# Triangular Bases of Quantum Cluster Algebras and Monoidal Categorification

Fan Qin

#### Woods Hole, Massachusetts, 2016

# Outline

### 1 Introduction

- Cluster algebras
- Monoidal categorification conjectures
- Quantum cluster algebras
  - Example and properties
  - Laurent expansions

## 3 Triangular bases

- Construction
- Main theorem
- Examples of cluster algebras

### Cluster algebras Cluster algebras are combinatorial objects.

Cluster algebra:  $\mathbb Z\text{-subalgebra}$  of a Laurent polynomial ring

- Cluster variables = generators defined recursively by <u>mutations</u>
- Seeds (local charts) = collections of generators + matrices
- Cluster monomials = monomials of cluster variables in the same seeds

Invented by [Fomin-Zelevinsky, 2000] as an combinatorial approach to the dual canonical basis of quantum groups in the sense of Lusztig and Kashiwara.

slow progress for many years

Cluster algebras Monoidal categorification conjectures

### Cluster algebras Cluster algebras' appearance.

Fruitful in many other areas:

- Combinatorics
- Representation theory of finite dimensional algebras, 2-Calabi-Yau categories
- Higher Teichmüller theory [Fock-Goncharov]
- Poisson geometry [Gekhtman-Shapiro-Vainstein]

Cluster algebras Monoidal categorification conjectures

### Cluster algebras Cluster algebras' appearance.

- Discrete dynamical systems:
  - [Francesco-Kedem] [FZ] [Inoue-Iyama-Kuniba-Nakanishi-Suzuki]
  - proof of the periodicity conjecture of Y-system [Keller]
- commutative/non-commutative algebraic geometry:
  - Bridgeland's stability conditions of 3-Calabi-Yau categories,
  - Donaldson-Thomas invariants [Kontsevich-Soibelman], Tropical geometry [Gross-Hacking-Keel-Kontsevich]

## Monoidal Categorification Conjectures Read cluster algebras from monoidal categories

[Hernandez-Leclerc, 09] proposed the monoidal categorification approach to a cluster algebra  $\mathscr{A}$ :

| Å                 |          | C                  | Monoidal cateogry |
|-------------------|----------|--------------------|-------------------|
| +                 |          | $\oplus$           |                   |
| •                 |          | $\otimes$          |                   |
| A                 | $\simeq$ | $K_0(\mathscr{C})$ | Grohendieck ring  |
| cluster monomials | C        | simple objects     |                   |
| good basis        | =        | {simples}          |                   |

- Find the monoidal category such that  $\mathscr{A} \simeq K_0(\mathscr{C})$ ?
- The cluster monomials are simples?

Cluster algebras Monoidal categorification conjectures

Monoidal Categorification Conjectures World of cluster algebras



After quantization, the quantum cluster algebras  $\mathscr{A}_q$  are related to,

- in Type I, the quantum groups of symmetric Cartan type:  $\mathscr{A}_q \simeq \mathcal{K}_0(\mathrm{KLR} - alg \ f.d. \ mod) \ (\sim \ U_q(\mathfrak{n})^{*,gr})$ [Geiss-Leclerc-Schröer];[Khovanov-Lauda] [Rouquier]
- in Type II, the quantum affine algebras of type ADE:

   *M<sub>q</sub>* ≃ K<sub>t</sub>(U<sub>q</sub>(ĝ) f.d. mod) t-deformed Grothendieck ring
   [Hernandez-Leclerc];[Varagnolo-Vasserot] [Nakajima][H.]

Cluster algebras Monoidal categorification conjectures

## Monoidal Categorification Conjectures Conjectures and results

### Monoidal Categorification Conjecture

The cluster monomials are simples?

## Theorem ([Lampe] [Hernandez-Leclerc] [Nakajima] [Kimura-Q.])

Partial results for type I and type II.

### Theorem (Q., 15)

For all type II and some type I (<u>adaptable word</u>): The monoidal categorification conjecture is true. The <u>Fock-Goncharov conjecture</u> is also true.

#### Theorem (Kang-Kashiwara-Kim-Oh, 15)

For all type I: The monoidal categorification conjecture is true.

# A rank 2 example

Example (Quantum cluster variables)

Take matrices 
$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
,  $\Lambda = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ .  
Initial cluster variable:  $X_1, X_2$ .  
Quantum torus  $\mathscr{T}$ : Laurent polynomial ring  $(\mathbb{Z}[q^{\pm \frac{1}{2}}][X_1^{\pm}, X_2^{\pm}], +, \cdot)$   
 $q$ -twisted product  $X^g * X^h = q^{\frac{1}{2}g\Lambda h^T} X^{g+h}$ ,  
bar involution  $\overline{q^s X^g} = q^{-s} X^g$ .  
The quantum cluster variables  $\{X_k\}$  by mutations:  
 $X_k * X_{k+2} = q^{-\frac{1}{2}} X_{k+1} + 1$ ,  $\forall k \in \mathbb{Z}$ .

#### Example (Quantum cluster algebra of rank 2)

Seeds (local charts):  $({X_k, X_{k+1}}, (-1)^{k+1}B, (-1)^{k+1}\Lambda)$ . Quantum cluster algebra  $\mathscr{A}_q = \mathbb{Z}[q^{\pm \frac{1}{2}}][X_k]_{k \in \mathbb{Z}}$ .

Example and properties Laurent expansions

# A rank 2 example

#### Example (Previous example)

$$X_{3} = X^{(-1,1)} + X^{(-1,0)} (= X_{1}^{-1} \cdot X_{2} + X_{1}^{-1})$$
  
$$X_{4} = X^{(0,-1)} + X^{(-1,-1)} + X^{(-1,0)}.$$

# General cluster algebras

#### Definition (Berenstein-Zelevinsky, 05)

In general, for any given skew-symmetrizable  $m \times n$  matrix B,  $m \ge n$ , and a compatible skew-symmetric  $m \times m$  matrix  $\Lambda$ , we can define the quantum cluster algebra

$$\mathscr{A}_q = \mathscr{A}_q((X_1,\ldots,X_m),B,\Lambda).$$

### Theorem (Laurent phenomenon [Fomin-Zelevinsky][Berenstein-Zelevinsky])

Any cluster variable is a Laurent polynomial in  $\mathbb{Z}[X_1^{\pm}, \ldots, X_m^{\pm}]$ . Any quantum cluster variable is a Laurent polynomial in  $\mathbb{Z}[q^{\pm \frac{1}{2}}][X_1^{\pm}, \ldots, X_m^{\pm}]$ .

# Cluster expansions

Theorem ([Derksen-Weyman-Zelevinsky][Plamondon][Nagao][Gross-Hacking-Keel-Kontsevich], +[Tran])

Define  $Y_k = X^{(Be_k)^T}$ , then any quantum cluster variable is always a Laurent polynomial of the form:

$$X^g(1+\sum_{0
eq 
u\in \mathbb{N}^n}c_{
u}Y^{
u}),\ c_{
u}\in \mathbb{Z}[q^{\pmrac{1}{2}}].$$

#### Example (Previous example)

Recall 
$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, we have  $Y_1 = X_2$ ,  $Y_2 = X_1^{-1}$ ,  
 $X_3 = X^{(-1,1)}(1+Y_1)$ ,  $X_4 = X^{(0,-1)}(1+Y_2+Y_1Y_2)$ 

# Degrees and partial order

#### Definition

A Laurent polynomial Z of the form  $X^g(1 + \sum_{0 \neq v \in \mathbb{N}^n} c_v Y^v)$  is said to be pointed at the degree g. In this case, we denote deg Z = g.

#### Definition

We say degrees  $g \ge g'$  if deg $X^g Y^v = \deg X^{g'}$  for some  $v \in \mathbb{N}^n$ .

Then the above Z has the unique maximal degree g.

### Example (Previous example)

Recall 
$$Y_1 = X_2$$
,  $Y_2 = X_1^{-1}$ ,  
 $X_3 = X^{(-1,1)}(1+Y_1)$ ,  $X_4 = X^{(0,-1)}(1+Y_2+Y_1Y_2)$   
 $\deg X_4 > \deg X_3 = \deg X_4 Y_2 Y_1^2$ .

Construction Main theorem Examples of cluster algebras

## Triangular basis for an initial seed

Choose and work in an initial seed  $(\{X_1, \ldots, X_n, \ldots, X_m\}, B, \Lambda)$ . Assume that there exists quantum cluser variables  $I_k$ ,  $1 \le k \le n$ , such that  $pr_n \deg I_k = -e_k$  $(pr_n = \text{projection to the first } n\text{-coordinates})$ .

#### Definition

The triangular basis  $\mathscr{L}$  is the basis of  $\mathscr{A}_q$  such that

$$I_{k}, I_{k} \in \mathscr{L}$$

$${f 2}\,$$
 elements of  ${\mathscr L}$  are bar-invariant

- (Parametrization) elements of  $\mathscr{L}$  have unique maximal degrees with coefficient 1, such that deg :  $\mathscr{L} \simeq \mathbb{Z}^m$ .
- (Triangularity)  $\forall X_i, b_1 \in \mathscr{L}$ , there exists some  $s \in \frac{\mathbb{Z}}{2}$  such that  $q^s X_i * b_1 = b_2 + \sum_b a_b \cdot b$ , where  $b_2, b \in \mathscr{L}$ , coefficients  $a_b \in q^{-\frac{1}{2}} \mathbb{Z}[q^{-\frac{1}{2}}]$ ,  $\deg X_i + \deg b_1 = \deg b_2 > \deg b$ .

Introduction Construction Quantum cluster algebras Main theorem Triangular bases Examples of cluster algebras

## Common triangular basis and Fock-Goncharov conjecture

- A triangular basis, if it exists, is unique.
- The notion of the triangular basis depends on the chosen initial seed (local chart).
   In particular, the degree of a basis element will differ when we change the initial seed.

#### Definition

A basis  ${\mathscr L}$  is called the common triangular basis, if it is the triangular basis for any seed and,

moreover, its parametrization in different seeds verifies the Fock-Goncharov conjecture:

$$\begin{array}{lll} \mathscr{L} &\simeq & \mathbb{Z}^m \\ || & & \uparrow \\ \mathscr{L} &\simeq & \mathbb{Z}^m \end{array} \text{ mutation of tropical } \mathbb{Z}\text{-points}$$

Construction Main theorem Examples of cluster algebras

# Main Theorem



### Theorem ([Q. 15])

For some of type I (adaptable Coxeter element case) and all type II, the basis of simples produces the common triangular basis of the quantum cluster algebra, which also verifies the Fock-Goncharov conjecture.

## Corollary ([Q. 15])

Monoidal categorification conjecture is true in these cases ..

Construction Main theorem Examples of cluster algebras

# ldea of the proof

How to find the common triangular basis?

- Try to proceed by induction on seeds: Key observation: for a basis with positive structure constants,
  - If it contains all cluster variables (monoidal categorification conjecture), then it has good parametrization (Fock-Goncharov conjecture)
  - If it has good parametrization, then it contains all cluster variables.
- In practice, we do induction on seeds to show that the basis produced by simples satisfy both conjectures.

Introduction Construction Quantum cluster algebras Main theorem Triangular bases Examples of cluster algebras

## Cluster algebra associated with a quiver

For any  $m \ge n \in \mathbb{N}$  and quiver Q (finite oriented graph) with vertices  $\{1, \ldots, n, \ldots, m\}$ , we can define an  $m \times n$  matrix  $B = (b_{ij})$ :  $b_{ij} = |\operatorname{arrows} i \to j| - |\operatorname{arrows} j \to i|$ . Therefore, we can associate cluster algebra with any quiver. We can further impose a quantization if  $\operatorname{rk} B = n$ .

#### Example (Previous example)

Choose m = n = 2. The following quiver gives us the 2×2 matrix  $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ .



By choosing a special quantization, we get the previous quantum cluster algebra.

Examples of cluster algebras

# Cluster algebra associated with a quiver

#### Example



Construction Main theorem Examples of cluster algebras

## Cluster algebra: Type II

# Example (Type II: $U_q(\hat{\mathfrak{sl}}_3)$ -mod)

The following quiver arising from a level 3 subcategory of  $U_q(\hat{\mathfrak{sl}}_3)$ -mod.



Introduction Construction Quantum cluster algebras Main theorem Triangular bases Examples of cluster algebras

# Cluster algebra: Type I adaptable word

#### Example (Type I: adaptable word)

The following quiver is associated with the adaptable word

 $\underline{i} = (2, 1, 2, 1, 2, 1, 2, 1)$  and the Cartan matrix  $C = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ .



Introduction Quantum cluster algebras Triangular bases Examples of cl

Construction Main theorem Examples of cluster algebras

# Cluster algebra: Type I and Type II

4

#### Example (Type I and type II)

The following quiver is associated with the adaptable word  $\underline{i} = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1)$  and the Cartan matrix It also arises from a subcategory of  $U_{\varepsilon}(\hat{\mathfrak{sl}}_5)$ -mod. 10 5 8 9 6 3

Introduction Construction Quantum cluster algebras Main theorem Triangular bases Examples of cluster algebras

# Cluster algebra: Type I non-adaptable word

#### Example (Type I: non-adaptable word)

The following quiver is associated with the non-adaptable word  $\underline{i} = (2, 3, 2, 1, 2, 1, 3, 1, 2, 1)$  and the Cartan matrix  $C = \begin{pmatrix} 2 & -3 & -2 \\ -3 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix}.$ It is not included in our Theorem. 10 2 9 Δ