## Isotropic Schur roots

Charles Paquette

University of Connecticut

May  $1^{\rm st}$ , 2016

joint with Jerzy Weyman

#### Outline

- Describe the perpendicular category of an isotropic Schur root.
- Describe the cone of dimension vectors of the above.
- Describe the ring of semi-invariants of an isotropic Schur root.
- Construct all isotropic Schur roots.

## Quivers, dimension vectors

- $k = \bar{k}$  is an algebraically closed field.
- $Q = (Q_0, Q_1)$  is an acyclic quiver with  $Q_0 = \{1, 2, ..., n\}$ .
- rep(Q) denotes the category of finite dimensional representations of Q over k.
- An element  $\mathbf{d} \in (\mathbb{Z}_{>0})^n$  is a dimension vector.
- Given  $M \in \operatorname{rep}(Q)$ , we denote by  $\mathbf{d_M}$  its dimension vector.

# Geometry of quivers

- For  $\mathbf{d} = (d_1, \dots, d_n)$  a dimension vector, denote by  $rep(Q, \mathbf{d})$  the set of representations M with  $M(i) = k^{d_i}$ .
- $rep(Q, \mathbf{d})$  is an affine space.
- For such a **d**, we set  $GL(\mathbf{d}) = \prod_{1 \le i \le n} GL_{d_i}(k)$ .
- The group  $GL(\mathbf{d})$  acts on  $rep(Q, \mathbf{d})$  and for  $M \in rep(Q, \mathbf{d})$  a representation,  $GL(\mathbf{d}) \cdot M$  is its isomorphism class in  $rep(Q, \mathbf{d})$ .

### Bilinear form and roots

- We denote by  $\langle -, \rangle$  the Euler-Ringel form of Q.
- For  $M, N \in \operatorname{rep}(Q)$ , we have

$$\langle \mathbf{d}_{\mathbf{M}}, \mathbf{d}_{\mathbf{N}} \rangle = \dim_{k} \operatorname{Hom}(M, N) - \dim_{k} \operatorname{Ext}^{1}(M, N).$$

### Roots and Schur roots

- $\mathbf{d} \in (\mathbb{Z}_{\geq 0})^n$  is a (positive) root if  $\mathbf{d} = \mathbf{d_M}$  for some indecomposable  $M \in \operatorname{rep}(Q)$ .
- Then  $\langle \mathbf{d}, \mathbf{d} \rangle \leq 1$  and we call  $\mathbf{d}$ :

```
 \left\{ \begin{array}{ll} \text{real}, & \text{if } \langle \mathbf{d}, \mathbf{d} \rangle = 1; \\ \text{isotropic}, & \text{if } \langle \mathbf{d}, \mathbf{d} \rangle = 0; \\ \text{imaginary}, & \text{if } \langle \mathbf{d}, \mathbf{d} \rangle < 0; \end{array} \right.
```

- A representation M is Schur if  $\operatorname{End}(M) = k$ .
- If M is a Schur representation, then  $d_M$  is a Schur root.
- We have real, isotropic and imaginary Schur roots.
- {iso. classes of excep. repr.}  $\stackrel{1-1}{\longleftrightarrow}$  {real Schur roots}.

# Perpendicular categories

• For **d** a dimension vector, we set  $A(\mathbf{d})$  the subcategory

$$\mathcal{A}(\mathbf{d}) = \{X \in \operatorname{rep}(Q) \mid \operatorname{Hom}(X, N) = 0 = \operatorname{Ext}^1(X, N)$$
 for some  $N \in \operatorname{rep}(Q, \mathbf{d})\}.$ 

- $\mathcal{A}(\mathbf{d})$  is an exact extension-closed abelian subcategory of  $\operatorname{rep}(Q)$ .
- If V is rigid (in particular, exceptional), then  $\mathcal{A}(\mathbf{d}_{\mathbf{V}}) = {}^{\perp}V$ .

### Proposition (-, Weyman)

For a dimension vector  $\mathbf{d}$ ,  $\mathcal{A}(\mathbf{d})$  is generated by an exceptional sequence  $\Leftrightarrow \mathbf{d}$  is the dimension vector of a rigid representation.

# Perpendicular category of an isotropic Schur root

• Let  $\delta$  be an isotropic Schur root of Q (so  $\langle \delta, \delta \rangle = 0$ ).

### Proposition (-, Weyman)

There is an exceptional sequence  $(M_{n-2}, \ldots, M_1)$  in rep(Q) where all  $M_i$  are simples in  $\mathcal{A}(\delta)$ .

• Complete this to a full exceptional sequence  $(M_{n-2}, \ldots, M_1, V, W)$ .

# Perpendicular category of an isotropic Schur root

- We have  $\{M_{n-2},\ldots,M_2,M_1\}=J\stackrel{\cdot}{\cup} K\stackrel{\cdot}{\cup} L.$
- For  $I \subseteq \{M_{n-2}, \dots, M_2, M_1\}$ , let E(I) denote the correctional sequence.
- We consider the following:

$$(E(J \cup K), V, W).$$

• Now, the  $M_j$  and  $M_k$  are pairwise orthogonal. Thus, we get the following:

• Reflecting *V*, *W* yields:

• Consider  $\mathcal{R}(Q, \delta) := \text{Thick}(E(J), V', W')$ .

# Perpendicular category of an isotropic Schur root

### Theorem (-, Weyman)

The category  $\mathcal{R}(Q, \delta)$  is tame connected with isotropic Schur root  $\bar{\delta}$ . It is uniquely determined by  $(Q, \delta)$ . The simple objects in  $\mathcal{A}(\delta)$  are:

- The  $M_i$  with  $M_i \in K \cup L$ ,
- The quasi-simple objects of  $\mathcal{R}(Q, \delta)$  (which includes the  $M_i$  with  $M_i \in J$ ).
- In particular, the dimension vectors of those simple objects are either  $\bar{\delta}$  or finitely many real Schur root.
- This gives the  $-\langle -, \delta \rangle$ -stable dimension vectors.

### Cone of dimension vectors

- Take the cone in  $\mathbb{R}^n$  of all dimension vectors in  $\mathcal{A}(\delta)$ .
- This cone lives in dimension n-1 since it satisfies the equation  $\langle -, \pmb{\delta} \rangle = 0$ .
- Take an affine slice of it. This becomes an (n-2) dimensional polyhedron P.



### Cone of dimension vectors

- Let V be the set of vertices of P and for  $v \in V$ , let  $P_v$  the convex hull of the points in  $V \setminus \{v\}$ .
- Only one dimension vector of simples is not real  $\Rightarrow$  we have  $|\bigcap_{v \in V} P_v| \le 1$ .
- Here are examples of such a cone in dimension 1, 2, 3:



### Cone of dimension vectors

#### Theorem (-, Weyman, H. Thomas)

Assume that P is an (n-2)-dimensional convex hull of points V with  $|\bigcap_{v\in V} P_v| \le 1$ . Then

$$\mathbb{R}^{n-2} = V_1 \oplus \cdots \oplus V_r$$

where  $V_i$  contains  $\dim V_i + 1$  points in  $V \cup \{0\}$  forming a  $\dim V_i$ -simplex containing the origin.

## An example

Consider the quiver



- We take  $\delta = (3, 2, 3, 1)$ .
- We get an exceptional sequence whose dimension vectors are ((8,3,3,3),(0,0,1,0),(0,1,0,0),(3,3,3,1)).
- We have  $\delta = (3, 3, 3, 1) (0, 1, 0, 0)$ .
- $\delta$  does not lie in the  $\tau$ -orbit of (1,1,0,1) or (1,0,1,1).
- $\bar{\delta} = (3, 2, 1, 1)$ .
- Simple objects in  $\mathcal{A}(\delta)$  are of dimension vectors (0,0,1,0),(8,3,3,3) or (3,2,1,1).
- We have  $\mathcal{R}(Q, \delta)$  of Kronecker type.

# An example



Figure : The cone of dimension vectors for  $\delta = (3,2,3,1)$ 

### Semi-invariants

Since Q is acyclic, the ring of invariants

$$k[\operatorname{rep}(Q,\mathbf{d})]^{\operatorname{GL}(\mathbf{d})}$$

is trivial.

- Take  $\mathrm{SL}(\mathbf{d}) = \prod_{1 \leq i \leq n} \mathrm{SL}_{d_i}(k) \subset \mathrm{GL}(\mathbf{d})$ .
- The ring  $SI(Q, \mathbf{d}) := k[rep(Q, \mathbf{d})]^{SL(\mathbf{d})}$  is the ring of semi-invariants of Q of dimension vector  $\mathbf{d}$ .
- We have  $\mathrm{SI}(Q,\mathbf{d})=igoplus_{ au\in\Gamma}\mathrm{SI}(Q,\mathbf{d})_{ au}$  where

$$\Gamma = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^n, \mathbb{Z}).$$

This ring is always finitely generated.

### Semi-invariants

- For  $X \in \operatorname{rep}(Q)$ , let  $0 \to P_1 \xrightarrow{f_X} P_0 \to X \to 0$  be a projective resolution of X.
- For  $M \in \operatorname{rep}(Q)$ , the map

$$0 \to \operatorname{Hom}(X,M) \to \operatorname{Hom}(P_0,M) \overset{\operatorname{Hom}(f_X,M)}{\longrightarrow} \operatorname{Hom}(P_1,M) \to \operatorname{Ext}^1(X,M) \to 0$$
 is given by a square matrix  $\Leftrightarrow \langle \mathbf{d}_X, \mathbf{d}_M \rangle = \mathbf{0}$ .

• We set  $C^X(M) := \det \operatorname{Hom}(f_X, M)$ .

### Proposition (Derksen-Weyman, Schofield-Van den Bergh)

The function  $C^X(-)$  is a non-zero semi-invariant of weight  $\langle \mathbf{d_X}, - \rangle$  in  $\mathrm{SI}(Q,\mathbf{d})$  provided  $\langle \mathbf{d_X},\mathbf{d} \rangle = 0$ . Moreover, these semi-invariants span  $\mathrm{SI}(Q,\mathbf{d})$  over k.

# Ring of semi-invariants of an isotropic Schur root

• The ring  $SI(Q, \mathbf{d})$  is generated by the  $C^X(-)$  where X is simple in  $\mathcal{A}(\mathbf{d})$ .

### Theorem (-, We<u>yman)</u>

We have  $SI(Q, \delta) \cong SI(\mathcal{R}, \overline{\delta})[\{C^{M_j}(-) \mid j \in K \cup L\}].$ 

#### Corollary

By a result of Skowroński - Weyman,  $\mathrm{SI}(Q, \delta)$  is a polynomial ring or a hypersurface.

## Exceptional sequences of isotropic types

- A full exceptional sequence  $E = (X_1, ..., X_n)$  is of isotropic type if there are  $X_i, X_{i+1}$  such that Thick $(X_i, X_{i+1})$  is tame.
- Isotropic position is i and root type  $\delta_E$  is the unique iso. Schur root in Thick $(X_i, X_{i+1})$ .
- The braid group  $B_n$  acts on full exceptional sequences.
- This induces an action of  $B_{n-1}$  on exceptional sequences of isotropic type.

## An example

• Consider an exceptional sequence E = (X, U, V, Y) of isotropic type with position 2.



• The exceptional sequence E' = (X', Y', U', V') is of isotropic type with isotropic position 3.

# Constructing isotropic Schur roots

### Theorem (-, Weyman)

An orbit of exceptional sequences of isotropic type under  $B_{n-1}$  always contains a sequence E with  $\delta_E$  an isotropic Schur root of an Euclidean full subquiver of Q.

### Corollary

There are finitely many orbits under  $B_{n-1}$ .

 We can construct all isotropic Schur roots starting from the easy ones.

#### THANK YOU

Questions?