Isotropic Schur roots

Charles Paquette
University of Connecticut

$$
\text { May } 1^{\text {st }}, 2016
$$

joint with Jerzy Weyman

- Describe the perpendicular category of an isotropic Schur root.
- Describe the cone of dimension vectors of the above.
- Describe the ring of semi-invariants of an isotropic Schur root.
- Construct all isotropic Schur roots.

Quivers, dimension vectors

- $k=\bar{k}$ is an algebraically closed field.
- $Q=\left(Q_{0}, Q_{1}\right)$ is an acyclic quiver with $Q_{0}=\{1,2, \ldots, n\}$.
- $\operatorname{rep}(Q)$ denotes the category of finite dimensional representations of Q over k.
- An element $\mathbf{d} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ is a dimension vector.
- Given $M \in \operatorname{rep}(Q)$, we denote by \mathbf{d}_{M} its dimension vector.

Geometry of quivers

- For $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ a dimension vector, denote by $\operatorname{rep}(Q, \mathbf{d})$ the set of representations M with $M(i)=k^{d_{i}}$.
- $\operatorname{rep}(Q, \mathbf{d})$ is an affine space.
- For such a d, we set $\mathrm{GL}(\mathbf{d})=\prod_{1 \leq i \leq n} \mathrm{GL}_{d_{i}}(k)$.
- The group $\operatorname{GL}(\mathbf{d})$ acts on $\operatorname{rep}(Q, \mathbf{d})$ and for $M \in \operatorname{rep}(Q, \mathbf{d})$ a representation, $\mathrm{GL}(\mathbf{d}) \cdot M$ is its isomorphism class in $\operatorname{rep}(Q, \mathbf{d})$.

Bilinear form and roots

- We denote by $\langle-,-\rangle$ the Euler-Ringel form of Q.
- For $M, N \in \operatorname{rep}(Q)$, we have

$$
\left\langle\mathbf{d}_{\mathbf{M}}, \mathbf{d}_{\mathbf{N}}\right\rangle=\operatorname{dim}_{k} \operatorname{Hom}(M, N)-\operatorname{dim}_{k} \operatorname{Ext}^{1}(M, N)
$$

Roots and Schur roots

- $\mathbf{d} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ is a (positive) root if $\mathbf{d}=\mathbf{d}_{\mathbf{M}}$ for some indecomposable $M \in \operatorname{rep}(Q)$.
- Then $\langle\mathbf{d}, \mathbf{d}\rangle \leq 1$ and we call \mathbf{d} :

$$
\begin{cases}\text { real, } & \text { if }\langle\mathbf{d}, \mathbf{d}\rangle=1 ; \\ \text { isotropic, } & \text { if }\langle\mathbf{d}, \mathbf{d}\rangle=0 ; \\ \text { imaginary, }, & \text { if }\langle\mathbf{d}, \mathbf{d}\rangle<0 ;\end{cases}
$$

- A representation M is Schur if $\operatorname{End}(M)=k$.
- If M is a Schur representation, then $\mathbf{d}_{\mathbf{M}}$ is a Schur root.
- We have real, isotropic and imaginary Schur roots.
- \{iso. classes of excep. repr.\} $\stackrel{1-1}{\longleftrightarrow}$ \{real Schur roots $\}$.

Perpendicular categories

- For \mathbf{d} a dimension vector, we set $\mathcal{A}(\mathbf{d})$ the subcategory

$$
\begin{gathered}
\mathcal{A}(\mathbf{d})=\left\{X \in \operatorname{rep}(Q) \mid \operatorname{Hom}(X, N)=0=\operatorname{Ext}^{1}(X, N)\right. \\
\text { for some } N \in \operatorname{rep}(Q, \mathbf{d})\} .
\end{gathered}
$$

- $\mathcal{A}(\mathbf{d})$ is an exact extension-closed abelian subcategory of $\operatorname{rep}(Q)$.
- If V is rigid (in particular, exceptional), then $\mathcal{A}\left(\mathbf{d}_{\mathbf{V}}\right)={ }^{\perp} V$.

Proposition (-, Weyman)

For a dimension vector $\mathbf{d}, \mathcal{A}(\mathbf{d})$ is generated by an exceptional sequence $\Leftrightarrow \mathbf{d}$ is the dimension vector of a rigid representation.

Perpendicular category of an isotropic Schur root

- Let $\boldsymbol{\delta}$ be an isotropic Schur root of Q (so $\langle\boldsymbol{\delta}, \boldsymbol{\delta}\rangle=0$).

Proposition (-, Weyman)

There is an exceptional sequence $\left(M_{n-2}, \ldots, M_{1}\right)$ in $\operatorname{rep}(Q)$ where all M_{i} are simples in $\mathcal{A}(\boldsymbol{\delta})$.

- Complete this to a full exceptional sequence $\left(M_{n-2}, \ldots, M_{1}, V, W\right)$.

Perpendicular category of an isotropic Schur root

- We have $\left\{M_{n-2}, \ldots, M_{2}, M_{1}\right\}=J \cup K \cup L$.
- For $I \subseteq\left\{M_{n-2}, \ldots, M_{2}, M_{1}\right\}$, let $E(I)$ denote the corr. exceptional sequence.
- We consider the following:

$$
(E(J \cup K), V, W)
$$

- Now, the M_{j} and M_{k} are pairwise orthogonal. Thus, we get the following:

$$
(E(J), E(K), V, W)
$$

- Reflecting V, W yields:

$$
\left(E(J), V^{\prime}, W^{\prime}, E(K)\right)
$$

- Consider $\mathcal{R}(Q, \delta):=\operatorname{Thick}\left(E(J), V^{\prime}, W^{\prime}\right)$.

Perpendicular category of an isotropic Schur root

Theorem (-, Weyman)

The category $\mathcal{R}(Q, \delta)$ is tame connected with isotropic Schur root $\bar{\delta}$. It is uniquely determined by $(Q, \boldsymbol{\delta})$. The simple objects in $\mathcal{A}(\boldsymbol{\delta})$ are:

- The M_{i} with $M_{i} \in K \cup L$,
- The quasi-simple objects of $\mathcal{R}(Q, \delta)$ (which includes the M_{i} with $\left.M_{i} \in J\right)$.
- In particular, the dimension vectors of those simple objects are either $\bar{\delta}$ or finitely many real Schur root.
- This gives the $-\langle-, \delta\rangle$-stable dimension vectors.

Cone of dimension vectors

- Take the cone in \mathbb{R}^{n} of all dimension vectors in $\mathcal{A}(\boldsymbol{\delta})$.
- This cone lives in dimension $n-1$ since it satisfies the equation $\langle-, \boldsymbol{\delta}\rangle=0$.
- Take an affine slice of it. This becomes an ($n-2$) dimensional polyhedron P.

Cone of dimension vectors

- Let V be the set of vertices of P and for $v \in V$, let P_{v} the convex hull of the points in $V \backslash\{v\}$.
- Only one dimension vector of simples is not real \Rightarrow we have $\left|\bigcap_{v \in V} P_{v}\right| \leq 1$.
- Here are examples of such a cone in dimension $1,2,3$:

One point

Cone of dimension vectors

Theorem (-, Weyman, H. Thomas)

Assume that P is an ($n-2$)-dimensional convex hull of points V with $\left|\bigcap_{v \in V} P_{V}\right| \leq 1$. Then

$$
\mathbb{R}^{n-2}=V_{1} \oplus \cdots \oplus V_{r}
$$

where V_{i} contains $\operatorname{dim} V_{i}+1$ points in $V \cup\{0\}$ forming a $\operatorname{dim} V_{i}$-simplex containing the origin.

An example

Consider the quiver

- We take $\boldsymbol{\delta}=(3,2,3,1)$.
- We get an exceptional sequence whose dimension vectors are $((8,3,3,3),(0,0,1,0),(0,1,0,0),(3,3,3,1))$.
- We have $\boldsymbol{\delta}=(3,3,3,1)-(0,1,0,0)$.
- δ does not lie in the τ-orbit of $(1,1,0,1)$ or $(1,0,1,1)$.
- $\bar{\delta}=(3,2,1,1)$.
- Simple objects in $\mathcal{A}(\boldsymbol{\delta})$ are of dimension vectors $(0,0,1,0),(8,3,3,3)$ or $(3,2,1,1)$.
- We have $\mathcal{R}(Q, \delta)$ of Kronecker type.

An example

Figure : The cone of dimension vectors for $\delta=(3,2,3,1)$

Semi-invariants

- Since Q is acyclic, the ring of invariants

$$
k[\operatorname{rep}(Q, \mathbf{d})]^{\mathrm{GL}(\mathbf{d})}
$$

is trivial.

- Take $\operatorname{SL}(\mathbf{d})=\prod_{1 \leq i \leq n} \operatorname{SL}_{d_{i}}(k) \subset \operatorname{GL}(\mathbf{d})$.
- The ring $\operatorname{SI}(Q, \mathbf{d}):=k[\operatorname{rep}(Q, \mathbf{d})]^{\operatorname{SL}(\mathbf{d})}$ is the ring of semi-invariants of Q of dimension vector \mathbf{d}.
- We have $\operatorname{SI}(Q, \mathbf{d})=\bigoplus_{\tau \in \Gamma} \operatorname{SI}(Q, \mathbf{d})_{\tau}$ where

$$
\Gamma=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{n}, \mathbb{Z}\right)
$$

- This ring is always finitely generated.

Semi-invariants

- For $X \in \operatorname{rep}(Q)$, let $0 \rightarrow P_{1} \xrightarrow{f_{X}} P_{0} \rightarrow X \rightarrow 0$ be a projective resolution of X.
- For $M \in \operatorname{rep}(Q)$, the map
$0 \rightarrow \operatorname{Hom}(X, M) \rightarrow \operatorname{Hom}\left(P_{0}, M\right) \xrightarrow{\operatorname{Hom}(f \times, M)} \operatorname{Hom}\left(P_{1}, M\right) \rightarrow \operatorname{Ext}^{1}(X, M) \rightarrow 0$
is given by a square matrix $\Leftrightarrow\left\langle\mathbf{d}_{\mathbf{X}}, \mathbf{d}_{\mathbf{M}}\right\rangle=\mathbf{0}$.
- We set $C^{X}(M):=\operatorname{detHom}\left(f_{X}, M\right)$.

Proposition (Derksen-Weyman, Schofield-Van den Bergh)

The function $C^{X}(-)$ is a non-zero semi-invariant of weight $\left\langle\mathbf{d}_{\mathbf{x}},-\right\rangle$ in $\operatorname{SI}(Q, \mathbf{d})$ provided $\left\langle\mathbf{d}_{\mathbf{x}}, \mathbf{d}\right\rangle=0$. Moreover, these semi-invariants span $\operatorname{SI}(Q, \mathbf{d})$ over k.

Ring of semi-invariants of an isotropic Schur root

- The ring $\operatorname{SI}(Q, \mathbf{d})$ is generated by the $C^{X}(-)$ where X is simple in $\mathcal{A}(\mathbf{d})$.

Theorem (-, Weyman)

We have $\operatorname{SI}(Q, \delta) \cong \operatorname{SI}(\mathcal{R}, \bar{\delta})\left[\left\{C^{M_{j}}(-) \mid j \in K \cup L\right\}\right]$.

Corollary

By a result of Skowroński - Weyman, $\mathrm{SI}(Q, \delta)$ is a polynomial ring or a hypersurface.

Exceptional sequences of isotropic types

- A full exceptional sequence $E=\left(X_{1}, \ldots, X_{n}\right)$ is of isotropic type if there are X_{i}, X_{i+1} such that $\operatorname{Thick}\left(X_{i}, X_{i+1}\right)$ is tame.
- Isotropic position is i and root type $\boldsymbol{\delta}_{E}$ is the unique iso. Schur root in Thick $\left(X_{i}, X_{i+1}\right)$.
- The braid group B_{n} acts on full exceptional sequences.
- This induces an action of B_{n-1} on exceptional sequences of isotropic type.

An example

- Consider an exceptional sequence $E=(X, U, V, Y)$ of isotropic type with position 2.

- The exceptional sequence $E^{\prime}=\left(X^{\prime}, Y^{\prime}, U^{\prime}, V^{\prime}\right)$ is of isotropic type with isotropic position 3.

Constructing isotropic Schur roots

Theorem (-, Weyman)

An orbit of exceptional sequences of isotropic type under B_{n-1} always contains a sequence E with δ_{E} an isotropic Schur root of an Euclidean full subquiver of Q.

Corollary

There are finitely many orbits under B_{n-1}.

- We can construct all isotropic Schur roots starting from the easy ones.

THANK YOU

Questions?

