An Adjoint to the Auslander-Gruson-Jensen Functor

Jeremy Russell

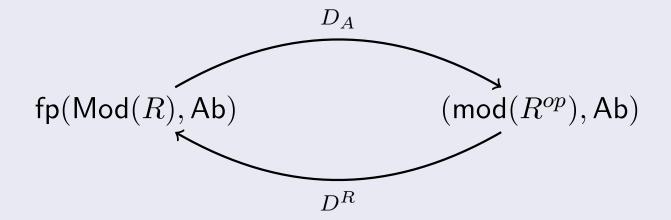
The College of New Jersey

Maurice Auslander International Conference Woods Hole, MA April 30, 2016

Main Result

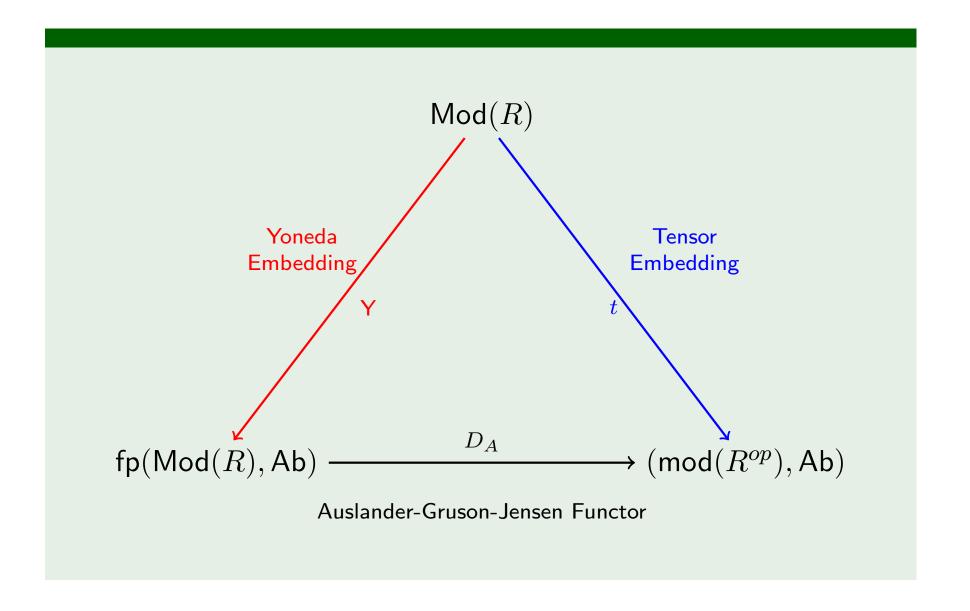
Theorem

The Auslander-Gruson-Jensen functor \mathcal{D}_A admits a fully faithful adjoint \mathcal{D}^R



Hence the category $(\text{mod}(R^{op}), \text{Ab})$ embeds into the category of finitely presented functors fp(Mod(R), Ab).

Simple Goal: Complete the Diagram of Adjunctions



Notation

Ab - category of abelian groups.

R - ring.

Mod(R) - category of right modules.

mod(R) - category of finitely presented right modules.

Left modules are right modules over R^{op} .

 $(\text{mod}(R^{op}), \text{Ab})$ - category of all additive covariant functors.

"Functors"

Convention Concerning Functors

- The word functor will always mean additive functor.
- The morphisms in all functor categories considered will be the natural transformations between functors.
- The representable functors

$$\mathsf{Hom}_R(X, \underline{\hspace{1em}}) \colon \mathsf{Mod}(R) \longrightarrow \mathsf{Ab}$$

will be abbreviated by $(X, \underline{\hspace{0.1cm}})$.

■ If the word contravariant is not used, the functor is assumed to be covariant.

Yoneda's Lemma

Lemma (Yoneda)

For any $X \in \mathsf{Mod}(R)$ and any functor $F \colon \mathsf{Mod}(R) \to \mathsf{Ab}$,

$$\mathsf{Nat}((X, \underline{\hspace{1ex}}), F) \cong F(X)$$

- **1** The isomorphism is defined by $\alpha \mapsto \alpha_X(1_X)$.
- f 2 The isomorphism is natural in both X and F.

Finitely Presented Functors

Definition (Auslander)

A functor $F \colon \mathsf{Mod}(R) \to \mathsf{Ab}$ is called **finitely presented** if there exists a sequence of natural transformations

$$(Y, \underline{\hspace{0.1cm}}) \to (X, \underline{\hspace{0.1cm}}) \to F \to 0$$

such that for any $A \in Mod(R)$, the sequence of abelian groups

$$(Y,A) \to (X,A) \to F(A) \to 0$$

is exact.

Notation:

fp(Mod(R), Ab) = category of finitely presented functors.

Theorem (Auslander)

fp(Mod(R), Ab) is an abelian category with enough projectives.

Exactness

$$F \to G \to H$$

exact in fp(Mod(R), Ab)

$$F(A) \to G(A) \to H(A)$$

exact in Ab \forall_A

Projectives: The projectives are the representable functors.

Resolutions: Any finitely presented functor has a projective resolution of the form:

$$0 \rightarrow (Z, _) \rightarrow (Y, _) \rightarrow (X, _) \rightarrow F \rightarrow 0$$

Injectives in fp(Mod(R), Ab)

Proposition (Auslander)

A functor F in fp(Mod(R), Ab) is injective if and only if F is right exact.

Theorem (Gentle)

 $\mathsf{fp}(\mathsf{Mod}(R),\mathsf{Ab})$ has enough injectives. The injectives are precisely the functors F for which there exists projective modules P,Q and an exact sequence

$$(Q, \underline{\hspace{0.1cm}}) \to (P, \underline{\hspace{0.1cm}}) \to F \to 0$$

The Yoneda Embedding

The functor

$$Y : \mathsf{Mod}(R) \longrightarrow \mathsf{fp}(\mathsf{Mod}(R), \mathsf{Ab})$$

given by

$$Y(X) = (X, \underline{\hspace{1ex}})$$

is a contravariant embedding, i.e. fully-faithful.

This is called the **Yoneda Embedding**.

Construction of $w : \mathsf{fp}(\mathsf{Mod}(R), \mathsf{Ab}) \to \mathsf{Mod}(R)$

Auslander constructed a contravariant functor

$$w \colon \mathsf{fp}(\mathsf{Mod}(R), \mathsf{Ab}) \to \mathsf{Mod}(R)$$

as follows

Step 1: Start with presentation

$$(Y, \underline{\hspace{0.1cm}}) \to (X, \underline{\hspace{0.1cm}}) \to F \to 0$$

Step 2: By Yoneda's lemma $(Y, _) \to (X, _)$ comes from a unique morphism

$$X \to Y$$

Step 3: The exact sequence

$$0 \to w(F) \to X \to Y$$

completely determines w.

Properties of w

Proposition (Auslander)

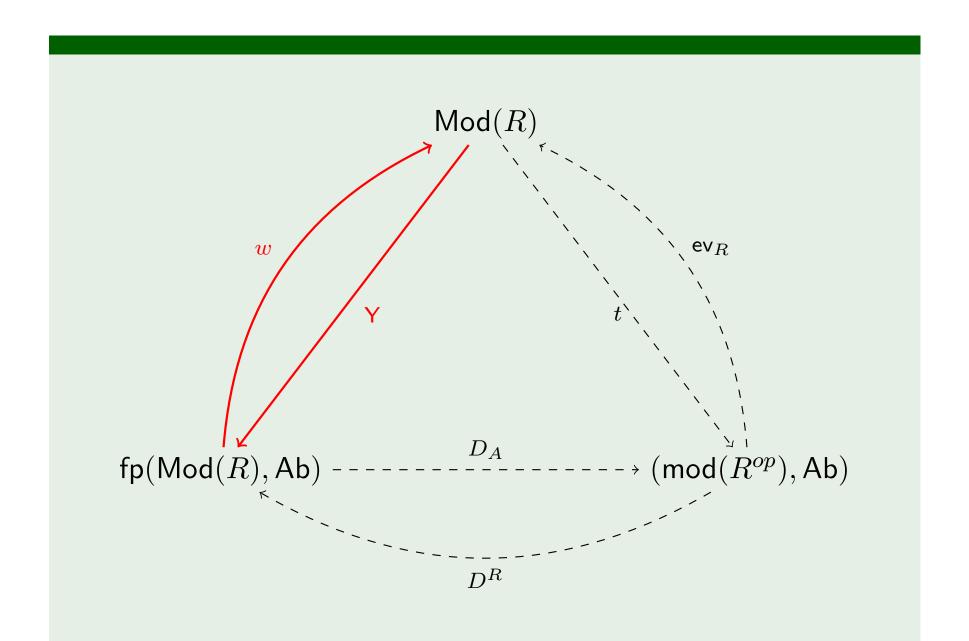
- $oldsymbol{1}$ w does not depend on the choice of presentation.
- w is exact.
- $w(X, _) = X.$
- $\underline{\mathbf{w}}$ is an adjoint to the Yoneda embedding

$$Y : Mod(R) \longrightarrow fp(Mod(R), Ab)$$

Remark

Property 4 is not explicitly stated by Auslander but his discussion regarding w implies the result immediately.

First Adjunction



$(\mathsf{mod}(R^{op}),\mathsf{Ab})$

Theorem (?)

 $(mod(R^{op}), Ab)$ is abelian and in fact Grothendieck. Hence it has enough injectives and in fact has injective envelopes.

Exactness:

$$F \to G \to H$$

exact in $(\text{mod}(R^{op}), \text{Ab})$

$$F(A) \to G(A) \to H(A)$$

exact in Ab \forall_A

Pure Exact Sequences

Definition

A pure exact sequence is a short exact sequence of modules

$$0 \to A \to B \to C \to 0$$

such that

$$0 \to A \otimes _ \to B \otimes _ \to C \otimes _ \to 0$$

is exact in $(\text{mod}(R^{op}), \text{Ab})$.

Pure Injectives

Definition

A **pure injective** module M is any module which is injective with respect to pure exact sequences. That is given any pure exact sequence

$$0 \to A \to B \to C \to 0$$

the sequence

$$0 \to (C, M) \to (B, M) \to (A, M) \to 0$$

is exact.

Injectives in $(\text{mod}(R^{op}), \text{Ab})$

Theorem (Gruson, Jensen)

The injectives of $(\operatorname{mod}(R^{op}),\operatorname{Ab})$ are precisely the functors of the form $M\otimes _$ where M is pure injective.

Tensor Embedding

Theorem (Gruson, Jensen, Lenzing)

The covariant functor $t \colon \mathsf{Mod}(R) \longrightarrow (\mathsf{mod}(R^{op}), \mathsf{Ab})$ given by

$$t(M) = M \otimes$$

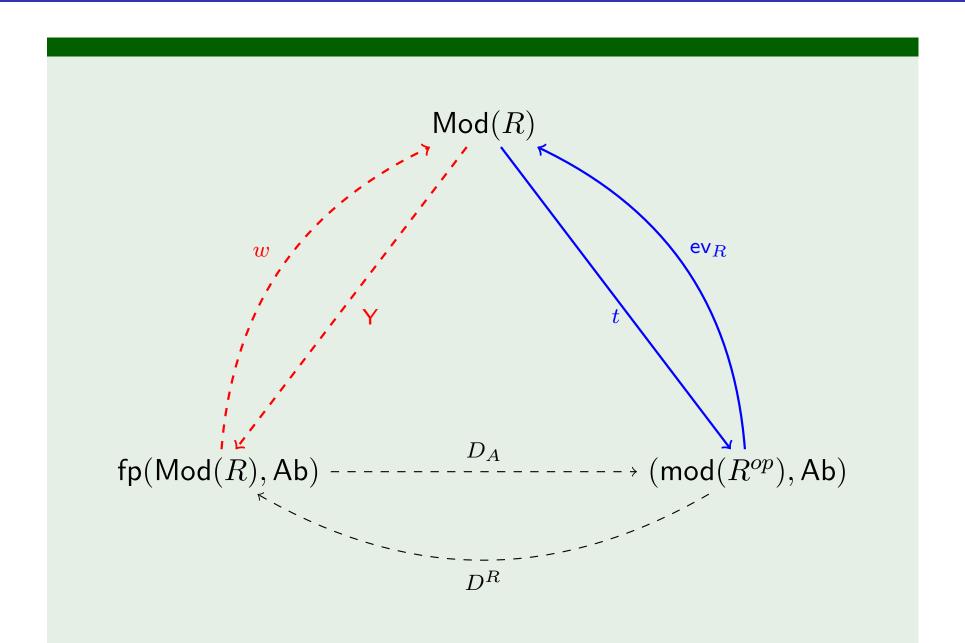
is an embedding, i.e fully faithful. Moreover, the functor t is the left adjoint to evaluation at the ring

$$\operatorname{ev}_R \colon (\operatorname{\mathsf{mod}}(R^{op}), \operatorname{\mathsf{Ab}}) \longrightarrow \operatorname{\mathsf{Mod}}(R)$$

Remark

As a result, given $\alpha\colon M\otimes __\to N\otimes _$ there is some $f\colon M\to N$ such that $\alpha=f\otimes _$.

Second Adjunction



Finitely Presented Tensor Functors

Theorem (Auslander)

Let V be any left module. Then

$$_ \otimes V \colon \mathsf{Mod}(R) \longrightarrow \mathsf{Ab}$$

is finitely presented if and only if V is finitely presented.

Proposition (Auslander)

The tensor functors $_ \otimes V$ for which $V \in \mathsf{mod}(R^{op})$ are injectives in $\mathsf{fp}(\mathsf{Mod}(R),\mathsf{Ab})$.

The Auslander-Gruson-Jensen Functor

Definition (Auslander-Gruson-Jensen)

Given any finitely presented functor

$$F \colon \mathsf{Mod}(R) \longrightarrow \mathsf{Ab}$$

the functor

$$D_AF \colon \mathsf{mod}(R^{op}) \longrightarrow \mathsf{Ab}$$

is defined by

$$D_AF(L) = \mathsf{Nat}(F, _ \otimes L)$$

The Auslander-Gruson-Jensen Functor

Theorem (Auslander-Gruson-Jensen)

The above determines an exact contravariant functor

$$D_A : \mathsf{fp}(\mathsf{Mod}(R), \mathsf{Ab}) \longrightarrow (\mathsf{mod}(R^{op}), \mathsf{Ab})$$

satisfying

- $D_A(X, \underline{\hspace{0.1cm}}) \cong X \otimes \underline{\hspace{0.1cm}}$
- $D_A(_\otimes V)\cong (V,_)$ for finitely presented V.

Definition

Define

$$D^R = L^0(\mathsf{Y} \circ \mathsf{ev}_R)$$

That is, given $F \colon \mathsf{mod}(R^{op}) \longrightarrow \mathsf{Ab}$ take any injective copresentation

$$0 \longrightarrow F \longrightarrow M \otimes _ \longrightarrow N \otimes _$$

 D^RF is completely determined by the exact sequence

$$(N, _) \longrightarrow (M, _) \longrightarrow D^R F \longrightarrow 0$$

$\overline{D_A D^R} \cong 1$

Step 1: Start with any injective copresentation

$$0 \longrightarrow F \longrightarrow M \otimes \underline{\quad} \xrightarrow{f \otimes \underline{\quad}} N \otimes \underline{\quad}$$

Step 2: Applying D^R yields exact sequence:

$$(N, \underline{\hspace{0.1cm}}) \xrightarrow{(f, \underline{\hspace{0.1cm}})} (M, \underline{\hspace{0.1cm}}) \longrightarrow D^{R}F \longrightarrow 0$$

Step 3: Apply the exact functor D_A yields exact sequence:

$$0 \longrightarrow D_A D^R F \longrightarrow M \otimes \underline{\quad} \xrightarrow{f \otimes \underline{\quad}} N \otimes \underline{\quad}$$

Take any two functors $F,G \in (\operatorname{mod}(R^{op}),\operatorname{Ab})$ and injective copresentations

$$0 \longrightarrow F \longrightarrow M \otimes \underline{\quad} \xrightarrow{f \otimes \underline{\quad}} N \otimes \underline{\quad}$$

$$0 \longrightarrow G \longrightarrow U \otimes \underline{\quad \xrightarrow{g \otimes \quad}} V \otimes \underline{\quad}$$

where M, N, U, V are all pure injective.

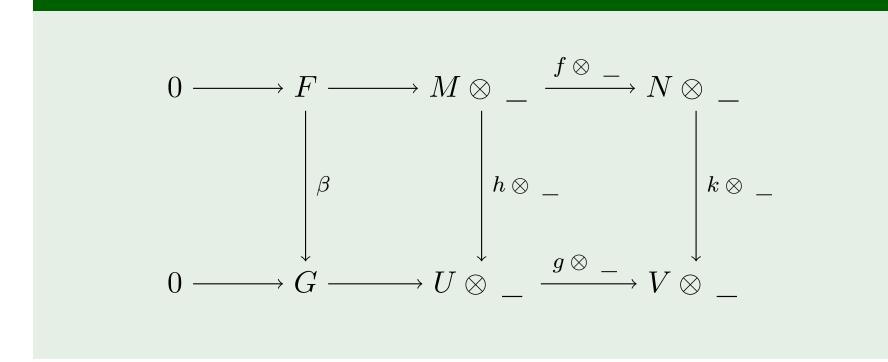
Applying \mathbb{D}^R yields the following pair of projective presentations

$$(V, \underline{\hspace{0.5cm}}) \xrightarrow{(g, \underline{\hspace{0.5cm}})} (U, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}G \longrightarrow 0$$

$$\downarrow (k, \underline{\hspace{0.5cm}}) \qquad \downarrow (h, \underline{\hspace{0.5cm}}) \qquad \downarrow \alpha$$

$$(N, \underline{\hspace{0.5cm}}) \xrightarrow{(f, \underline{\hspace{0.5cm}})} (M, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}F \longrightarrow 0$$

There corresponds in $(mod(R^{op}), Ab)$:



Apply D^R

$$(V, \underline{\hspace{0.5cm}}) \xrightarrow{(g, \underline{\hspace{0.5cm}})} (U, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}G \longrightarrow 0$$

$$\downarrow (k, \underline{\hspace{0.5cm}}) \qquad \downarrow (h, \underline{\hspace{0.5cm}}) \qquad \downarrow \mathcal{D}^{R}(\beta) = \alpha$$

$$(N, \underline{\hspace{0.5cm}}) \xrightarrow{(f, \underline{\hspace{0.5cm}})} (M, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}F \longrightarrow 0$$

Embedding (mod(R), Ab) into fp(Mod(R), Ab)

Proposition

The functor D^R is fully faithful.

What about D^RD_A ?

Maybe $D^R D_A \cong 1$?

Proposition

 $Ker(D_A) =$ all fp functors arising from pure exact sequences

Meaning of this?

In other words, $D_A F = 0$ if and only if there exists a pure exact sequence

$$0 \to X \to Y \to Z \to 0$$

and projective resolution

$$0 \rightarrow (Z, _) \rightarrow (Y, _) \rightarrow (X, _) \rightarrow F \rightarrow 0$$

 D_A is not faithful.

Relationship between $Im(D^R)$ and $Ker(D_A)$

Lemma

For any $G \in (\operatorname{mod}(R^{op}), \operatorname{Ab})$ and any $F \in \operatorname{Ker}(D_A)$

$$\mathsf{Nat}(D^RG,F)=0$$

Auslander's Blueprint

Theorem (Auslander)

For any finitely presented functor $F \colon \mathsf{Mod}(R) \to \mathsf{Ab}$ there exists an exact sequence

$$0 \longrightarrow F_0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} Yw(F) \longrightarrow F_1 \longrightarrow 0$$

where $w(F_0) \cong w(F_1) \cong 0$. This sequence is functorial in F.

Following Auslander's Blueprint

Theorem

For any finitely presented functor $F \colon \mathsf{Mod}(R) \to \mathsf{Ab}$ there is an exact sequence

$$0 \longrightarrow F_p \longrightarrow D^R D_A F \stackrel{\gamma}{\longrightarrow} F \longrightarrow F^p \longrightarrow 0$$

where $D_A(F_p) \cong D_A(F^p) \cong 0$, and hence arise from pure exact sequences. This sequence is functorial in F.

Constructing γ :

For any $X \in \mathsf{Mod}(R)$ from the injective copresentation

$$0 \longrightarrow X \otimes _ \longrightarrow M \otimes _ \longrightarrow N \otimes _$$

This yields a commutative diagram

$$(N, \underline{\hspace{0.5cm}}) \longrightarrow (M, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}D_{A}(X, \underline{\hspace{0.5cm}}) \longrightarrow 0$$

$$\downarrow 1 \qquad \qquad \downarrow 1 \qquad \qquad \downarrow \gamma_{(X, \underline{\hspace{0.5cm}})}$$

$$(N, \underline{\hspace{0.5cm}}) \longrightarrow (M, \underline{\hspace{0.5cm}}) \longrightarrow (X, \underline{\hspace{0.5cm}})$$

Constructing γ :

For any $F \in fp(Mod(R), Ab)$ and presentation

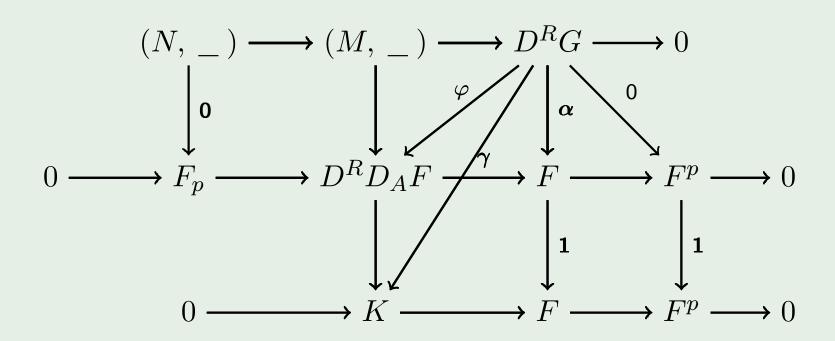
$$(Y, \underline{\hspace{0.1cm}}) \to (X, \underline{\hspace{0.1cm}}) \to F \to 0$$

$$D^{R}D_{A}(Y, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}D_{A}(X, \underline{\hspace{0.5cm}}) \longrightarrow D^{R}D_{A}F \longrightarrow 0$$

$$\downarrow^{\gamma_{(Y, \underline{\hspace{0.5cm}})}} \qquad \downarrow^{\gamma_{(X, \underline{\hspace{0.5cm}})}} \qquad \downarrow^{\gamma_{F}} \qquad \downarrow^{\gamma_{$$

The universal property of γ

Da Diagram Chasssse



The Adjunction

Theorem

For any $G \in (\text{mod}(R^{op}), \text{Ab})$ and any $F \in \text{fp}(\text{Mod}(R), \text{Ab})$,

$$\mathsf{Nat}(D^RG,F)\cong\mathsf{Nat}(D_AF,G)$$

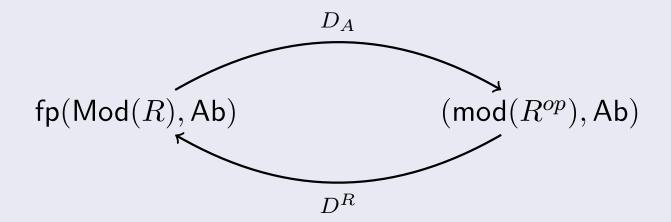
which is natural in F and G.

In other words D_A and D^R form an adjoint pair.

Main Result

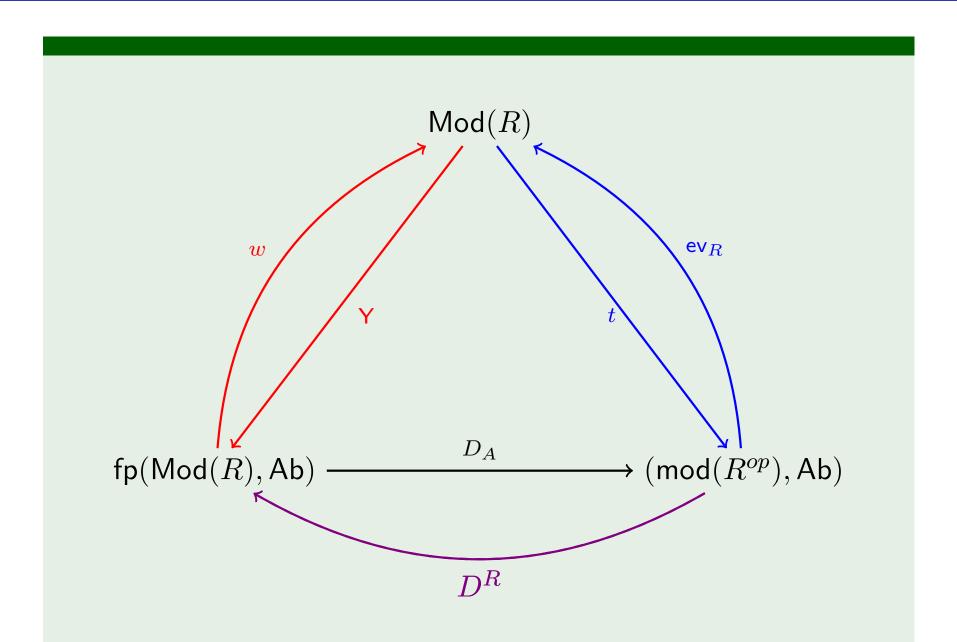
The Auslander-Gruson-Jensen functor \mathcal{D}_A admits a fully faithful adjoint \mathcal{D}^R

Theorem



Hence the category $(\text{mod}(R^{op}), \text{Ab})$ embeds into the category of finitely presented functors fp(Mod(R), Ab).

The Diagram of Adjunctions



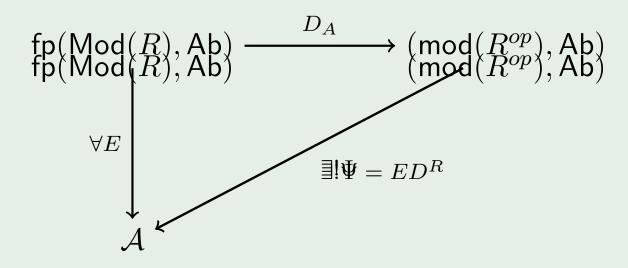
Equivalence of Categories

Corollary

The functors \mathbb{D}^R and \mathbb{D}_A induce an equivalence of categories

$$\frac{\mathsf{fp}(\mathsf{Mod}(R),\mathsf{Ab})}{\{F\mid D_AF=0\}}\cong (\mathsf{mod}(R^{op}),\mathsf{Ab})^{op}$$

Universal Property of D_A



E - exact (covariant), vanishes on $Ker(D_A)$

 \mathcal{A} - abelian.

 Ψ - exact contravariant.

Thank You!