The Jacobson-Toeplitz Algebra and Direct Finiteness

Alex Sistko Miodrag Iovanov

Department of Mathematics University of Iowa

April 27, 2016 Auslander Conference 2016

Alex Sistko The Jacobson-Toeplitz Algebra and Direct Finiteness

< □ > < 同 > < 三 > <

Notation and Definitions

We'll pick a few conventions and stick to them throughout:

- \bigcirc K is a field of arbitrary characteristic.
- All modules are left modules.
- $R = \mathbb{K}\langle x, y \rangle / (xy 1)$ is the Jacobson-Toeplitz Algebra. I = Soc(R).
- I is the quiver:

Note that $R \cong L_{\mathbb{K}}(\Gamma)$, the Leavitt path algebra of Γ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Previous Work

Theorem

Let I denote the socle of R. Then the following hold:

- I can be written as $I = \bigoplus_{i=1}^{\infty} S_i$, where each $S_i = R(y^{i-1}x^{i-1} y^ix^i)$ is a faithful simple *R*-module.
- 2 $S_i \cong S_1$ for all $i \ge 1$. In fact, if we let $v_i = y^i(1 yx)$ for all $i \ge 0$, then $\{v_i\}_{i\ge 0}$ is a \mathbb{K} -basis for S_1 , with $yv_i = v_{i+1}$, $xv_{i+1} = v_i$, and $xv_0 = 0$ for all $i \ge 0$.
- I is the two-sided ideal generated by 1 yx, and is the unique minimal two-sided ideal of R.

Comments

- 🔰 See [Alahmedi et. al. 2013], [Bavula 2010], [Colak 2011].
- $P/I \cong \mathbb{K}[x, x^{-1}].$
- Solution As a module over $\mathbb{K}[x] \subset R$, S_1 is the injective hull of $\mathbb{K}[x]/(x)$.

Previous Work

Theorem

Let I denote the socle of R. Then the following hold:

- I can be written as $I = \bigoplus_{i=1}^{\infty} S_i$, where each $S_i = R(y^{i-1}x^{i-1} y^ix^i)$ is a faithful simple *R*-module.
- 2 $S_i \cong S_1$ for all $i \ge 1$. In fact, if we let $v_i = y^i(1 yx)$ for all $i \ge 0$, then $\{v_i\}_{i\ge 0}$ is a \mathbb{K} -basis for S_1 , with $yv_i = v_{i+1}$, $xv_{i+1} = v_i$, and $xv_0 = 0$ for all $i \ge 0$.
- I is the two-sided ideal generated by 1 yx, and is the unique minimal two-sided ideal of R.

Comments

- See [Alahmedi et. al. 2013], [Bavula 2010], [Colak 2011].
- $\ \ \, @ \ \ \, R/I \cong \mathbb{K}[x,x^{-1}].$
- S As a module over K[x] ⊂ R, S₁ is the injective hull of K[x]/(x).

From the Leavitt Path Algebra Literature

- Simple modules: S_1 and $\mathbb{K}[x, x^{-1}]/(p(x))$, where p(x) is an irreducible element of $\mathbb{K}[x, x^{-1}]$ [Ara, Rang. 2014].
- Is left hereditary [Ara et. al 2007].
- The module of finitely-generated projectives is generated by *R* and *S*₁, with the relation *R* ⊕ *S*₁ ≅ *R* [Ara et. al. 2007].
- Ext groups between Chen modules are known [Abrams et. al. 2015].
- The two-sided ideals of R can be computed [Colak 2011].

ヘロト 人間 ト ヘヨト ヘヨト

Every left ideal of R can be written as $Rp(x) \oplus \Sigma$, where p(x) is a monic polynomial and Σ is contained in the socle I. There are canonical choices for p(x) and Σ .

Comments

- p(x) is unique if chosen of minimal degree (note that $p \equiv 0$ if and only if the left ideal is semisimple.)
- ② Σ is determined by its socle as a $\mathbb{K}[x]$ -module.
- Since R is hereditary, this classifies arbitrary projectives.
- Corollary: Every left ideal is either semisimple or finitely generated.

Every left ideal of R can be written as $Rp(x) \oplus \Sigma$, where p(x) is a monic polynomial and Σ is contained in the socle I. There are canonical choices for p(x) and Σ .

Comments

- p(x) is unique if chosen of minimal degree (note that $p \equiv 0$ if and only if the left ideal is semisimple.)
- **2** Σ is determined by its socle as a $\mathbb{K}[x]$ -module.
- Since *R* is hereditary, this classifies arbitrary projectives.
- Corollary: Every left ideal is either semisimple or finitely generated.

Let M be a finite-length R-module. Then the following hold:

- M is the middle term of a short exact sequence 0 → S₁^{⊕k} → M → F → 0, for some k ∈ N and finite-dimensional R-module F.
- 2 Let p be a (not necessarily irreducible) Laurent polynomial in x. Then $\operatorname{Ext}^1(\mathbb{K}[x, x^{-1}]/(p), S_1) \cong \mathbb{K}[T]/(p^*(T))$, where p^* is the polynomial defined by $p^*(y) = p(x)y^{\operatorname{deg}(p)} \in \mathbb{K}[y] \subseteq R$.

Comments

- Extends results of [Abrams et. al. 2015].
- 2 Can use the fact that *R* is hereditary to get formulas for dim_K Ext¹(*M*, *N*).

Let M be a finite-length R-module. Then the following hold:

- M is the middle term of a short exact sequence 0 → S₁^{⊕k} → M → F → 0, for some k ∈ N and finite-dimensional R-module F.
- 2 Let p be a (not necessarily irreducible) Laurent polynomial in x. Then $\operatorname{Ext}^1(\mathbb{K}[x, x^{-1}]/(p), S_1) \cong \mathbb{K}[T]/(p^*(T))$, where p^* is the polynomial defined by $p^*(y) = p(x)y^{\operatorname{deg}(p)} \in \mathbb{K}[y] \subseteq R$.

Comments

- Extends results of [Abrams et. al. 2015].
- Can use the fact that *R* is hereditary to get formulas for dim_K Ext¹(*M*, *N*).

The Category WSP

- Any *R*-module *M* fits into a short exact sequence 0 → *IM* ^σ→ *M* ^π→ *M*/*IM* → 0. Note that *IM* is semisimple projective, hence injective as a K[x]-module.
- **Objects of WSP:** Pairs (M, α) , $\alpha : M/IM \to M$ a $\mathbb{K}[x]$ -module morphism with $\pi \circ \alpha = \mathrm{id}_{M/IM}$.
- Solution Morphisms of WSP: $(M, \alpha) \rightarrow (N, \beta)$ is an *R*-module morphism $\varphi : M \rightarrow N$ with $Im(\varphi \circ \alpha) \subset \beta$.

The Category LRep(Γ)

The full subcategory of representations of Γ:

on which f acts as an invertible map.

The categories WSP and LRep(Γ) are equivalent.

Comments

- LRep(Γ) is just the category of representations of $\mathbb{K}\Gamma[t]/(tf-1, ft-1)$.
- Realizes the category of *R*-modules as a quotient of LRep(Γ).
- Result of similar flavor due to [Ara, Brustenga 2010].

The categories WSP and LRep(Γ) are equivalent.

Comments

- LRep(Γ) is just the category of representations of $\mathbb{K}\Gamma[t]/(tf-1, ft-1)$.
- Realizes the category of *R*-modules as a quotient of LRep(Γ).
- 8 Result of similar flavor due to [Ara, Brustenga 2010].

Direct Finiteness Conjecture

Let *G* be a (countable discrete) group. If $a, b \in \mathbb{K}G$ satisfy ab = 1, then ba = 1 as well.

Known Results

- 1969]. True if char(\mathbb{K}) = 0 [Montgomery 1969].
- 2 True in arbitrary characteristic for "finitely-generated residually finite"-by-sofic groups [Berlai 2015].
- ③ "Soficity" is difficult to check; there are no known examples of non-sofic groups.

(日) (同) (日) (日)

Direct Finiteness Conjecture

Let *G* be a (countable discrete) group. If $a, b \in \mathbb{K}G$ satisfy ab = 1, then ba = 1 as well.

Known Results

- **1** True if char(\mathbb{K}) = 0 [Montgomery 1969].
- True in arbitrary characteristic for "finitely-generated residually finite"-by-sofic groups [Berlai 2015].
- Soficity" is difficult to check; there are no known examples of non-sofic groups.

Kaplansky's Direct Finiteness Conjecture (Cont.)

R and the DFC

- Suppose that $a, b \in \mathbb{K}G$ satisfy ab = 1 but $ba \neq 1$. Then the map $R \to \mathbb{K}G$ taking $x \mapsto a, y \mapsto b$ is an injection.
- 2 $\mathbb{K}G$ then becomes a faithful representation of R.
- Solution Set Let Σ be the sum of all simple projective submodules of KG, F ⊃ Σ the *R*-submodule of KG such that F/Σ is the locally finite part of KG/Σ.
- S ⊂ F ⊂ KG is a filtration of left *R*-modules, and right KG-modules.

Question

What sorts of *G*-representations must Σ , *F*, *F*/ Σ , and $\mathbb{K}G/F$ be?

イロト 不得 とくほと くほう

Thanks for listening!

・ロト ・回ト ・ヨト ・ヨト

ъ

References

- G. Abrams et. al., *Extensions of Simples Modules over Leavitt Path Algebras*, J. Algebra **431** (2015), 78-106.
- A. Alahmedi et. al., Structure of Leavitt Path Algebras of Polynomial Growth, Proc. Natl. Acad. Sci. USA 110 (2013), no. 38, 15222–15224.
- P. Ara, M. Brustenga, *Module Theory over Leavitt Path Algebras and K-Theory*, J. Pure Appl. Algebra **214** (2010), No. 7, 1131–1151.
- P. Ara, M.A. Moreno, E. Pardo, *Nonstable K-Theory for graph algebras*, Algebr. Represent. Theory **10** (2007), No.2, 157–178.
- P. Ara, M. Rangaswamy, *Finitely Presented Simple Modules over Leavitt Path Algebras*, J. Algebra **417** (2014), 333–352.
- V. Bavula, The Algebra of One-Sided Inverses of a Polynomial Algebra, J. Pure Appl. Algebra 214, No. 10 (2010), 1874–1897.

References (Cont.)

- F. Berlai, *Groups satisfying Kaplansky's stable finiteness conjecture*, (2015) arXiv/math:1501.02893v1.
- P. Colak, *Two-Sided Ideals in Leavitt Path Algebras*, J. Algebra Appl. **10** (2011), No. 5, 801.
- Dykema, K. et. al. "Finitely Presented Groups Related to Kaplansky's Direct Finiteness Conjecture." 2012, arxiv.org.
- Elek, G. and Szabo, E. "Sofic Groups and Direct Finiteness." 2004, arxiv.org.
- Iovanov, M. and Sistko, A. "On The Toeplitz-Jacobson Algebra and Direct Finiteness." Preprint. Available on arxiv.org.
- I. Kaplansky, *Fields and Rings*, University of Chicago Press, Chicago, IL, 1969.
- S. Montgomery, *Left and Right Inverses in Group Algebras*, Bull. Amer. Math. Soc. **75** (1969), No. 3, 539–540.