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Preliminaries

Joint With

I Kiyoshi Igusa. arXiv:1601.04054

I Thomas Brüstle, Kiyoshi Igusa and Gordana Todorov.
arXiv:1503.07945

Notation/Conventions

I K denotes a (not necessarily algebraically closed) field,

I Λ a finite dimensional, basic, hereditary K -algebra

I with n indecomposable simples.



Mutation

I Quiver mutation introduced in the context of cluster algebras
by Fomin-Zelevinsky.

I Categorified to an operation on collections of exceptional
objects in the derived category Db(Λ) by
Buan-Marsh-Reiten-Reineke-Todorov.



Mutation

Definition
An object X in Db(Λ) is exceptional if either:

1. X = M is a module which is:
I indecomposable and
I rigid (Ext1

Λ(M,M) = 0)

2. X = Pi [1] is a shift of an indecomposable projective module.

Remark
The exceptional objects form a fundamental domain for the cluster
category CΛ = Db(Λ)/τ− ◦ [1].



Mutation

Mutation is defined through a compatibility relation on exceptional
objects:

1. If M,N are modules, M and N are compatible whenever
Ext1

Λ(M,N) = 0

2. Pi [1] and M are compatible whenever HomΛ(Pi ,M) = 0

3. Each Pi [1] and Pj [1] are compatible.

Definition
A cluster tilting object is a maximal collection of compatible
objects.



Mutation

Theorem (BMRRT)

1. Every cluster tilting object T = T1 ⊕ · · · ⊕ Tn has n direct
summands.

2. For any 1 ≤ k ≤ n there is a unique T ′k not isomorphic to Tk

so that T ′ = T/Tk ⊕ T ′k is a cluster tilting object.

Definition
For a cluster tilting object T and 1 ≤ k ≤ n, the mutation of T in

the direction k is the cluster tilting object µkT
def
= T ′.



Mutation

Example (Type A2 : 1← 2)
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Green Mutation

I Introduced by Keller for study of DT-invariants.

I Interpreted in context of representation theory by
Ingalls-Thomas and Brüstle-Yang.

I Connections to weak order on Coxeter groups.

Definition (Brüstle-Dupont-Pérotin)

A mutation µk : T 7→ T ′ is green (resp. red) if
Ext1
Db(Λ)(T ′k ,Tk) 6= 0 (resp. Ext1

Db(Λ)(Tk ,T
′
k) 6= 0).

Every mutation is either green or red.



Oriented Exchange Graph

Green mutation makes set of cluster tilting objects E (Λ) into a
poset: T ≤ T ′ if T ′ obtained from T by a sequence of green
mutations.

Properties

I unique minimal element Λ[1] (every mutation green)

I unique maximal element Λ (every mutation red)

I No oriented cycles



Oriented Exchange Graph

Example (Type A2 : 1← 2)

P1[1] ⊕ P2[1]

P1[1] ⊕ S2

P2 ⊕ S2

P1 ⊕ P2

P1 ⊕ P2[1]



Maximal Green Sequences

Definition
A maximal green sequence is a (finite) sequence of green
mutations starting with Λ[1] and ending with Λ. Equivalently, a
maximal (finite) chain in the poset E (Λ).

Representation Theory Interpretation

There is a bijection T 7→ Fac(T ) between cluster tilting objects for
Λ and functorially finite torsion classes. Cluster tilting objects
satisfy T ≤ T ′ if and only if Fac(T ) ⊂ Fac(T ′).



The No Gap Conjecture

The No Gap Conjecture (Brüstle-Dupont-Pérotin)

The set of lengths of maximal green sequences for Λ forms an
interval. That is, if Λ admits maximal green sequences of length `
and `+ k , then there are maximal green sequences of lengths `+ i
for all 0 ≤ i ≤ k .

I Proven by Garver-McConville for:
I Λ cluster tilted of type An

I Λ = KQ/I with Q oriented cycle

I Proven by Ryoichi Kase in type An and Ã1,n.



Remarks

I If Λ = KQ where Q has oriented cycles, then it need not
admit any maximal green sequences: e.g., quivers from
once-punctured surfaces without boundary.

I Conjecture not true if K not algebraically closed. The
(modulated) quiver B2 has only two maximal green sequences:
one of length 2 and the other of length 4.



Polygonal Deformations

Definition

1. A polygon in E (Λ) is a closed subgraph generated by two
mutations µi , µj .

2. A polygonal deformation of a maximal green sequence is the
operation of exchanging one side of a polygon in E (Λ) for
another.

3. Two maximal green sequences are polygonally equivalent if
they differ by a sequence of polygonal deformations.



Polygonal Deformations

Example (Type A2 : 1← 2)

P1[1] ⊕ P2[1]

P1[1] ⊕ S2

P2 ⊕ S2

P1 ⊕ P2

P1 ⊕ P2[1]

P1[1] ⊕ P2[1]

P1[1] ⊕ S2

P2 ⊕ S2

P1 ⊕ P2

P1 ⊕ P2[1]



Polygonal Deformations

I If K algebraically closed, a (finite) polygon has either 4 or 5
edges. (If K arbitrary then can also have 6 or 8 sides.)

I If two maximal green sequences differ by a single polygonal
deformation, their lengths differ by at most one.

Polygons

Type A1 × A1 Type A2 Type B2 Type G2



Polygonal Deformations

Theorem (H.-Igusa)

Let K be an arbitrary field. If Λ is tame, then any two maximal
green sequences lie in the same polygonal deformation class. In
particular, if K is algebraically closed the No Gap Conjecture is
true for Λ.

Goal. Prove the Theorem using geometry of semi-invariant
pictures.



Finding Maximal Green Sequences

Known for Λ tame there are only finitely many maximal green
sequences (proven by BDP; different methods in BHIT). The
Theorem implies an algorithm for finding all maximal green
sequences for Λ:

1. Start with any maximal green sequence (e.g., shortest length).

2. Polygonally deform in all directions to get new maximal green
sequences.

3. If return to a previous sequence, stop.

Finiteness implies this terminates. Theorem implies get all maximal
green sequences.



Roots

Have the Euler-Ringel bilinear form

〈 , 〉 : Rn ⊗ Rn → R

given by 〈α, β〉 = αtEβ where

Eij = dimK HomΛ(Si ,Sj)− dimK ExtΛ(Si , Sj)

Definition
A β ∈ Zn is a root if there is an indecomposable β-dimensional
representation of Λ. A root β is

1. real (resp. null) if 〈β, β〉 > 0 (resp. 〈β, β〉 = 0).

2. Schur if End(M) = K for some β-dimensional M.



The Cluster Fan

Fact
Real Schur roots in bijection with exceptional modules.

Definition
The cluster fan F (Λ) is the simplicial fan generated by the rays
R≥0β in Rn where β either:

I a real Schur root

I negative a projective root.

A collection of rays span a cone in F (Λ) whenever the
corresponding exceptional objects are compatible.



The Cluster Fan

Example (Type A2 : 1← 2)

P1

S2 P2

P1[1]

P2[1]



The Cluster Fan

Definition
Let β be a real Schur root. The semi-invariant domain

D(β) = {x ∈ Rn : 〈x , β〉 = 0 and 〈x , β′〉 ≤ 0 for all β′ ⊆ β}.

The walls (i.e., codim 1 cones) in F (Λ) are the D(β) for β real
Schur root.

Theorem (Schofield, Derksen-Weyman, Igusa-Orr-Todorov-W)

The codimension 0 cones of F (Λ) are in bijection with the cluster
tilting objects for Λ. The cones corresponding to cluster tilting
objects T and T ′ share a wall D(βk) if and only if T ′ = µkT with
dimTk = βk .

Question. The fan F (Λ) gives geometric interpretation of cluster
mutation. What about green/red mutation?



Semi-Invariant Pictures

Construction

1. Start with cluster fan F (Λ) in Rn.

2. Project real Schur roots β onto unit sphere Sn−1. Same for
dimΛ[1].

3. Find hyperplane orthogonal to dimΛ.

4. Stereographically project from dimΛ[1] onto hyperplane to get
picture in Rn−1.

The D(β) become spherical segments in Rn−1, with a
distinguished normal orientation pointing towards dimΛ.



Semi-Invariant Pictures

Example (Construction of Picture for Q : 1← 2)
1. Start with cluster fan F (Λ) in Rn.

2. Project real Schur roots β onto
unit sphere Sn−1. Same for
dimΛ[1].

3. Find hyperplane orthogonal to
dimΛ.

4. Stereographically project from
dimΛ[1] onto hyperplane to get
picture in Rn−1.

P1

S2 P2

P1[1]

P2[1]

Λ

Λ[1]



Semi-Invariant Pictures

Example (Construction of Picture for Q : 1← 2)
1. Start with cluster fan F (Λ) in Rn.

2. Project real Schur roots β onto
unit sphere Sn−1. Same for
dimΛ[1].

3. Find hyperplane orthogonal to
dimΛ.

4. Stereographically project from
dimΛ[1] onto hyperplane to get
picture in Rn−1.

P1

S2 P2

P1[1]

P2[1]Λ[1]



Semi-Invariant Pictures

Example (Construction of Picture for Q : 1← 2)

1. Start with cluster fan F (Λ) in Rn.

2. Project real Schur roots β onto
unit sphere Sn−1. Same for
dimΛ[1].

3. Find hyperplane orthogonal to
dimΛ.

4. Stereographically project from
dimΛ[1] onto hyperplane to get
picture in Rn−1.

P1

S2
P2

P1[1]

Λ[1]
P2[1]



Semi-Invariant Pictures

Example (Construction of Picture for Q : 1← 2)

1. Start with cluster fan F (Λ) in Rn.

2. Project real Schur roots β onto
unit sphere Sn−1. Same for
dimΛ[1].

3. Find hyperplane orthogonal to
dimΛ.

4. Stereographically project from
dimΛ[1] onto hyperplane to get
picture in Rn−1.
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Semi-Invariant Pictures

Example (Picture for Q : 1← 2← 3)

D(123)

D(2)D(1)

D(3)

D(12)

D(23)



Semi-Invariant Pictures

Theorem (Igusa-Orr-Todorov-Weyman)

1. Suppose µk : T 7→ T ′ is a mutation, with corresponding cones
C (T ) and C (T ′) sharing the wall D(βk). The mutation µk is
green if and only if C (T ) on outside of D(βk) and C (T ′) on
the inside.

2. Maximal green sequences are in bijection with (isotopy classes
of) paths from C (Λ[1]) to C (Λ) in L(Λ) crossing walls D(βk)
transversally from outside to inside.



Semi-Invariant Pictures

Example (MGS for Q : 1← 2← 3)

D(123)

D(2)D(1)

D(3)

D(12)

D(23)



Semi-Regular Objects

For Λ tame, there is a unique minimal root η with 〈η, η〉 = 0 called
the null root.

I The set H(η) = {x ∈ Rn : 〈x , η〉 = 0} is a hyperplane in Rn.
Gives an (n − 2)-sphere in semi-invariant picture.

I Contains the domain
D(η) = {x ∈ Rn : 〈x , α〉 ≤ 0 for all preprojective α}.



Semi-Regular Objects

Example (Affine type A3.)

H(η)

D(2)D(1)

D(3)

D(12)

D(23)D(13)



Semi-Regular Objects

Definition
A cluster tilting object T is semi-regular if (the interior of) the
cone C (T ) crosses H(η) \ D(η).

Lemma (Brüstle-H.-Igusa-Todorov)

A cluster tilting object T is semi-regular if and only if it has

1. a preprojective summand, and

2. a summand that is either preinjective or shifted projective.



Proof of No Gap Conjecture (Sketch)

Step 1. Every maximal green sequence passes through some
semi-regular object.

Step 2. Fix a semi-regular T . Any two maximal green sequence
through T lie in the same deformation class.

Step 3. If T and T ′ are semi-regular, then there is a sequence of
mutations

T = T 0,T 1, . . . ,T k = T ′

so that each T i is semi-regular.



Thank You!


