Very Flat, Locally Very Flat, and Contraadjusted Modules

Alexander Slávik (joint work with Jan Trlifaj)

Charles University in Prague, Faculty of Mathematics and Physics

27th April 2016

Introducing the classes

Throughout the whole talk R = commutative associative ring (with a unit), module = R-module.

 $R[s^{-1}] =$ localization of R in the multiplicative set $\{1, s, s^2, \dots\}$

Definition (L. Positselski: Contraherent cosheaves, [arXiv:1209.2995])

A module C is called *contraadjusted* if for every $s \in R$,

 $\mathsf{Ext}^1_R(R[s^{-1}], C) = 0.$

A module V is very flat if

 $\operatorname{Ext}^1_R(V,C) = 0$

for every contraadjusted module C.

Alexander Slávik (joint work with Jan Trlifaj)

Very Flat, Locally Very Flat, and Contraadjusted Modules

The origin of the classes

A bit of geometric motivation:

Theorem

If U, V are open affine subschemes of a scheme X satisfying $U \subseteq V$, then the $\mathcal{O}_X(V)$ -module $\mathcal{O}_X(U)$ is very flat.

Cotorsion pair $(\mathcal{VF}, \mathcal{CA})$

We denote $\mathcal{VF}=$ class of all very flat modules, $\mathcal{CA}=$ all contraadjusted modules.

Directly from the definition, the classes in question form a cotorsion pair $(\mathcal{VF}, \mathcal{CA})$; since this pair is generated by a *set* (namely $\{R[s^{-1}] \mid s \in R\}$), by the well known machinery (recall the preceding talk!), there are automatically module approximations at our disposal: In particular, for each module M, there are $C \in \mathcal{CA}$ and $V \in \mathcal{VF}$, which fit into the exact sequence

 $0 \rightarrow M \rightarrow C \rightarrow V \rightarrow 0$

(special CA-preenvelope of M).

Similarly, for each module M we have the sequence

$$0 \rightarrow C \rightarrow V \rightarrow M \rightarrow 0$$

with $C \in CA$, $V \in VF$ (special VF-precover).

Some examples

Some non-trivial examples in Abelian groups:

Example

As a group, $G = \mathbb{Z}[i][(2+i)^{-1}]$ is very flat (of rank 2); in fact, there is a non-split exact sequence

$$0 \to \mathbb{Z} \to G \to \mathbb{Z}[5^{-1}] \to 0.$$

Example

The torsion group

$$\bigoplus_{n=1}^{\infty} \mathbb{Z}/p\mathbb{Z}$$

p prime

is contraadjusted, but not cotorsion.

Still searching for examples, i.e. from $\mathcal{VF} \cap \mathcal{CA}$.

Alexander Slávik (joint work with Jan Trlifaj) Very Flat, Locally Very Flat, and Contraadjusted Modules

Envelopes & Covers

The existence of envelopes and covers is neither rare, nor really common. Some examples:

- Injective envelopes (always exist)
- Cotorsion envelopes (always exist)
- Projective covers (only for perfect rings)
- Flat covers (always exist).

Recall:

Theorem (Enochs, Xu)

If the class A in the cotorsion pair (A, B) is closed under direct limits, then it is covering.

It is suspected (Enochs) that the converse is true as well.

Very flat covers

From now on, R = Noetherian commutative ring.

Theorem (S.-Trlifaj)

Let R be a Noetherian ring. If the class \mathcal{VF} is covering, then the spectrum of R is finite.

If further R is a domain, then the following are equivalent:

- \mathcal{VF} is a covering class.
- R has finite spectrum.
- Each flat module is very flat.

The equivalence is most likely true for all Noetherian rings.

If R has finite spectrum, then its Krull dimension does not exceed 1.

Contraadjusted envelopes

Theorem (S.-Trlifaj)

Let R be a Noetherian ring. If the class CA is enveloping, then the spectrum of R is finite.

If further R is a domain, then the following are equivalent:

- CA is an enveloping class.
- R has finite spectrum.
- Each contraadjusted module is cotorsion.

Introducing locally very flat modules

Definition

We call a module *M* locally very flat, if *M* possesses a system S of countably presented very flat submodules such that

- $\bullet \ 0 \in \mathcal{S},$
- for each countable set $X \subseteq M$ there is $S \in S$ satisfying $X \subseteq S$,
- \mathcal{S} is closed under unions of countable chains.

 $\mathcal{LV}=\text{class}$ of all locally very flat modules.

An analogous class is formed by the *flat Mittag-Leffler modules* (from the preceding talk!), which are obtained by the replacement "very flat" \rightarrow "projective" in the definition above. $\mathcal{FM} =$ class of all flat Mittag-Leffler modules.

Similarities between \mathcal{LV} and \mathcal{FM}

For Dedekind domains, we know a bit more about the class \mathcal{LV} (an analog of so-called Pontryagin criterion):

Theorem (S.-Trlifaj)

Let R be a Dedekind domain. The following are equivalent for a module M:

- $M \in \mathcal{LV}$,
- For every finite set F ⊆ M, there is a countable generated very flat pure submodule V ⊆ M with F ⊆ V.
- Each finite rank submodule of M is very flat.

Approximation properties of $\mathcal{L}\mathcal{V}$

Flat Mittag-Leffler modules form a well-known "pathological" class: Although it "looks like" a left class in a cotorsion pair, it is not precovering for non-perfect rings (Angeleri-Šaroch-Trlifaj 2014).

The analogy we have for locally very flat modules is the following:

Theorem (S.-Trlifaj)

For a Noetherian ring R, if the class \mathcal{LV} is precovering, then the spectrum of R is finite.

For R a domain, the reverse implication holds (plus all the other equivalent conditions).

The End

More to be found at [arXiv:1601.00783].

Questions? Comments?

Alexander Slávik (joint work with Jan Trlifaj) Very Flat, Locally Very Flat, and Contraadjusted Modules