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Main Results on Commutative UFDs

An integral domain is a Unique Factorization Domain (UFD,
Factorial Ring) if every nonzero element is a product of primes in a
unique way.

Ex: Z. More generally, every Principle Ideal Domain is a UFD.

Theorem [Gauss]

R is a UFD then R[x ] is a UFD.

Theorem [Auslander–Buchsbaum] 1959

Every regular local ring is a UFD.
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Factorial varieties in Lie Theory

Coordinate rings in Lie Theory that are factorial:

[Popov] The coordinate rings of semisimple algebraic groups in char 0.
[Hochster] The homogeneous coordinate rings of Grassmannians.
[Kac-Peterson] The coordinate rings of Kac–Moody groups.
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Reformulation for Noetherian Rings

Lemma [Nagata] 1958.

A noetherian integral domain R is a UFD if and only if every nonzero
prime ideal contains a prime element.

Proof. ⇐ Let x ∈ R be a nonzero, nonunit and P be a minimal prime
over (x). By Krull’s principal ideal theorem, P has height 1. However it
needs to contain a prime element p ∈ P, thus,

P = (p) and, so, x ∈ (p).

Therefore, x = px ′ and we can continue by induction, using noetherianity.
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Definitions

Let R be a noetherian domain, generally noncommutative.

Definition [Chatters 1983]

A nonzero, nonunit element p ∈ R is prime if pR = Rp and R/pR is
a domain.

R is called a noetherian UFD if every nonzero prime ideal of R
contains a homogeneous prime element.

Two prime elements p, p′ ∈ R are associates if p′ = up for a unit u.
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Unique Factorization

An element a ∈ R is called normal if Ra = aR. E.g., all central elements
are normal.

Proposition

Every nonzero normal element of a noncommutative UFD has a unique
factorization into primes up to reordering and associates.

Proof. The same as in the commutative case using the noncommutative
principal ideal theorem: For every nonzero, nonunit normal element
a ∈ R, a minimal prime over Ra has height 1.
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The semi-center of universal enveloping algebras

Definition

The semi-center of U(g) is the direct sum C (U(g)) = ⊕λ∈g∗Cλ(U(g)),
where for a character λ of g,

Cλ(U(g)) := {a ∈ U(g) | [x , a] = λ(x)a, ∀x ∈ g}.

The center of U(g) is Z (U(g)) = C0(U(g)). If g is semisimple or
nilpotent, then the semi-center of U(g) coincides with its center.
Example. Consider the Borel subalgebra b of sl2. It is spanned by H and
E and [H,E ] = 2E . Its semi-senter is K[E ]:

[H,
∑
n

pn(H)E n] =
∑
n

2npn(H)E n, [E ,HkE n] = −
k−1∑
i=0

Hk−1−i (H−2)iE n+1.
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Factoriality in the solvable case

Proposition

The normal elements of U(g) are ∪λ∈g∗Cλ(U(g)).

Example. The normal elements of the 2-dim Borel subalgebra b are
{KE n | n ∈ N}. There is only one prime element E .
Warning: Our goal is not to produce a theory with too few primes!

Theorem [Chatters]

For every solvable Lie algebra g over an algebraically closed field of
characteristic 0, U(g) is a UFD.
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Proof of factoriality

Proof. Let J be any nonzero (two-sided) ideal of U(g). The adjoint
action of g on U(g) is locally finite, so J is a locally finite representation
of g. By Lie’s theorem there exits a g-eigenvector,

a ∈ J ∩ Cλ(U(g)), a 6= 0.

Since g is solvable, all prime ideals of U(g) are completely prime
[Dixmier]. If J is prime, then it should contain an irreducible element a of
the semi-center. One completes the proof by showing that U(g)/aU(g) is
a domain, so a is a prime element.
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Comparison with Gauss’ Lemma

• For an algebra B, σ ∈ Aut(B) and a skew-derivation δ, denote the
skew-polynomial extension B[x ;σ, δ].
• For a solvable Lie algebra b, there exists a chain of ideals

b = bn B bn−1 B . . . B b1 B b0 = {0} with dim(bi/bi−1) = 1.

Choosing xk ∈ bk , xk /∈ bk−1, gives

U(b) ∼= K[x1][x2; id, δ2] . . . [xn; id, δn]

where all derivations δk = adxk are locally finite (locally nilpotent, if b is
nilpotent).

The factoriality of U(b) is a generalization of the Gauss Lemma.
Warning: It is easy to construct skew-polynomial extensions that are not
factorial!
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Quantum Groups

• g a simple Lie algebra (more generally, a symmetrizable Kac–Moody
algebra), G the corresponding simply connected group.
• Uq(g) the quantized univ env algebra, Chevalley generators Ei ,Fi ,K

±1
i ;

Rq[G ] quantum function algebra.
• Lusztig’s braid group action on Uq(g); Tw , w ∈W (Weyl group).
• quantum Schubert cell algebras, quantum unipotent groups

Uq(n+ ∩ w(n−)) := Uq(n+) ∩ Tw (Uq(n−)), w ∈W .

defined by Lusztig, De Concini–Kac–Procesi.
• quantum double Bruhat cells

Rq[Gw ,u], Gw ,u := B+wB+ ∩ B−uB−, w , u ∈W .
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Spectra of Quantum Groups

Early 90’s, Hodges–Levasseur and Joseph did fundamental work on
SpecRq[G ], aim: extend Dixmier’s orbit method to quantum groups.

Conjecture. ∃ a homeomorphism DixG : Symp(G , π)
∼=−→ PrimRq[G ].

Theorem [Joseph, Hodges–Levasseur–Toro, 1992]

For each simple group G :

The H-prime ideals of Rq[G ] are indexed by W ×W : Iw ,u explicit in
terms of Demazure modules of Uq(g).

SpecRq[G ] ∼=
⊔

w ,u∈W SpecRq[Gw ,u] and

SpecRq[Gw ,u] ∼= SpecZ (SpecRq[Gw ,u]) ∼= a torus.

Conjecture wide open, but a bijective H-equivariant DixG constructed
[2012].
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Definition of quantum nilpotent algebras

Definition [Cauchon–Goodearl–Letzter] CGL Extensions (late 90’s)

A quantum nilpotent algebra is a K-algebra with an action of a torus
H having the form

R := K[x1][x2; (h2·), δ2] · · · [xN ; (hN ·), δN ]

for some hk ∈ H, satisfying the following conditions:

all δk are locally nilpotent (hk ·)-derivations,

the elements xk are H-eigenvectors and the eigenvalues
hk · xk = λkxk are not roots of unity.

[G–L]: H−SpecR finite and a decomposition of SpecR into tori.
[C]: structure of H-primes of R.
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Lie theory examples

Quantum Schubert cell algebras Uq(n+ ∩ w(n−)): a reduced
expression w = si1 . . . siN , the roots of n+ ∩ w(n−) are

β1 = αi1 , β2 = si1(αi2), . . ., βk = si1 . . . siN−1
(αiN ).

Presentation of Uq(n+ ∩ w(n−)) by adjoining Lusztig’s root vectors

Eβ1 = Ei1 ,Eβ2 = Tsi1
(Ei2), . . . ,EβN

= Tsi1 ...siN−1
(EiN ).

Quantum Weyl algebras.

Quantum double Bruhat cells (nontrivial presentation)

Rq[Gw ,u] = (Uq(n− ∩ w(n+))op ./ Uq(n+ ∩ u(n−))[E−1].
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UFD property

Theorem [Launois–Lenagan–Rigal] (2005-2006)

All quantum nillpotent algebras are UFDs.

Rq[G ] is a UFD for all every complex simple group G .

Technical point: The precise statement in the first part is that every
quantum nilpotent algebra R is an H-UFD (every nonzero H-prime ideal
of R contains a homogeneous prime element). Furthermore, R is a UFD
provided that it is torsionfree (the subgroup of K∗ generated by the
eigenvalues {λkj | k > j} is torsionfree, where hk · xj = λkjxj).
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Definitions on Cluster Algebras

[Fomin–Zelevinsky, 2001] A cluster algebra R is

generated by an infinite set of generators grouped into embedded
polynomial algebras K[y1, . . . , yN ] ⊂ R ⊆ K[y±11 , . . . , y±1N ], clusters.

Its clusters are obtained from each other by successive mutations
(y1, . . . , yk−1, yk , yk+1, . . . , yN) 7→ (y1, . . . , yk−1, y

′
k , yk+1, . . . , yN)

y ′k =
monomial1 + monomial2

yk

where gcd(monomial1,monomial2) = gcd(yk ,monomiali ) = 1.

A quantum cluster algebra R: replace polynomial rings by quantum
tori K〈y1, . . . , yN〉/(yjyk − qjkykyj), qjk ∈ K×.

Exact powers irrelevant will be just powers in unique factorizations.
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Clusters on Quantum Nilpotent Algebras

Theorem [Goodearl-Y] (2014)

R = an arbitrary quantum nilpotent algebra. Chain of subalgebras
R1 ⊂ R2 ⊂ . . . ⊂ RN .

Each Rk has a unique homogeneous (under H) prime element yk
that does not belong to Rk−1.

Under mild conditions, each such quantum nilpotent algebra R has a
quantum cluster algebra structure with initial cluster (y1, . . . , yN).

For τ ∈ SN , adjoin the generators of R in the order xτ(1), . . . , xτ(N).
Chain of subalgebras Rτ,1 ⊂ Rτ,2 ⊂ . . . ⊂ Rτ,N . The sequence of
primes (yτ,1, . . . , yτ,N) is another cluster Στ .

The cluster algebra R is generated by the primes in the finitely many
clusters Στ for τ ∈ SN .

Commutative UFDs in Cluster Algebra setting in Geiss-Leclerc–Schröer
but too many primes, no idea which ones are cluster variables.
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Applications

Berenstein–Zelevinsky Conjecture [Goodearl-Y 2016]

For all complex simple Lie groups G and Weyl groups elements w and u,
the quantized coordinate ring of the double Bruhat cell Rq[Gw ,u] has a
canonical cluster algebra structure.

Theorem [GY, 2014]

For all symmetrizable Kac–Moody algebras g and Weyl group elements
w , Uq(n+ ∩ w(n−)) has a cluster algebra structure.

Previously proved by Geiss–Leclerc–Schröer for symmetric Kac–Moody
algebras g.
Other Applications: Quantum Weyl algebras.
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Maximal green sequences I

Notation for the elements of SN : τ = [τ(1), . . . , τ(N)].

Procedure. Pull the number 1 all the way to the right (preserving the
order of the other numbers), then pull the number 2 to the right just after
the N, ..., at the end pull the number N − 1 to the right after the N:

id =[ 1 , 2 , 3, . . . ,N] 7→ . . . 7→

[ 2 , 3, . . . ,N, 1 ] 7→ . . . 7→

[3, . . . ,N, 2 , 1 ] 7→ · · · 7→
[N − 1,N, . . . , 2, 1] 7→ . . . 7→
[N,N − 1, . . . , 2, 1] = w◦.
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Maximal green sequences II

Theorem [Y]

For each quantum nilpotent algebra R the sequence of clusters
Σid → . . .→ Σw◦ is a maximal green sequence of mutations of length(

n1
2

)
+ · · ·+

(
n1
2

)
At each step the two clusters are either related by a one-step mutation or
are identical.

Applying, results of Keller, gives a formula for the Donaldson–Thomas
invariant of the corresponding 3-Calabi–Yau category.

Notes: (1) These cluster algebras are of very infinite type!
(2) No explicit mutation of quivers in the proof. Red/green vertices
come from positive/negative powers of factorizations into primes.
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Categorifications

Abelian Categorifications of Cluster Algebras: Initiated by Buan,
Marsh, Reineke, Reiten and Todorov.

Monoidal Categorifications of Cluster Algebras: Axiomatized by
Hernandez–Leclerc.

Explicit Abelian Categorifications of Uq(n+ ∩ w(n−)) constructed
by Geiss–Leclerc–Schröer, g= symmetric KM.

Monoidal Categorifications of Uq(n+ ∩ w(n−)) by
Kang–Kashiwara–Kim–Oh (representations of
Khovanov–Lauda–Rouquier algebras) and Qin, g= symmetric KM.

Problem. Construct explicit Abelian and Monoidal Categorifications
for all quantum nilpotent algebras. Various applications to Lie
theory (canonical bases).
Role of factoriality of the algebra? Trick: establish properties of
particular sequence of mutations (e.g. a green sequence), and then
prove that this implies properties of all mutations.
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Poisson UFDs

A similar concept of Poisson UFDs. In the case of coordinate rings,
geometric methods using Poisson manifolds.

Applications to Discriminants of orders in central simple algebras and
Cluster Algebras.

Many classes of examples, based on Poisson Lie groups and Poisson
homogeneous spaces.
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