# Representation homology and derived character maps 

Sasha Patotski<br>Cornell University<br>ap744@cornell.edu<br>April 30, 2016

(1) Classical representation schemes.
(2) Derived representation schemes and representation homology.
(3) Derived character maps.

## Representation schemes

Assumption: $k$ is a fixed field of $\operatorname{char}(k)=0$, all algebras are over $k$, $\otimes$ denotes $\otimes_{k}$. A graded algebra $B$ is commutative if for $a, b \in B$

$$
a b=(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a
$$

Let $A \in \mathbf{A l g}_{k}$ be an associative algebra, $V=k^{n}$ an $n$-dimensional vector space.
By $\operatorname{Rep}_{n}(A)$ we denote the moduli space of representations of $A$ in $k^{n}$. Example. $\operatorname{Rep}_{n}\left(k\left\langle x_{1}, \ldots, x_{r}\right\rangle\right)=\operatorname{Mat}_{n}^{\times r} \simeq \mathbb{A}^{r n^{2}}$.
Example. $\operatorname{Rep}_{n}\left(k\left[x_{1}, \ldots, x_{r}\right]\right) \subset \operatorname{Mat}_{n}^{\times r}$ is the closed subscheme, consisting of tuples $\left(B_{1}, \ldots, B_{r}\right)$ of pair-wise commuting matrices.

## Character map

Characters define a linear map $\operatorname{Tr}: A \rightarrow k\left[\operatorname{Rep}_{n}(A)\right]$

$$
a \mapsto[\operatorname{Tr}(a): \rho \mapsto \operatorname{tr}(\rho(a))], \forall \rho \in \operatorname{Rep}_{n}(A)
$$

This map factors as

$$
\begin{aligned}
& A \xrightarrow{\mathrm{Tr}} k\left[\operatorname{Rep}_{n}(A)\right] \\
& i{ }^{\wedge} \\
& A /[A, A] \longrightarrow k\left[\operatorname{Rep}_{n}(A)\right]^{\text {LL }_{n}}
\end{aligned}
$$

The map $A /[A, A] \rightarrow k\left[\operatorname{Rep}_{n}(A)\right]^{G L_{n}}$ will be called the character map.

## Theorem (Procesi)

The induced map $\operatorname{Sym}(\operatorname{Tr}): \operatorname{Sym}(A /[A, A]) \rightarrow k\left[\operatorname{Rep}_{n}(A)\right]^{\mathrm{GL}_{n}}$ is surjective.

## Extension to DG algebras

In general, $\operatorname{Rep}_{n}(A)$ is "badly behaved," for example, it is quite singular even for "nice" algebras (e.g. $A=k\left[x_{1}, \ldots, x_{d}\right], d>1$ )

Solution: "resolve singularities" by deriving Rep ${ }_{n}$.
Call the functor $(-)_{n}: \mathbf{A l g}_{k} \rightarrow$ ComAlg ${ }_{k}$ sending

$$
A \mapsto A_{n}:=k\left[\operatorname{Rep}_{n}(A)\right]
$$

the representation functor.
It extends naturally to $(-)_{n}: \mathbf{D G A}_{k} \rightarrow \mathbf{C D G A}_{k}$.
Problem: The functor $(-)_{n}$ is not "exact", i.e. it does not preserve quasi-isomorphisms.

## Derived representation functor

## Theorem (Berest-Khachatryan-Ramadoss)

The functor $(-)_{n}$ has a total left derived functor $\mathbb{L}(-)_{n}$ computed by $\mathbb{L}(A)_{n}=R_{n}$ for any resolution $R \rightarrow A$. The algebra $\mathbb{L}(A)_{n}$ does not depend on the choice of resolution, up to quasi-isomorphism.

For $A \in \mathrm{Alg}_{k}$, a resolution is any semi-free DG algebra $R \in \mathrm{DGA}_{k}$ with a surjective quasi-isomorphism $R \rightarrow A$.

Denote $\mathbb{L} A_{n}$ by $\operatorname{DRep}_{n}(A)$, call it derived representation scheme. Example: If $A=k[x, y]$, take $R=k\langle x, y, \lambda\rangle$ with $\operatorname{deg}(x)=\operatorname{deg}(y)=0$, $\operatorname{deg}(\lambda)=1$ and $d \lambda=x y-y x$.
Then $\operatorname{DRep}_{n}(A)=k\left[x_{i j}, y_{i j}, \lambda_{i j}\right]$ with $\operatorname{deg}\left(\lambda_{i j}\right)=1$ and

$$
d \lambda_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}-y_{i k} x_{k j}
$$

## Representation homology

Define $n$-dimensional representation homology by

$$
H_{\bullet}(A, n):=H_{\bullet}\left[\operatorname{DRep}_{n}(A)\right]
$$

## Facts:

(1) $H_{0}(A, n) \simeq k\left[\operatorname{Rep}_{n}(A)\right]=: A_{n}$.
(2) If $\operatorname{Rep}_{n}(A)=\emptyset$, then $H_{\bullet}(A, n)=0$.
(3) for $A$ formally smooth, $H_{p}(A, n)=0$ for $\forall n \geq 1$ and $p \geq 1$.
(a) $\operatorname{DRep}_{1}(A) \simeq R_{a b}$ for any resolution $R \xrightarrow{\sim} A$, so

$$
H_{\bullet}(A, 1) \simeq H_{\bullet}\left(R_{a b}\right)
$$

## Example: polynomial algebra on two variables

Let $A=k[x, y], R=k\langle x, y, \lambda\rangle$ with $d \lambda=x y-y x$. Then $\operatorname{DRep}_{1}(A) \simeq k[x, y, \lambda]$ with zero differential, so

$$
\begin{aligned}
& H_{\bullet}(k[x, y], 1) \simeq \underbrace{k[x, y]}_{\operatorname{deg}=0} \oplus \underbrace{k[x, y] \cdot \lambda}_{\operatorname{deg}=1} \\
& H_{\bullet}(k[x, y], 2) \simeq k[x, y]_{2} \otimes \operatorname{Sym}(\xi, \tau, \eta) / I
\end{aligned}
$$

with $\xi, \tau, \eta$ of degree 1 and $I$ the ideal generated by the relations

- $x_{12} \eta-y_{12} \xi=\left(x_{12} y_{11}-y_{12} x_{11}\right) \tau$
- $x_{21} \eta-y_{21} \xi=\left(x_{21} y_{22}-y_{21} x_{22}\right) \tau$
- $\left(x_{11}-x_{22}\right) \eta-\left(y_{11}-y_{22}\right) \xi=\left(x_{11} y_{22}-y_{11} x_{22}\right) \tau$
- $\xi \eta=y_{11} \xi \tau-x_{11} \eta \tau=y_{22} \xi \tau-x_{22} \eta \tau$


## Theorem (Berest-Felder-Ramadoss)

For $i>n$ we have $H_{i}(k[x, y], n)=0$.

## Example: q-polynomials and dual numbers

Let $q \in k^{\times}$, and define $k_{q}[x, y]=k\langle x, y\rangle /(x y=q y x)$.

## Theorem (Berest-Felder-Ramadoss)

If $q$ is not a root of 1 , then for all $n \geq 1$

$$
H_{p}\left(k_{q}[x, y], n\right)=0, \quad \forall p>0
$$

For $A=k[x] /\left(x^{2}\right)$ the minimal resolution is $R=k\left\langle t_{0}, t_{1}, t_{2}, \ldots\right\rangle$ with $\operatorname{deg} t_{i}=i$ and

$$
d t_{p}=t_{0} t_{p-1}-t_{1} t_{p-2}+\cdots+(-1)^{p-1} t_{p-1} t_{0}
$$

In this case even for $H_{\bullet}(A, 1)=H_{\bullet}\left(R_{a b}\right)$ don't have a good description.

## Relation to Lie homology

Let $C$ be a (augmented) DG coalgebra Koszul dual to $A \in \mathbf{A l g}_{k}$ (augmented), i.e. $\Omega(C) \xrightarrow{\sim} A$.

Theorem (Berest-Felder-P-Ramadoss-Willwacher)
There is an isomorphism

$$
H_{\bullet}(A, n) \simeq H_{\bullet}\left(\mathfrak{g l} l_{n}^{*}(\bar{C}) ; k\right), \quad H_{\bullet}(A, n)^{\mathrm{GL}_{n}} \simeq H_{\bullet}\left(\mathfrak{g l}_{n}^{*}(C), \mathfrak{g l}_{n}^{*}(k) ; k\right)
$$

If $\operatorname{dim}(C)<\infty$, take $E=C^{*}$ the linear dual $D G$ algebra. Then

$$
H_{\bullet}(A, n) \simeq H^{-\bullet}\left(\mathfrak{g l}_{n}(\bar{E}) ; k\right), \quad H_{\bullet}(A, n)^{\mathrm{GL}_{n}} \simeq H^{-\bullet}\left(\mathfrak{g l}_{n}(E), \mathfrak{g l}_{n}(k) ; k\right)
$$

## Derived character maps

Want: relate $H_{\bullet}(A, n)$ to more computable invariants.

## Proposition (Berest-Khachatryan-Ramadoss)

For any algebra $A \in \mathbf{A l g}_{k}$ and any $n$ there exists a canonical derived character map

$$
\operatorname{Tr}_{n}(A)_{\bullet}: H C_{\bullet}(A) \rightarrow H_{\bullet}(A, n)^{\mathrm{GL}_{n}},
$$

extending the original character map

$$
\operatorname{Tr}: H C_{0}(A)=A /[A, A] \rightarrow A_{n}^{\mathrm{GL}}
$$

## Symmetric algebras

Goal: compute derived character maps for $A=\operatorname{Sym}(W)$.
For simplicity, assume $\mathbf{n}=\mathbf{1}$ (i.e. only consider $\left.H_{\mathbf{\bullet}}(A, 1)\right)$.
$\operatorname{Tr}(A)$. factors through the reduced cyclic homology $\overline{H C}_{\bullet}(A)$.
For $A=\operatorname{Sym}(W)$,

$$
\overline{H C}_{i}(A) \simeq \Omega^{i}(W) / d \Omega^{i-1}(W), \quad \Omega^{i}(W) \simeq \operatorname{Sym}(W) \otimes \Lambda^{i}(W)
$$

Thus, we can think of $\operatorname{Tr}(A)_{i}$ as maps

$$
\operatorname{Tr}(A)_{i}: \Omega^{i}(W) \rightarrow H_{i}(A, 1)
$$

## Example: $A=k[x, y]$

- $\operatorname{DRep}_{1}(k[x, y]) \simeq k[x, y, \lambda]$ with zero differential.
- The character $\operatorname{Tr}_{0}: k[x, y] \rightarrow k[x, y, \lambda]$ is given by

$$
\operatorname{Tr}_{0}(P(x, y))=P(x, y)
$$

for any $P(x, y) \in k[x, y]$.

- The character $\operatorname{Tr}_{1}: \Omega^{1}(A) \rightarrow k[x, y, \lambda]$ is given by

$$
\operatorname{Tr}_{1}(P(x, y) d x+Q(x, y) d y)=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \lambda
$$

## $\operatorname{Tr}(A)_{1}$ for $A=\operatorname{Sym}(W)$

For $A=\operatorname{Sym}(W) \simeq k\left[x_{1}, \ldots, x_{m}\right]$

$$
\operatorname{DRep}_{1}(A) \simeq \operatorname{Sym}(W) \otimes \operatorname{Sym}(\underbrace{\Lambda^{2}(W)}_{\operatorname{deg}=1} \oplus \cdots \oplus \underbrace{\Lambda^{m}(W)}_{\operatorname{deg}=m-1})
$$

with zero differential, so $H_{\bullet}(A, 1) \simeq \operatorname{DRep}_{1}(A)$.

$$
\lambda\left(v_{1}, v_{2}, \ldots, v_{p}\right):=v_{1} \wedge v_{2} \wedge \ldots \wedge v_{p} \in \underbrace{\Lambda^{p}(W)}_{\operatorname{deg}=p-1} \subset \operatorname{DRep}_{1}(A)
$$

## Proposition

For $\alpha=\sum P_{i} d x_{i} \in \Omega^{1}(A)$ the map $\operatorname{Tr}(A)_{1}$ is given by

$$
\operatorname{Tr}(A)_{1}(\alpha)=\sum_{i<j}\left(\frac{\partial P_{i}}{\partial x_{j}}-\frac{\partial P_{j}}{\partial x_{i}}\right) \lambda\left(x_{i}, x_{j}\right) \in H_{\bullet}(A, 1)
$$

## Example: $\operatorname{Tr}_{2}$ for $A=k[x, y, z]$

Take $\omega=P d x \wedge d y+Q d y \wedge d z+R d z \wedge d x \in \Omega^{2}(A)$.
Then $\operatorname{Tr}(A)_{2}(\omega)$ is given by

$$
M \lambda(x, y, z)+M_{y} \lambda(x, y) \lambda(y, z)+M_{z} \lambda(y, z) \lambda(z, x)+M_{x} \lambda(z, x) \lambda(x, y)
$$

where

$$
M:=P_{z}+Q_{x}+R_{y}
$$

and for a polynomial $F, F_{q}$ denotes $\frac{\partial F}{\partial q}$.
$\operatorname{Tr}(A)_{2}=D \circ d_{d R}$, where

$$
D=s^{-1}+\widetilde{D}: \Omega^{3} \rightarrow H_{\bullet}(A, 1)
$$

is a certain canonical differential operator on differential forms.

## Abstract Chern-Simons forms

Let $\mathcal{A}$ be a cohomologically graded commutative DG algebra, $\mathfrak{g}$ a finite dimensional Lie algebra.
A $\mathfrak{g}$-valued connection is an element $\theta \in \mathcal{A}^{1} \otimes \mathfrak{g}$.
Its curvature is $\Theta:=d \theta+\frac{1}{2}[\theta, \theta]$, and Bianchi identity holds:

$$
d \Theta=[\Theta, \theta]
$$

If $P \in k[\mathfrak{g}]^{\text {adg }}, \operatorname{deg}(P)=r$, for $\alpha \in \mathcal{A} \otimes \operatorname{Sym}^{r}(\mathfrak{g})$ define $P(\alpha) \in \mathcal{A}$ via

$$
\mathcal{A} \otimes \operatorname{Sym}^{r}(\mathfrak{g}) \xrightarrow{\frac{1}{r!} \text { id } \otimes \mathrm{ev}_{P}} \mathcal{A}
$$

Then $P\left(\Theta^{r}\right) \in \mathcal{A}^{2 r}$ is exact, and there exists $\mathrm{CS}_{P}(\theta) \in \mathcal{A}^{2 r-1}$ such that $d \mathrm{CS}_{P}(\theta)=P\left(\Theta^{r}\right)$ with $\mathrm{CS}_{P}(\theta)$ is given explicitly by

$$
\operatorname{CS}_{P}(\theta)=r!\int_{0}^{1} P\left(\theta \wedge \Theta_{t}^{r-1}\right) d t
$$

where $\Theta_{t}=t \Theta+\frac{1}{2}\left(t^{2}-t\right)[\theta, \theta]$.

## Derived character maps for polynomial algebras

Take $\mathcal{A}=\underline{\operatorname{hom}}\left(\Omega^{\bullet}(W), R_{a b}\right), \mathfrak{g}=k$, and $P_{r}=x^{r} \in k[\mathfrak{g}] \simeq k[x]$.

## Theorem (Berest-Felder-P-Ramadoss-Willwacher)

There is a canonical $k$-valued connection $\theta$ in $\mathcal{A}$ such that the derived character map $\operatorname{Tr}(A)_{\bullet}: \Omega^{\bullet}(A) \rightarrow R_{\mathrm{ab}} \simeq H_{\bullet}(A, 1)$ is given by

$$
\operatorname{Tr}(A)_{\bullet}=\sum_{r=0}^{\infty} \operatorname{CS}_{P_{r}}(\theta) \circ d
$$

Here, $\theta\left(P\left(x_{1}, \ldots, x_{m}\right) d x_{i_{1}} \ldots d x_{i_{p}}\right)=P(0, \ldots, 0) \lambda\left(x_{i_{1}}, \ldots, x_{i_{p}}\right)$
Remark: this allows to get explicit formulas for all derived character maps.

## References

Pu. Berest, G. Felder and A. Ramadoss, Derived representation schemes and noncommuative geometry, Expository lectures on representation theory, 113-162, Contemp. Math., 607, Amer. Math. Soc., Providence, RI, 2014.
(1) Yu. Berest, G. Khachatryan and A. Ramadoss, Derived representation schemes and cyclic homology, Adv. Math. 245 (2013), 625-689.
䡒 Yu. Berest, G. Felder, S. Patotski, A. Ramadoss, and Th. Willwacher Chern-Simons forms and Higher character maps of Lie representations, preprint.
Pi Yu. Berest, G. Felder, S. Patotski, A. Ramadoss, and Th. Willwacher Representation Homology, Lie Algebra Cohomology and Derived Harish-Chandra Homomorphism, preprint.

