
Definitions & Basics
Better approximations?

Locally very flat modules

Very Flat, Locally Very Flat, and
Contraadjusted Modules
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Introducing the classes

Throughout the whole talk R = commutative associative ring
(with a unit), module = R-module.

R[s−1] = localization of R in the multiplicative set {1, s, s2, . . . }

Definition (L. Positselski: Contraherent cosheaves,
[arXiv:1209.2995])

A module C is called contraadjusted if for every s ∈ R,

Ext1
R(R[s−1],C ) = 0.

A module V is very flat if

Ext1
R(V ,C ) = 0

for every contraadjusted module C .
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The origin of the classes

A bit of geometric motivation:

Theorem

If U, V are open affine subschemes of a scheme X satisfying
U ⊆ V , then the OX (V )-module OX (U) is very flat.
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Cotorsion pair (VF , CA)

We denote VF = class of all very flat modules, CA = all
contraadjusted modules.

Directly from the definition, the classes in question form a
cotorsion pair (VF , CA); since this pair is generated by a set
(namely {R[s−1] | s ∈ R}), by the well known machinery (recall
the preceding talk!), there are automatically module
approximations at our disposal: In particular, for each module M,
there are C ∈ CA and V ∈ VF , which fit into the exact sequence

0→ M → C → V → 0

(special CA-preenvelope of M).
Similarly, for each module M we have the sequence

0→ C → V → M → 0

with C ∈ CA, V ∈ VF (special VF-precover).
Alexander Slávik (joint work with Jan Trlifaj) Very Flat, Locally Very Flat, and Contraadjusted Modules



Definitions & Basics
Better approximations?

Locally very flat modules

Some examples

Some non-trivial examples in Abelian groups:

Example

As a group, G = Z[i ][(2 + i)−1] is very flat (of rank 2); in fact,
there is a non-split exact sequence

0→ Z→ G → Z[5−1]→ 0.

Example

The torsion group ⊕
p prime

Z/pZ

is contraadjusted, but not cotorsion.

Still searching for examples, i.e. from VF ∩ CA.
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Envelopes & Covers

The existence of envelopes and covers is neither rare, nor really
common. Some examples:

Injective envelopes (always exist)

Cotorsion envelopes (always exist)

Projective covers (only for perfect rings)

Flat covers (always exist).

Recall:

Theorem (Enochs, Xu)

If the class A in the cotorsion pair (A,B) is closed under direct
limits, then it is covering.

It is suspected (Enochs) that the converse is true as well.
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Very flat covers

From now on, R = Noetherian commutative ring.

Theorem (S.-Trlifaj)

Let R be a Noetherian ring. If the class VF is covering, then the
spectrum of R is finite.

If further R is a domain, then the following are equivalent:

VF is a covering class.

R has finite spectrum.

Each flat module is very flat.

The equivalence is most likely true for all Noetherian rings.

If R has finite spectrum, then its Krull dimension does not
exceed 1.
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Contraadjusted envelopes

Theorem (S.-Trlifaj)

Let R be a Noetherian ring. If the class CA is enveloping, then the
spectrum of R is finite.

If further R is a domain, then the following are equivalent:

CA is an enveloping class.

R has finite spectrum.

Each contraadjusted module is cotorsion.
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Introducing locally very flat modules

Definition

We call a module M locally very flat, if M possesses a system S of
countably presented very flat submodules such that

0 ∈ S,

for each countable set X ⊆ M there is S ∈ S satisfying
X ⊆ S ,

S is closed under unions of countable chains.

LV = class of all locally very flat modules.

An analogous class is formed by the flat Mittag-Leffler modules
(from the preceding talk!), which are obtained by the replacement
“very flat” → “projective” in the definition above. FM = class of
all flat Mittag-Leffler modules.
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Similarities between LV and FM

For Dedekind domains, we know a bit more about the class LV
(an analog of so-called Pontryagin criterion):

Theorem (S.-Trlifaj)

Let R be a Dedekind domain. The following are equivalent for a
module M:

M ∈ LV,

For every finite set F ⊆ M, there is a countable generated
very flat pure submodule V ⊆ M with F ⊆ V .

Each finite rank submodule of M is very flat.
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Approximation properties of LV

Flat Mittag-Leffler modules form a well-known “pathological”
class: Although it “looks like” a left class in a cotorsion pair, it is
not precovering for non-perfect rings (Angeleri-Šaroch-Trlifaj
2014).

The analogy we have for locally very flat modules is the following:

Theorem (S.-Trlifaj)

For a Noetherian ring R, if the class LV is precovering, then the
spectrum of R is finite.

For R a domain, the reverse implication holds (plus all the other
equivalent conditions).

Alexander Slávik (joint work with Jan Trlifaj) Very Flat, Locally Very Flat, and Contraadjusted Modules



Definitions & Basics
Better approximations?

Locally very flat modules

The End

More to be found at [arXiv:1601.00783].

Questions? Comments?
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