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Representation schemes

Assumption: k is a fixed field of char(k) = 0, all algebras are over k,
⊗ denotes ⊗k . A graded algebra B is commutative if for a, b ∈ B

ab = (−1)deg(a) deg(b)ba

Let A ∈ Algk be an associative algebra, V = kn an n-dimensional
vector space.

By Repn(A) we denote the moduli space of representations of A in kn.

Example. Repn(k〈x1, . . . , xr 〉) = Mat×rn ' Arn2 .

Example. Repn(k[x1, . . . , xr ]) ⊂ Mat×rn is the closed subscheme,
consisting of tuples (B1, . . . ,Br ) of pair-wise commuting matrices.
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Character map

Characters define a linear map Tr : A→ k[Repn(A)]

a 7→ [Tr(a) : ρ 7→ tr(ρ(a))] , ∀ρ ∈ Repn(A)

This map factors as

A

����

Tr // k[Repn(A)]

A/[A,A] // k[Repn(A)]GLn
?�
i

OO

The map A/[A,A]→ k[Repn(A)]GLn will be called the character
map.

Theorem (Procesi)

The induced map Sym(Tr) : Sym(A/[A,A])→ k[Repn(A)]GLn is surjective.
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Extension to DG algebras

In general, Repn(A) is “badly behaved,” for example, it is quite
singular even for “nice” algebras (e.g. A = k[x1, ..., xd ], d > 1)

Solution: “resolve singularities” by deriving Repn.

Call the functor (−)n : Algk → ComAlgk sending

A 7→ An := k[Repn(A)]

the representation functor.

It extends naturally to (−)n : DGAk → CDGAk .

Problem: The functor (−)n is not “exact”, i.e. it does not preserve
quasi-isomorphisms.
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Derived representation functor

Theorem (Berest–Khachatryan–Ramadoss)

The functor (−)n has a total left derived functor L(−)n computed by

L(A)n = Rn for any resolution R
∼
� A. The algebra L(A)n does not

depend on the choice of resolution, up to quasi-isomorphism.

For A ∈ Algk , a resolution is any semi-free DG algebra R ∈ DGAk with a

surjective quasi-isomorphism R
∼
� A.

Denote LAn by DRepn(A), call it derived representation scheme.

Example: If A = k[x , y ], take R = k〈x , y , λ〉 with deg(x) = deg(y) = 0,
deg(λ) = 1 and dλ = xy − yx .

Then DRepn(A) = k[xij , yij , λij ] with deg(λij) = 1 and

dλij =
n∑

k=1

xikykj − yikxkj
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Representation homology

Define n-dimensional representation homology by

H•(A, n) := H• [DRepn(A)]

Facts:

1 H0(A, n) ' k[Repn(A)] =: An.

2 If Repn(A) = ∅, then H•(A, n) = 0.

3 for A formally smooth, Hp(A, n) = 0 for ∀n ≥ 1 and p ≥ 1.

4 DRep1(A) ' Rab for any resolution R
∼
� A, so

H•(A, 1) ' H•(Rab)
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Example: polynomial algebra on two variables

Let A = k[x , y ], R = k〈x , y , λ〉 with dλ = xy − yx . Then
DRep1(A) ' k[x , y , λ] with zero differential, so

H•(k[x , y ], 1) ' k[x , y ]︸ ︷︷ ︸
deg=0

⊕ k[x , y ].λ︸ ︷︷ ︸
deg=1

H•(k[x , y ], 2) ' k[x , y ]2 ⊗ Sym(ξ, τ, η)/I

with ξ, τ, η of degree 1 and I the ideal generated by the relations
x12η − y12ξ = (x12y11 − y12x11)τ
x21η − y21ξ = (x21y22 − y21x22)τ
(x11 − x22)η − (y11 − y22)ξ = (x11y22 − y11x22)τ
ξη = y11ξτ − x11ητ = y22ξτ − x22ητ

Theorem (Berest-Felder-Ramadoss)

For i > n we have Hi (k[x , y ], n) = 0.
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Example: q-polynomials and dual numbers

Let q ∈ k×, and define kq[x , y ] = k〈x , y〉/(xy = qyx).

Theorem (Berest–Felder–Ramadoss)

If q is not a root of 1, then for all n ≥ 1

Hp( kq[x , y ] , n) = 0, ∀p > 0

For A = k[x ]/(x2) the minimal resolution is R = k〈t0, t1, t2, . . . 〉 with
deg ti = i and

dtp = t0tp−1 − t1tp−2 + · · ·+ (−1)p−1tp−1t0

In this case even for H•(A, 1) = H•(Rab) don’t have a good description.
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Relation to Lie homology

Let C be a (augmented) DG coalgebra Koszul dual to A ∈ Algk

(augmented), i.e. Ω(C )
∼→ A.

Theorem (Berest–Felder–P–Ramadoss–Willwacher)

There is an isomorphism

H•(A, n) ' H•(gl
∗
n(C̄ ); k), H•(A, n)GLn ' H•(gl

∗
n(C ), gl∗n(k); k)

If dim(C ) <∞, take E = C ∗ the linear dual DG algebra. Then

H•(A, n) ' H−•(gln(Ē ); k), H•(A, n)GLn ' H−•(gln(E ), gln(k); k)
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Derived character maps

Want: relate H•(A, n) to more computable invariants.

Proposition (Berest-Khachatryan-Ramadoss)

For any algebra A ∈ Algk and any n there exists a canonical derived
character map

Trn(A)• : HC•(A)→ H•(A, n)GLn ,

extending the original character map

Tr : HC0(A) = A/[A,A]→ AGLn
n
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Symmetric algebras

Goal: compute derived character maps for A = Sym(W ).

For simplicity, assume n = 1 (i.e. only consider H•(A, 1)).

Tr(A)• factors through the reduced cyclic homology HC •(A).

For A = Sym(W ),

HC i (A) ' Ωi (W )/dΩi−1(W ), Ωi (W ) ' Sym(W )⊗ Λi (W )

Thus, we can think of Tr(A)i as maps

Tr(A)i : Ωi (W )→ Hi (A, 1)
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Example: A = k[x , y ]

DRep1(k[x , y ]) ' k[x , y , λ] with zero differential.

The character Tr0 : k[x , y ]→ k[x , y , λ] is given by

Tr0(P(x , y)) = P(x , y)

for any P(x , y) ∈ k[x , y ].

The character Tr1 : Ω1(A)→ k[x , y , λ] is given by

Tr1(P(x , y)dx + Q(x , y)dy) =

(
∂Q

∂x
− ∂P

∂y

)
λ
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Tr(A)1 for A = Sym(W )

For A = Sym(W ) ' k[x1, . . . , xm]

DRep1(A) ' Sym(W )⊗ Sym

Λ2(W )︸ ︷︷ ︸
deg=1

⊕ · · · ⊕ Λm(W )︸ ︷︷ ︸
deg=m−1

 .

with zero differential, so H•(A, 1) ' DRep1(A).

λ(v1, v2, . . . , vp) := v1 ∧ v2 ∧ . . . ∧ vp ∈ Λp(W )︸ ︷︷ ︸
deg=p−1

⊂ DRep1(A)

Proposition

For α =
∑

Pidxi ∈ Ω1(A) the map Tr(A)1 is given by

Tr(A)1(α) =
∑
i<j

(
∂Pi

∂xj
−
∂Pj

∂xi

)
λ(xi , xj) ∈ H•(A, 1)
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Example: Tr2 for A = k[x , y , z ]

Take ω = Pdx ∧ dy + Qdy ∧ dz + Rdz ∧ dx ∈ Ω2(A).

Then Tr(A)2(ω) is given by

Mλ(x , y , z)+Myλ(x , y)λ(y , z)+Mzλ(y , z)λ(z , x)+Mxλ(z , x)λ(x , y),

where
M := Pz + Qx + Ry

and for a polynomial F , Fq denotes ∂F
∂q .

Tr(A)2 = D ◦ ddR , where

D = s−1 + D̃ : Ω3 → H•(A, 1)

is a certain canonical differential operator on differential forms.
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Abstract Chern–Simons forms

Let A be a cohomologically graded commutative DG algebra, g a
finite dimensional Lie algebra.
A g-valued connection is an element θ ∈ A1 ⊗ g.
Its curvature is Θ := dθ + 1

2 [θ, θ], and Bianchi identity holds:

dΘ = [Θ, θ]

If P ∈ k[g]adg, deg(P) = r , for α ∈ A⊗ Symr (g) define P(α) ∈ A via

A⊗ Symr (g)
1
r !
id⊗ evP // A

Then P(Θr ) ∈ A2r is exact, and there exists CSP(θ) ∈ A2r−1 such
that d CSP(θ) = P(Θr ) with CSP(θ) is given explicitly by

CSP(θ) = r !

1∫
0

P(θ ∧Θr−1
t )dt

where Θt = tΘ + 1
2(t2 − t)[θ, θ].
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Derived character maps for polynomial algebras

Take A = hom(Ω•(W ),Rab), g = k , and Pr = x r ∈ k[g] ' k[x ].

Theorem (Berest-Felder-P-Ramadoss-Willwacher)

There is a canonical k-valued connection θ in A such that the derived
character map Tr(A)• : Ω•(A)→ Rab ' H•(A, 1) is given by

Tr(A)• =
∞∑
r=0

CSPr (θ) ◦ d .

Here, θ(P(x1, . . . , xm)dxi1 . . . dxip) = P(0, . . . , 0)λ(xi1 , . . . , xip)

Remark: this allows to get explicit formulas for all derived character maps.
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