not a nil ideal modulo $\operatorname{ass}(T)$.
 - 2. $Q_{l,cl}(R) \simeq \prod_{i=1}^{n} R_i$ where R_i are local rings with $rad(R_i) = \mathcal{N}_{R_i}$.
 - 3. $Q_l(R) \simeq \prod_{i=1}^n R_i$ where R_i are local rings with $rad(R_i) = \mathcal{N}_{R_i}$.

Weakly left localizable rings rings have interesting properties.

- **Corollary** Suppose that a ring R satisfies one of the equivalent conditions 1–3 of the above theorem. Then
 - 1. max.Den_l(R) = { $S_1, ..., S_n$ } where $S_i = {r \in R | \frac{r}{1} \in R_i^*}$.
 - 2. $C_R = \bigcap_{S \in \max. \operatorname{Den}_l(R)} S.$
 - 3. Nil(R) = \mathcal{N}_R .
 - 4. $Q := Q_{l,cl}(R) = Q_l(R)$ is a weakly left localizable ring with Nil $(Q) = \mathcal{N}_Q = \operatorname{rad}(Q)$.
 - 5. $\mathcal{C}_R^{-1}\mathcal{N}_R = \mathcal{N}_Q = \operatorname{rad}(Q).$
 - 6. $\mathcal{C}_R^{-1}\mathcal{L}_l(R) = \mathcal{L}_l(Q).$

- Theorem Let R be a ring, $l = l_R, \pi' : R \rightarrow R' := R/l, r \mapsto \overline{r} := r + l$. TFAE.
 - 1. R is a weakly left localizable ring s. t.
 - (a) the map ϕ : max.Den_l(R) \rightarrow max.Den_l(R'), $S \mapsto \pi'(S)$, is a surjection.
 - (b) $|\max.\mathsf{Den}_l(R)| < \infty$,
 - (c) for every $S \in \max.\text{Den}_l(R)$, $S^{-1}R$ is a weakly left localizable ring, and
 - (d) for all $S,T \in \max.\text{Den}_l(R)$ such that $S \neq T$, $\operatorname{ass}(S)$ is not a nil ideal modulo $\operatorname{ass}(T)$.
 - 2. $Q_{l,cl}(R') \simeq \prod_{i=1}^{n} R_i$ where R_i are local rings with $\operatorname{rad}(R_i) = \mathcal{N}_{R_i}$, \mathfrak{l} is a nil ideal and $\pi'(\mathcal{L}_l(R)) = \mathcal{L}_l(R')$.
 - 3. $Q_l(R') \simeq \prod_{i=1}^n R_i$ where R_i are local rings with $\operatorname{rad}(R_i) = \mathcal{N}_{R_i}$, \mathfrak{l} is a nil ideal and $\pi'(\mathcal{L}_l(R)) = \mathcal{L}_l(R')$.

Criterion for a semilocal ring to be a weakly left localizable ring

A ring R is called a **semilocal ring** if R/rad(R) is a semisimple (Artinian) ring.

The next theorem is a criterion for a semilocal ring R to be a weakly left localizable ring with $rad(R) = N_R$.

• Theorem Let R be a semilocal ring. Then the ring R is a weakly left localizable ring with $rad(R) = \mathcal{N}_R$ iff $R \simeq \prod_{i=1}^s R_i$ where R_i are local rings with $rad(R_i) = \mathcal{N}_{R_i}$.