Noncommutative Factorial Algebras

Milen Yakimov (LSU) Maurice Auslander International Conference 2016

April 28, 2016

Main Results Lie Theory/Factorial Varieties Reformulation for Noetherian Rings

Main Results on Commutative UFDs

An **integral domain** is a **Unique Factorization Domain** (UFD, **Factorial Ring**) if every nonzero element is a product of primes in a unique way.

• Ex: Z. More generally, every **Principle Ideal Domain** is a UFD.

Theorem [Gauss]

R is a UFD then R[x] is a UFD.

Theorem [Auslander–Buchsbaum] 1959

Every regular local ring is a UFD.

Main Results Lie Theory/Factorial Varieties Reformulation for Noetherian Rings

Factorial varieties in Lie Theory

Coordinate rings in Lie Theory that are factorial:

[Popov] The coordinate rings of semisimple algebraic groups in char 0. **[Hochster]** The homogeneous coordinate rings of Grassmannians. **[Kac-Peterson]** The coordinate rings of Kac–Moody groups.

Main Results Lie Theory/Factorial Varieties Reformulation for Noetherian Rings

Reformulation for Noetherian Rings

Lemma [Nagata] 1958.

A noetherian integral domain R is a UFD if and only if every nonzero prime ideal contains a prime element.

Proof. \leftarrow Let $x \in R$ be a nonzero, nonunit and P be a minimal prime over (x). By Krull's principal ideal theorem, P has height 1. However it needs to contain a prime element $p \in P$, thus,

$$P = (p)$$
 and, so, $x \in (p)$.

Therefore, x = px' and we can continue by induction, using noetherianity.

Definitions Unique Factorization

Definitions

Let R be a noetherian domain, generally noncommutative.

Definition [Chatters 1983]

- A nonzero, nonunit element $p \in R$ is **prime** if pR = Rp and R/pR is a domain.
- *R* is called a **noetherian UFD** if every nonzero prime ideal of *R* contains a homogeneous prime element.

Two prime elements $p, p' \in R$ are **associates** if p' = up for a unit u.

Definitions Unique Factorization

Unique Factorization

An element $a \in R$ is called **normal** if Ra = aR. E.g., all **central** elements are normal.

Proposition

Every nonzero normal element of a noncommutative UFD has a unique factorization into primes up to reordering and associates.

Proof. The same as in the commutative case using the noncommutative principal ideal theorem: For every nonzero, nonunit normal element $a \in R$, a minimal prime over Ra has height 1.

The semi-center Factoriality in the Solvable Case Proof of Factoriality Comparison with Gauss' Lemma

The semi-center of universal enveloping algebras

Definition

The semi-center of $U(\mathfrak{g})$ is the direct sum $C(U(\mathfrak{g})) = \bigoplus_{\lambda \in \mathfrak{g}^*} C_{\lambda}(U(\mathfrak{g}))$, where for a character λ of \mathfrak{g} ,

$$\mathcal{C}_{\lambda}(\mathcal{U}(\mathfrak{g})):=\{a\in\mathcal{U}(\mathfrak{g})\mid [x,a]=\lambda(x)a,\quad \forall x\in\mathfrak{g}\}.$$

The center of $U(\mathfrak{g})$ is $Z(U(\mathfrak{g})) = C_0(U(g))$. If \mathfrak{g} is semisimple or nilpotent, then the semi-center of $U(\mathfrak{g})$ coincides with its center. **Example.** Consider the Borel subalgebra \mathfrak{b} of \mathfrak{sl}_2 . It is spanned by H and E and [H, E] = 2E. Its semi-senter is $\mathbb{K}[E]$:

$$[H, \sum_{n} p_{n}(H)E^{n}] = \sum_{n} 2np_{n}(H)E^{n}, \quad [E, H^{k}E^{n}] = -\sum_{i=0}^{k-1} H^{k-1-i}(H-2)^{i}E^{n+1}.$$

The semi-center Factoriality in the Solvable Case Proof of Factoriality Comparison with Gauss' Lemma

Factoriality in the solvable case

Proposition

The normal elements of $U(\mathfrak{g})$ are $\cup_{\lambda \in \mathfrak{g}^*} C_{\lambda}(U(\mathfrak{g}))$.

Example. The normal elements of the 2-dim Borel subalgebra \mathfrak{b} are $\{\mathbb{K}E^n \mid n \in \mathbb{N}\}$. There is only one prime element *E*. **Warning**: Our goal is not to produce a theory with too few primes!

Theorem [Chatters]

For every solvable Lie algebra \mathfrak{g} over an algebraically closed field of characteristic 0, $U(\mathfrak{g})$ is a UFD.

The semi-center Factoriality in the Solvable Case Proof of Factoriality Comparison with Gauss' Lemma

Proof of factoriality

Proof. Let J be any nonzero (two-sided) ideal of $U(\mathfrak{g})$. The adjoint action of \mathfrak{g} on $U(\mathfrak{g})$ is locally finite, so J is a locally finite representation of \mathfrak{g} . By Lie's theorem there exits a \mathfrak{g} -eigenvector,

$$a\in J\cap \mathcal{C}_{\lambda}(U(\mathfrak{g})), \ a
eq 0.$$

Since g is solvable, all prime ideals of $U(\mathfrak{g})$ are completely prime [Dixmier]. If J is prime, then it should contain an irreducible element a of the semi-center. One completes the proof by showing that $U(\mathfrak{g})/aU(\mathfrak{g})$ is a domain, so a is a prime element.

The semi-center Factoriality in the Solvable Case Proof of Factoriality Comparison with Gauss' Lemma

Comparison with Gauss' Lemma

• For an algebra $B, \sigma \in Aut(B)$ and a skew-derivation δ , denote the skew-polynomial extension $B[x; \sigma, \delta]$.

 \bullet For a solvable Lie algebra $\mathfrak b,$ there exists a chain of ideals

$$\mathfrak{b} = \mathfrak{b}_n \rhd \mathfrak{b}_{n-1} \rhd \ldots \rhd \mathfrak{b}_1 \rhd \mathfrak{b}_0 = \{0\}$$
 with $\dim(\mathfrak{b}_i/\mathfrak{b}_{i-1}) = 1$.

Choosing $x_k \in \mathfrak{b}_k$, $x_k \notin \mathfrak{b}_{k-1}$, gives

$$\mathcal{U}(\mathfrak{b}) \cong \mathbb{K}[x_1][x_2; \mathrm{id}, \delta_2] \dots [x_n; \mathrm{id}, \delta_n]$$

where all derivations $\delta_k = ad_{x_k}$ are locally finite (locally nilpotent, if \mathfrak{b} is nilpotent).

The factoriality of U(b) is a generalization of the Gauss Lemma. **Warning:** It is easy to construct skew-polynomial extensions that are not factorial!

Quantum Groups Spectra of Quantum Groups Definition of Quantum Nilpotent Algebras Lie Theory Examples UFD Property

Quantum Groups

- \mathfrak{g} a simple Lie algebra (more generally, a symmetrizable Kac–Moody algebra), G the corresponding simply connected group.
- $U_q(\mathfrak{g})$ the quantized univ env algebra, Chevalley generators $E_i, F_i, K_i^{\pm 1}$; $R_q[G]$ quantum function algebra.
- Lusztig's braid group action on $U_q(\mathfrak{g})$; T_w , $w \in W$ (Weyl group).
- quantum Schubert cell algebras, quantum unipotent groups

$$U_q(\mathfrak{n}_+ \cap w(\mathfrak{n}_-)) := U_q(\mathfrak{n}_+) \cap T_w(U_q(\mathfrak{n}_-)), \quad w \in W.$$

defined by Lusztig, De Concini-Kac-Procesi.

• quantum double Bruhat cells

$$R_q[G^{w,u}], \quad G^{w,u}:=B_+wB_+\cap B_-uB_-, \quad w,u\in W.$$

Quantum Groups Spectra of Quantum Groups Definition of Quantum Nilpotent Algebras Lie Theory Examples UFD Property

Spectra of Quantum Groups

Early 90's, Hodges-Levasseur and Joseph did fundamental work on $\operatorname{Spec} R_q[G]$, aim: extend Dixmier's orbit method to quantum groups. **Conjecture**. \exists a homeomorphism $\operatorname{Dix}_G \colon \operatorname{Symp}(G, \pi) \xrightarrow{\cong} \operatorname{Prim} R_q[G]$.

Theorem [Joseph, Hodges-Levasseur-Toro, 1992]

For each simple group G:

- The *H*-prime ideals of $R_q[G]$ are indexed by $W \times W$: $I_{w,u}$ explicit in terms of Demazure modules of $U_q(\mathfrak{g})$.
- $\operatorname{Spec} R_q[G] \cong \bigsqcup_{w,u \in W} \operatorname{Spec} R_q[G^{w,u}]$ and

 $\operatorname{Spec} R_q[G^{w,u}] \cong \operatorname{Spec} Z(\operatorname{Spec} R_q[G^{w,u}]) \cong$ a torus.

Conjecture wide open, but a bijective *H*-equivariant Dix_G constructed [2012].

Quantum Groups Spectra of Quantum Groups Definition of Quantum Nilpotent Algebras Lie Theory Examples UFD Property

Definition of quantum nilpotent algebras

Definition [Cauchon–Goodearl–Letzter] CGL Extensions (late 90's)

A **quantum nilpotent algebra** is a \mathbb{K} -algebra with an action of a torus H having the form

$$R := \mathbb{K}[x_1][x_2; (h_2 \cdot), \delta_2] \cdots [x_N; (h_N \cdot), \delta_N]$$

for some $h_k \in H$, satisfying the following conditions:

- all δ_k are locally nilpotent $(h_k \cdot)$ -derivations,
- the elements x_k are *H*-eigenvectors and the eigenvalues $h_k \cdot x_k = \lambda_k x_k$ are not roots of unity.

[G–L]: H–SpecR finite and a decomposition of SpecR into tori. [C]: structure of H-primes of R.

Quantum Groups Spectra of Quantum Groups Definition of Quantum Nilpotent Algebras Lie Theory Examples UFD Property

Lie theory examples

• Quantum Schubert cell algebras $U_q(\mathfrak{n}_+ \cap w(\mathfrak{n}_-))$: a reduced expression $w = s_{i_1} \dots s_{i_N}$, the roots of $\mathfrak{n}_+ \cap w(\mathfrak{n}_-)$ are $\beta_1 = \alpha_{i_1}, \beta_2 = s_{i_1}(\alpha_{i_2}), \dots, \beta_k = s_{i_1} \dots s_{i_{N-1}}(\alpha_{i_N}).$

Presentation of $U_q(\mathfrak{n}_+ \cap w(\mathfrak{n}_-))$ by adjoining Lusztig's root vectors

$$E_{\beta_1} = E_{i_1}, E_{\beta_2} = T_{s_{i_1}}(E_{i_2}), \dots, E_{\beta_N} = T_{s_{i_1}\dots s_{i_{N-1}}}(E_{i_N}).$$

- Quantum Weyl algebras.
- Quantum double Bruhat cells (nontrivial presentation)

$$R_q[G^{w,u}] = (\mathcal{U}_q(\mathfrak{n}_- \cap w(n_+))^{\mathrm{op}} \Join \mathcal{U}_q(\mathfrak{n}_+ \cap u(\mathfrak{n}_-))[E^{-1}].$$

Quantum Groups Spectra of Quantum Groups Definition of Quantum Nilpotent Algebras Lie Theory Examples UFD Property

UFD property

Theorem [Launois–Lenagan–Rigal] (2005-2006)

- All quantum nillpotent algebras are UFDs.
- $R_q[G]$ is a UFD for all every complex simple group G.

Technical point: The precise statement in the first part is that every quantum nilpotent algebra R is an H-UFD (every nonzero H-prime ideal of R contains a homogeneous prime element). Furthermore, R is a UFD provided that it is torsionfree (the subgroup of \mathbb{K}^* generated by the eigenvalues $\{\lambda_{kj} \mid k > j\}$ is torsionfree, where $h_k \cdot x_j = \lambda_{kj} x_j$).

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences Categorifications Poisson UFDs

Definitions on Cluster Algebras

[Fomin–Zelevinsky, 2001] A cluster algebra R is

- generated by an infinite set of generators grouped into embedded polynomial algebras K[y₁,..., y_N] ⊂ R ⊆ K[y₁^{±1},..., y_N^{±1}], clusters.
- Its clusters are obtained from each other by successive mutations $(y_1, \ldots, y_{k-1}, y_k, y_{k+1}, \ldots, y_N) \mapsto (y_1, \ldots, y_{k-1}, y'_k, y_{k+1}, \ldots, y_N)$

$$y_k' = rac{ ext{monomial}_1 + ext{monomial}_2}{y_k}$$

where gcd(monomial₁, monomial₂) = gcd(y_k , monomial_i) = 1. A **quantum cluster algebra** R: replace polynomial rings by quantum tori $\mathbb{K}\langle y_1, \ldots, y_N \rangle / (y_i y_k - q_{ik} y_k y_i), q_{ik} \in \mathbb{K}^{\times}$.

Exact powers irrelevant will be just powers in unique factorizations.

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences Categorifications Poisson UFDs

Clusters on Quantum Nilpotent Algebras

Theorem [Goodearl-Y] (2014)

R= an arbitrary quantum nilpotent algebra. Chain of subalgebras $R_1\subset R_2\subset\ldots\subset R_N.$

- Each R_k has a unique homogeneous (under H) prime element y_k that does not belong to R_{k-1} .
- Under mild conditions, each such quantum nilpotent algebra R has a quantum cluster algebra structure with initial cluster (y_1, \ldots, y_N) .
- For τ ∈ S_N, adjoin the generators of R in the order x_{τ(1)},..., x_{τ(N)}. Chain of subalgebras R_{τ,1} ⊂ R_{τ,2} ⊂ ... ⊂ R_{τ,N}. The sequence of primes (y_{τ,1},..., y_{τ,N}) is another cluster Σ_τ.
- The cluster algebra R is generated by the primes in the finitely many clusters Σ_{τ} for $\tau \in S_N$.

Commutative UFDs in Cluster Algebra setting in Geiss-Leclerc-Schröer but too many primes, no idea which ones are cluster variables.

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras **Applications** Maximal Green Sequences Categorifications Poisson UFDs

Applications

Berenstein-Zelevinsky Conjecture [Goodearl-Y 2016]

For all complex simple Lie groups G and Weyl groups elements w and u, the quantized coordinate ring of the double Bruhat cell $R_q[G^{w,u}]$ has a canonical cluster algebra structure.

Theorem [GY, 2014]

For all symmetrizable Kac–Moody algebras \mathfrak{g} and Weyl group elements w, $U_q(\mathfrak{n}_+ \cap w(\mathfrak{n}_-))$ has a cluster algebra structure.

Previously proved by Geiss-Leclerc-Schröer for symmetric Kac-Moody algebras g. Other Applications: Quantum Weyl algebras.

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences Categorifications Poisson UFDs

Maximal green sequences I

Notation for the elements of S_N : $\tau = [\tau(1), \ldots, \tau(N)]$.

Procedure. Pull the number 1 all the way to the right (preserving the order of the other numbers), then pull the number 2 to the right just after the N, ..., at the end pull the number N - 1 to the right after the N:

$$id = [\underbrace{1}, \underbrace{2}, 3, \dots, N] \mapsto \dots \mapsto \\ [\underbrace{2}, 3, \dots, N, \underbrace{1}] \mapsto \dots \mapsto \\ [3, \dots, N, \underbrace{2}, \underbrace{1}] \mapsto \dots \mapsto \\ [N - 1, N, \dots, 2, 1] \mapsto \dots \mapsto \\ [N, N - 1, \dots, 2, 1] = w_{\circ}.$$

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences Categorifications Poisson UFDs

Maximal green sequences II

Theorem [Y]

For each quantum nilpotent algebra R the sequence of clusters $\Sigma_{\mathrm{id}} \to \ldots \to \Sigma_{w_{\circ}}$ is a maximal green sequence of mutations of length

$$\binom{n_1}{2} + \cdots + \binom{n_1}{2}$$

At each step the two clusters are either related by a one-step mutation or are identical.

Applying, results of Keller, gives a formula for the Donaldson–Thomas invariant of the corresponding 3-Calabi–Yau category.

Notes: (1) These cluster algebras are of **very** infinite type! (2) No explicit mutation of quivers in the proof. **Red/green vertices** come from **positive/negative powers** of factorizations into primes.

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences **Categorifications** Poisson UFDs

Categorifications

- Abelian Categorifications of Cluster Algebras: Initiated by Buan, Marsh, Reineke, Reiten and Todorov.
- Monoidal Categorifications of Cluster Algebras: Axiomatized by Hernandez–Leclerc.
- Explicit Abelian Categorifications of U_q(n₊ ∩ w(n₋)) constructed by Geiss–Leclerc–Schröer, g= symmetric KM.
- Monoidal Categorifications of U_q(n₊ ∩ w(n₋)) by Kang–Kashiwara–Kim–Oh (representations of Khovanov–Lauda–Rouquier algebras) and Qin, g= symmetric KM.
- **Problem**. Construct explicit Abelian and Monoidal Categorifications for all quantum nilpotent algebras. Various applications to Lie theory (canonical bases).

Role of factoriality of the algebra? Trick: establish properties of particular sequence of mutations (e.g. a green sequence), and then prove that this implies properties of all mutations.

Definitions: Cluster Algebras Clusters on Quantum Nilpotent Algebras Applications Maximal Green Sequences Categorifications Poisson UFDs

Poisson UFDs

A similar concept of **Poisson UFDs**. In the case of coordinate rings, geometric methods using **Poisson manifolds**.

Applications to **Discriminants** of orders in central simple algebras and **Cluster Algebras**.

Many classes of examples, based on **Poisson Lie groups** and **Poisson homogeneous spaces**.