The No Gap Conjecture: Proof by Pictures

Stephen Hermes
Wellesley College, Wellesley, MA

Maurice Auslander Distinguished Lectures and International Conference

Woods Hole
May, 2016

Preliminaries

Joint With

- Kiyoshi Igusa. arXiv:1601.04054
- Thomas Brüstle, Kiyoshi Igusa and Gordana Todorov. arXiv:1503.07945

Notation/Conventions

- K denotes a (not necessarily algebraically closed) field,
- Λ a finite dimensional, basic, hereditary K-algebra
- with n indecomposable simples.

Mutation

- Quiver mutation introduced in the context of cluster algebras by Fomin-Zelevinsky.
- Categorified to an operation on collections of exceptional objects in the derived category $\mathcal{D}^{b}(\Lambda)$ by Buan-Marsh-Reiten-Reineke-Todorov.

Mutation

Definition

An object X in $\mathcal{D}^{b}(\Lambda)$ is exceptional if either:

1. $X=M$ is a module which is:

- indecomposable and
- $\operatorname{rigid}\left(\operatorname{Ext}_{\Lambda}^{1}(M, M)=0\right)$

2. $X=P_{i}[1]$ is a shift of an indecomposable projective module.

Remark

The exceptional objects form a fundamental domain for the cluster category $\mathcal{C}_{\Lambda}=\mathcal{D}^{b}(\Lambda) / \tau^{-} \circ[1]$.

Mutation

Mutation is defined through a compatibility relation on exceptional objects:

1. If M, N are modules, M and N are compatible whenever $\operatorname{Ext}_{\Lambda}^{1}(M, N)=0$
2. $P_{i}[1]$ and M are compatible whenever $\operatorname{Hom}_{\Lambda}\left(P_{i}, M\right)=0$
3. Each $P_{i}[1]$ and $P_{j}[1]$ are compatible.

Definition

A cluster tilting object is a maximal collection of compatible objects.

Mutation

Theorem (BMRRT)

1. Every cluster tilting object $T=T_{1} \oplus \cdots \oplus T_{n}$ has n direct summands.
2. For any $1 \leq k \leq n$ there is a unique T_{k}^{\prime} not isomorphic to T_{k} so that $T^{\prime}=T / T_{k} \oplus T_{k}^{\prime}$ is a cluster tilting object.

Definition
For a cluster tilting object T and $1 \leq k \leq n$, the mutation of T in the direction k is the cluster tilting object $\mu_{k} T \stackrel{\text { def }}{=} T^{\prime}$.

Mutation

Example (Type $A_{2}: 1 \leftarrow 2$)
AR Quiver:

Green Mutation

- Introduced by Keller for study of DT-invariants.
- Interpreted in context of representation theory by Ingalls-Thomas and Brüstle-Yang.
- Connections to weak order on Coxeter groups.

Definition (Brüstle-Dupont-Pérotin)
A mutation $\mu_{k}: T \mapsto T^{\prime}$ is green (resp. red) if $\operatorname{Ext}_{\mathcal{D}^{b}(\Lambda)}^{1}\left(T_{k}^{\prime}, T_{k}\right) \neq 0\left(\operatorname{resp} . \operatorname{Ext}_{\mathcal{D}^{b}(\Lambda)}^{1}\left(T_{k}, T_{k}^{\prime}\right) \neq 0\right)$.
Every mutation is either green or red.

Oriented Exchange Graph

Green mutation makes set of cluster tilting objects $E(\Lambda)$ into a poset: $T \leq T^{\prime}$ if T^{\prime} obtained from T by a sequence of green mutations.

Properties

- unique minimal element $\Lambda[1]$ (every mutation green)
- unique maximal element \wedge (every mutation red)
- No oriented cycles

Oriented Exchange Graph

Example (Type $A_{2}: 1 \leftarrow 2$)

Maximal Green Sequences

Definition

A maximal green sequence is a (finite) sequence of green mutations starting with $\Lambda[1]$ and ending with Λ. Equivalently, a maximal (finite) chain in the poset $E(\Lambda)$.

Representation Theory Interpretation
There is a bijection $T \mapsto \operatorname{Fac}(T)$ between cluster tilting objects for Λ and functorially finite torsion classes. Cluster tilting objects satisfy $T \leq T^{\prime}$ if and only if $\operatorname{Fac}(T) \subset \operatorname{Fac}\left(T^{\prime}\right)$.

The No Gap Conjecture

The No Gap Conjecture (Brüstle-Dupont-Pérotin)
The set of lengths of maximal green sequences for Λ forms an interval. That is, if Λ admits maximal green sequences of length ℓ and $\ell+k$, then there are maximal green sequences of lengths $\ell+i$ for all $0 \leq i \leq k$.

- Proven by Garver-McConville for:
- Λ cluster tilted of type A_{n}
- $\Lambda=K Q / I$ with Q oriented cycle
- Proven by Ryoichi Kase in type A_{n} and $\widetilde{A}_{1, n}$.

Remarks

- If $\Lambda=K Q$ where Q has oriented cycles, then it need not admit any maximal green sequences: e.g., quivers from once-punctured surfaces without boundary.
- Conjecture not true if K not algebraically closed. The (modulated) quiver B_{2} has only two maximal green sequences: one of length 2 and the other of length 4.

Polygonal Deformations

Definition

1. A polygon in $E(\Lambda)$ is a closed subgraph generated by two mutations μ_{i}, μ_{j}.
2. A polygonal deformation of a maximal green sequence is the operation of exchanging one side of a polygon in $E(\Lambda)$ for another.
3. Two maximal green sequences are polygonally equivalent if they differ by a sequence of polygonal deformations.

Polygonal Deformations

Example (Type $A_{2}: 1 \leftarrow 2$)

Polygonal Deformations

- If K algebraically closed, a (finite) polygon has either 4 or 5 edges. (If K arbitrary then can also have 6 or 8 sides.)
- If two maximal green sequences differ by a single polygonal deformation, their lengths differ by at most one.

Polygons

Type $A_{1} \times A_{1}$

Type A_{2}

Type B_{2}

Type G_{2}

Polygonal Deformations

Theorem (H.-Igusa)
Let K be an arbitrary field. If Λ is tame, then any two maximal green sequences lie in the same polygonal deformation class. In particular, if K is algebraically closed the No Gap Conjecture is true for Λ.
Goal. Prove the Theorem using geometry of semi-invariant pictures.

Finding Maximal Green Sequences

Known for Λ tame there are only finitely many maximal green sequences (proven by BDP; different methods in BHIT). The Theorem implies an algorithm for finding all maximal green sequences for Λ :

1. Start with any maximal green sequence (e.g., shortest length).
2. Polygonally deform in all directions to get new maximal green sequences.
3. If return to a previous sequence, stop.

Finiteness implies this terminates. Theorem implies get all maximal green sequences.

Roots

Have the Euler-Ringel bilinear form

$$
\langle,\rangle: \mathbb{R}^{n} \otimes \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

given by $\langle\alpha, \beta\rangle=\alpha^{t} E \beta$ where

$$
E_{i j}=\operatorname{dim}_{K} \operatorname{Hom}_{\Lambda}\left(S_{i}, S_{j}\right)-\operatorname{dim}_{K} \operatorname{Ext}_{\Lambda}\left(S_{i}, S_{j}\right)
$$

Definition

A $\beta \in \mathbb{Z}^{n}$ is a root if there is an indecomposable β-dimensional representation of Λ. A root β is

1. real (resp. null) if $\langle\beta, \beta\rangle>0$ (resp. $\langle\beta, \beta\rangle=0$).
2. Schur if $\operatorname{End}(M)=K$ for some β-dimensional M.

The Cluster Fan

Fact
Real Schur roots in bijection with exceptional modules.

Definition

The cluster fan $F(\Lambda)$ is the simplicial fan generated by the rays
$\mathbb{R}_{\geq 0} \beta$ in \mathbb{R}^{n} where β either:

- a real Schur root
- negative a projective root.

A collection of rays span a cone in $F(\Lambda)$ whenever the corresponding exceptional objects are compatible.

The Cluster Fan

Example (Type $A_{2}: 1 \leftarrow 2$)

The Cluster Fan

Definition

Let β be a real Schur root. The semi-invariant domain

$$
D(\beta)=\left\{x \in \mathbb{R}^{n}:\langle x, \beta\rangle=0 \text { and }\left\langle x, \beta^{\prime}\right\rangle \leq 0 \text { for all } \beta^{\prime} \subseteq \beta\right\}
$$

The walls (i.e., codim 1 cones) in $F(\Lambda)$ are the $D(\beta)$ for β real Schur root.

Theorem (Schofield, Derksen-Weyman, Igusa-Orr-Todorov-W)
The codimension 0 cones of $F(\Lambda)$ are in bijection with the cluster tilting objects for Λ. The cones corresponding to cluster tilting objects T and T^{\prime} share a wall $D\left(\beta_{k}\right)$ if and only if $T^{\prime}=\mu_{k} T$ with $\operatorname{dim} T_{k}=\beta_{k}$.
Question. The fan $F(\Lambda)$ gives geometric interpretation of cluster mutation. What about green/red mutation?

Semi-Invariant Pictures

Construction

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^{n}.
2. Project real Schur roots β onto unit sphere S^{n-1}. Same for $\operatorname{dim} \wedge[1]$.
3. Find hyperplane orthogonal to $\operatorname{dim} \wedge$.
4. Stereographically project from $\operatorname{dim} \wedge[1]$ onto hyperplane to get picture in \mathbb{R}^{n-1}.

The $D(\beta)$ become spherical segments in \mathbb{R}^{n-1}, with a distinguished normal orientation pointing towards $\operatorname{dim} \wedge$.

Semi-Invariant Pictures

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^{n}.
2. Project real Schur roots β onto unit sphere S^{n-1}. Same for $\operatorname{dim} \wedge[1]$.
3. Find hyperplane orthogonal to $\operatorname{dim} \wedge$.
4. Stereographically project from $\operatorname{dim} \wedge[1]$ onto hyperplane to get picture in \mathbb{R}^{n-1}.

Semi-Invariant Pictures

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^{n}.
2. Project real Schur roots β onto unit sphere S^{n-1}. Same for $\operatorname{dim} \wedge[1]$.
3. Find hyperplane orthogonal to $\operatorname{dim} \wedge$.
4. Stereographically project from $\operatorname{dim} \wedge[1]$ onto hyperplane to get picture in \mathbb{R}^{n-1}.

Semi-Invariant Pictures

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^{n}.
2. Project real Schur roots β onto unit sphere S^{n-1}. Same for $\operatorname{dim} \wedge[1]$.
3. Find hyperplane orthogonal to $\operatorname{dim} \wedge$.
4. Stereographically project from $\operatorname{dim} \wedge[1]$ onto hyperplane to get picture in \mathbb{R}^{n-1}.

Semi-Invariant Pictures

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^{n}.
2. Project real Schur roots β onto unit sphere S^{n-1}. Same for $\operatorname{dim} \wedge[1]$.
3. Find hyperplane orthogonal to $\operatorname{dim} \wedge$.
4. Stereographically project from $\operatorname{dim} \wedge[1]$ onto hyperplane to get picture in \mathbb{R}^{n-1}.

Semi-Invariant Pictures

Example (Picture for $Q: 1 \leftarrow 2 \leftarrow 3$)

Semi-Invariant Pictures

Theorem (Igusa-Orr-Todorov-Weyman)

1. Suppose $\mu_{k}: T \mapsto T^{\prime}$ is a mutation, with corresponding cones $C(T)$ and $C\left(T^{\prime}\right)$ sharing the wall $D\left(\beta_{k}\right)$. The mutation μ_{k} is green if and only if $C(T)$ on outside of $D\left(\beta_{k}\right)$ and $C\left(T^{\prime}\right)$ on the inside.
2. Maximal green sequences are in bijection with (isotopy classes of) paths from $C(\Lambda[1])$ to $C(\Lambda)$ in $L(\Lambda)$ crossing walls $D\left(\beta_{k}\right)$ transversally from outside to inside.

Semi-Invariant Pictures

Example (MGS for $Q: 1 \leftarrow 2 \leftarrow 3$)

Semi-Regular Objects

For Λ tame, there is a unique minimal root η with $\langle\eta, \eta\rangle=0$ called the null root.

- The set $H(\eta)=\left\{x \in \mathbb{R}^{n}:\langle x, \eta\rangle=0\right\}$ is a hyperplane in \mathbb{R}^{n}. Gives an ($n-2$)-sphere in semi-invariant picture.
- Contains the domain $D(\eta)=\left\{x \in \mathbb{R}^{n}:\langle x, \alpha\rangle \leq 0\right.$ for all preprojective $\left.\alpha\right\}$.

Semi-Regular Objects

Example (Affine type A_{3}.)

Semi-Regular Objects

Definition

A cluster tilting object T is semi-regular if (the interior of) the cone $C(T)$ crosses $H(\eta) \backslash D(\eta)$.

Lemma (Brüstle-H.-Igusa-Todorov)
A cluster tilting object T is semi-regular if and only if it has

1. a preprojective summand, and
2. a summand that is either preinjective or shifted projective.

Proof of No Gap Conjecture (Sketch)

Step 1. Every maximal green sequence passes through some semi-regular object.
Step 2. Fix a semi-regular T. Any two maximal green sequence through T lie in the same deformation class.
Step 3. If T and T^{\prime} are semi-regular, then there is a sequence of mutations

$$
T=T^{0}, T^{1}, \ldots, T^{k}=T^{\prime}
$$

so that each T^{i} is semi-regular.

Thante Toul

