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There are only few categories of (possibly infinitely generated) modules all of whose
modules decompose into direct sums of small submodules. The picture changes com-
pletely when direct sums are replaced by transfinite extensions. Starting from [2], many
classes C of modules were shown to be deconstructible, that is, each of their modules
expressible as a transfinite extension of small modules from C. The deconstructibility
implies existence of C-precovers, hence makes C fit in the machinery of relative homo-
logical algebra [5], [6]. While deconstructible classes appeared to be ubiquitous, some
important non-precovering classes of modules have gradually emerged, first under extra
set-theoretic assumptions [4], and then in ZFC.

The class of all flat Mittag-Leffler modules over any non-perfect ring is an example
of a non-precovering class [1]. Moreover, it is just the zero dimensional instance (for
T = R and n = 0) of non-precovering of the class of all locally T-free modules, where
T is any n-tilting module which is not ) -pure split. The phenomenon occurs even for
finite dimensional algebras, e.g., when R is hereditary, of infinite representation type,
and T is the Lukas tilting module.

A key tool in [1] is the construction of an appropriate tree module, [8]. Saroch has
recently generalized this construction in order to solve an old problem by Auslander
on the existence of almost split sequences, cf. [2] and [7].
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