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Notation and Definitions

We’ll pick a few conventions and stick to them throughout:

1 K is a field of arbitrary characteristic.
2 All modules are left modules.
3 R = K〈x , y〉/(xy − 1) is the Jacobson-Toeplitz Algebra.

I = Soc(R).
4 Γ is the quiver:

Note that R ∼= LK(Γ), the Leavitt path algebra of Γ.
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Previous Work

Theorem
Let I denote the socle of R. Then the following hold:

1 I can be written as I =
⊕∞

i=1 Si , where each
Si = R(y i−1x i−1 − y ix i) is a faithful simple R-module.

2 Si
∼= S1 for all i ≥ 1. In fact, if we let vi = y i(1− yx) for all

i ≥ 0, then {vi}i≥0 is a K-basis for S1, with yvi = vi+1,
xvi+1 = vi , and xv0 = 0 for all i ≥ 0.

3 I is the two-sided ideal generated by 1− yx, and is the
unique minimal two-sided ideal of R.

Comments
1 See [Alahmedi et. al. 2013], [Bavula 2010], [Colak 2011].
2 R/I ∼= K[x , x−1].
3 As a module over K[x ] ⊂ R, S1 is the injective hull of

K[x ]/(x).
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Previous Work (Cont.)

From the Leavitt Path Algebra Literature
1 Simple modules: S1 and K[x , x−1]/(p(x)), where p(x) is

an irreducible element of K[x , x−1] [Ara, Rang. 2014].
2 R is left hereditary [Ara et. al 2007].
3 The module of finitely-generated projectives is generated

by R and S1, with the relation R ⊕ S1
∼= R [Ara et. al.

2007].
4 Ext groups between Chen modules are known [Abrams et.

al. 2015].
5 The two-sided ideals of R can be computed [Colak 2011].
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Left Ideals of R

Theorem (Iovanov, Sistko 2016)

Every left ideal of R can be written as Rp(x)⊕ Σ, where p(x) is
a monic polynomial and Σ is contained in the socle I. There are
canonical choices for p(x) and Σ.

Comments
1 p(x) is unique if chosen of minimal degree (note that p ≡ 0

if and only if the left ideal is semisimple.)
2 Σ is determined by its socle as a K[x ]-module.
3 Since R is hereditary, this classifies arbitrary projectives.
4 Corollary: Every left ideal is either semisimple or finitely

generated.
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Finite-Length Modules and Ext Spaces

Theorem (Iovanov, Sistko 2016)
Let M be a finite-length R-module. Then the following hold:

1 M is the middle term of a short exact sequence
0→ S⊕k

1 → M → F → 0 , for some k ∈ N and
finite-dimensional R-module F .

2 Let p be a (not necessarily irreducible) Laurent polynomial
in x. Then Ext1(K[x , x−1]/(p),S1) ∼= K[T ]/(p∗(T )), where
p∗ is the polynomial defined by p∗(y) = p(x)ydeg(p)

∈ K[y ] ⊆ R.

Comments
1 Extends results of [Abrams et. al. 2015].
2 Can use the fact that R is hereditary to get formulas for

dimK Ext1(M,N).
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An Equivalence of Categories

The Category WSP
1 Any R-module M fits into a short exact sequence

0→ IM σ−→ M π−→ M/IM → 0. Note that IM is semisimple
projective, hence injective as a K[x ]-module.

2 Objects of WSP: Pairs (M, α), α : M/IM → M a
K[x ]-module morphism with π ◦ α = idM/IM .

3 Morphisms of WSP: (M, α)→ (N, β) is an R-module
morphism ϕ : M → N with Im(ϕ ◦ α) ⊂ β.

The Category LRep(Γ)

The full subcategory of representations of Γ:

on which f acts as an invertible map.
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An Equivalence of Categories (Cont.)

Theorem (Iovanov, Sistko 2016)

The categories WSP and LRep(Γ) are equivalent.

Comments
1 LRep(Γ) is just the category of representations of

KΓ[t ]/(tf − 1, ft − 1).
2 Realizes the category of R-modules as a quotient of

LRep(Γ).
3 Result of similar flavor due to [Ara, Brustenga 2010].
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Kaplansky’s Direct Finiteness Conjecture

Direct Finiteness Conjecture
Let G be a (countable discrete) group. If a,b ∈ KG satisfy
ab = 1, then ba = 1 as well.

Known Results
1 True if char(K) = 0 [Montgomery 1969].
2 True in arbitrary characteristic for “finitely-generated

residually finite”-by-sofic groups [Berlai 2015].
3 “Soficity” is difficult to check; there are no known examples

of non-sofic groups.
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Kaplansky’s Direct Finiteness Conjecture (Cont.)

R and the DFC
1 Suppose that a,b ∈ KG satisfy ab = 1 but ba 6= 1. Then

the map R → KG taking x 7→ a, y 7→ b is an injection.
2 KG then becomes a faithful representation of R.
3 Let Σ be the sum of all simple projective submodules of

KG, F ⊃ Σ the R-submodule of KG such that F/Σ is the
locally finite part of KG/Σ.

4 Σ ⊂ F ⊂ KG is a filtration of left R-modules, and right
KG-modules.

Question
What sorts of G-representations must Σ, F , F/Σ, and KG/F
be?
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Gratitude Slide

Thanks for listening!
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