The No Gap Conjecture: Proof by Pictures

Stephen Hermes Wellesley College, Wellesley, MA

Maurice Auslander Distinguished Lectures and International Conference Woods Hole

May, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Joint With

- Kiyoshi Igusa. arXiv:1601.04054
- Thomas Brüstle, Kiyoshi Igusa and Gordana Todorov. arXiv:1503.07945

Notation/Conventions

► K denotes a (not necessarily algebraically closed) field,

- A a finite dimensional, basic, hereditary K-algebra
- with *n* indecomposable simples.

 Quiver mutation introduced in the context of cluster algebras by Fomin-Zelevinsky.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Categorified to an operation on collections of *exceptional* objects in the derived category D^b(Λ) by Buan-Marsh-Reiten-Reineke-Todorov.

Definition

An object X in $\mathcal{D}^{b}(\Lambda)$ is *exceptional* if either:

- 1. X = M is a module which is:
 - indecomposable and
 - rigid $(\operatorname{Ext}^1_{\Lambda}(M, M) = 0)$
- 2. $X = P_i[1]$ is a shift of an indecomposable projective module.

Remark

The exceptional objects form a fundamental domain for the cluster category $C_{\Lambda} = D^b(\Lambda)/\tau^- \circ [1]$.

Mutation is defined through a *compatibility* relation on exceptional objects:

- 1. If M, N are modules, M and N are compatible whenever $\operatorname{Ext}^1_{\Lambda}(M, N) = 0$
- 2. $P_i[1]$ and M are compatible whenever $\operatorname{Hom}_{\Lambda}(P_i, M) = 0$
- 3. Each $P_i[1]$ and $P_j[1]$ are compatible.

Definition

A *cluster tilting object* is a maximal collection of compatible objects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (BMRRT)

- 1. Every cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$ has n direct summands.
- 2. For any $1 \le k \le n$ there is a unique T'_k not isomorphic to T_k so that $T' = T/T_k \oplus T'_k$ is a cluster tilting object.

Definition

For a cluster tilting object T and $1 \le k \le n$, the *mutation* of T in the direction k is the cluster tilting object $\mu_k T \stackrel{\text{def}}{=} T'$.

Mutation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Introduced by Keller for study of DT-invariants.
- Interpreted in context of representation theory by Ingalls-Thomas and Brüstle-Yang.
- Connections to weak order on Coxeter groups.

Definition (Brüstle-Dupont-Pérotin)

A mutation $\mu_k : T \mapsto T'$ is green (resp. red) if $\operatorname{Ext}^1_{\mathcal{D}^b(\Lambda)}(T'_k, T_k) \neq 0$ (resp. $\operatorname{Ext}^1_{\mathcal{D}^b(\Lambda)}(T_k, T'_k) \neq 0$). Every mutation is either green or red.

Green mutation makes set of cluster tilting objects $E(\Lambda)$ into a poset: $T \leq T'$ if T' obtained from T by a sequence of green mutations.

Properties

▶ unique minimal element ∧[1] (every mutation green)

- unique maximal element Λ (every mutation red)
- No oriented cycles

Oriented Exchange Graph

Example (Type $A_2 : 1 \leftarrow 2$) $P_1 \oplus P_2$ $P_2 \oplus S_2$ $P_1 \oplus P_2[1]$ $P_1[1] \oplus S_2$ $P_1[1] \oplus P_2[1]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Definition

A maximal green sequence is a (finite) sequence of green mutations starting with $\Lambda[1]$ and ending with Λ . Equivalently, a maximal (finite) chain in the poset $E(\Lambda)$.

Representation Theory Interpretation

There is a bijection $T \mapsto Fac(T)$ between cluster tilting objects for Λ and *functorially finite* torsion classes. Cluster tilting objects satisfy $T \leq T'$ if and only if $Fac(T) \subset Fac(T')$.

The No Gap Conjecture (Brüstle-Dupont-Pérotin)

The set of lengths of maximal green sequences for Λ forms an interval. That is, if Λ admits maximal green sequences of length ℓ and $\ell + k$, then there are maximal green sequences of lengths $\ell + i$ for all $0 \le i \le k$.

- Proven by Garver-McConville for:
 - Λ cluster tilted of type A_n
 - $\Lambda = KQ/I$ with Q oriented cycle
- Proven by Ryoichi Kase in type A_n and $A_{1,n}$.

- If Λ = KQ where Q has oriented cycles, then it need not admit any maximal green sequences: e.g., quivers from once-punctured surfaces without boundary.
- Conjecture not true if K not algebraically closed. The (modulated) quiver B₂ has only two maximal green sequences: one of length 2 and the other of length 4.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

- 1. A *polygon* in $E(\Lambda)$ is a closed subgraph generated by two mutations μ_i , μ_j .
- 2. A polygonal deformation of a maximal green sequence is the operation of exchanging one side of a polygon in $E(\Lambda)$ for another.
- 3. Two maximal green sequences are *polygonally equivalent* if they differ by a sequence of polygonal deformations.

Polygonal Deformations

Example (Type $A_2 : 1 \leftarrow 2$)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

- If K algebraically closed, a (finite) polygon has either 4 or 5 edges. (If K arbitrary then can also have 6 or 8 sides.)
- If two maximal green sequences differ by a single polygonal deformation, their lengths differ by at most one.

Polygons

Theorem (H.-Igusa)

Let K be an arbitrary field. If Λ is tame, then any two maximal green sequences lie in the same polygonal deformation class. In particular, if K is algebraically closed the No Gap Conjecture is true for Λ .

Goal. Prove the Theorem using geometry of semi-invariant pictures.

Known for Λ tame there are only finitely many maximal green sequences (proven by BDP; different methods in BHIT). The Theorem implies an algorithm for finding *all* maximal green sequences for Λ :

- 1. Start with any maximal green sequence (e.g., shortest length).
- 2. Polygonally deform in all directions to get new maximal green sequences.
- 3. If return to a previous sequence, stop.

Finiteness implies this terminates. Theorem implies get all maximal green sequences.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Roots

Have the Euler-Ringel bilinear form

$$\langle \ , \ \rangle : \mathbb{R}^n \otimes \mathbb{R}^n \to \mathbb{R}$$

given by $\langle \alpha, \beta \rangle = \alpha^t E \beta$ where

$$E_{ij} = \dim_{\mathcal{K}} \operatorname{Hom}_{\Lambda}(S_i, S_j) - \dim_{\mathcal{K}} \operatorname{Ext}_{\Lambda}(S_i, S_j)$$

Definition

A $\beta \in \mathbb{Z}^n$ is a *root* if there is an indecomposable β -dimensional representation of Λ . A root β is

- 1. real (resp. null) if $\langle \beta, \beta \rangle > 0$ (resp. $\langle \beta, \beta \rangle = 0$).
- 2. Schur if End(M) = K for some β -dimensional M.

Fact

Real Schur roots in bijection with exceptional modules.

Definition

The *cluster fan* $F(\Lambda)$ is the simplicial fan generated by the rays $\mathbb{R}_{\geq 0}\beta$ in \mathbb{R}^n where β either:

- a real Schur root
- negative a projective root.

A collection of rays span a cone in $F(\Lambda)$ whenever the corresponding exceptional objects are compatible.

The Cluster Fan

Example (Type $A_2 : 1 \leftarrow 2$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Definition

Let β be a real Schur root. The *semi-invariant domain*

 $D(\beta) = \{ x \in \mathbb{R}^n : \langle x, \beta \rangle = 0 \text{ and } \langle x, \beta' \rangle \le 0 \text{ for all } \beta' \subseteq \beta \}.$

The walls (i.e., codim 1 cones) in $F(\Lambda)$ are the $D(\beta)$ for β real Schur root.

Theorem (Schofield, Derksen-Weyman, Igusa-Orr-Todorov-W) The codimension 0 cones of $F(\Lambda)$ are in bijection with the cluster tilting objects for Λ . The cones corresponding to cluster tilting objects T and T' share a wall $D(\beta_k)$ if and only if $T' = \mu_k T$ with $\dim T_k = \beta_k$.

Question. The fan $F(\Lambda)$ gives geometric interpretation of cluster mutation. What about green/red mutation?

Construction

- 1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^n .
- 2. Project real Schur roots β onto unit sphere S^{n-1} . Same for dim $\Lambda[1]$.
- 3. Find hyperplane orthogonal to $dim\Lambda$.
- Stereographically project from dim∧[1] onto hyperplane to get picture in ℝ^{n−1}.

The $D(\beta)$ become spherical segments in \mathbb{R}^{n-1} , with a *distinguished* normal orientation pointing towards **dim**A.

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^n .

- Project real Schur roots β onto unit sphere Sⁿ⁻¹. Same for dimΛ[1].
- 3. Find hyperplane orthogonal to $dim\Lambda$.
- Stereographically project from dim∧[1] onto hyperplane to get picture in ℝⁿ⁻¹.

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

- 1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^n .
- Project real Schur roots β onto unit sphere Sⁿ⁻¹. Same for dimA[1].
- 3. Find hyperplane orthogonal to $dim\Lambda$.
- Stereographically project from dim∧[1] onto hyperplane to get picture in ℝⁿ⁻¹.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (Construction of Picture for $Q: 1 \leftarrow 2$)

- 1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^n .
- Project real Schur roots β onto unit sphere Sⁿ⁻¹. Same for dimΛ[1].
- 3. Find hyperplane orthogonal to $dim\Lambda$.
- Stereographically project from dim∧[1] onto hyperplane to get picture in ℝⁿ⁻¹.

イロト 不得 トイヨト イヨト

э

- 1. Start with cluster fan $F(\Lambda)$ in \mathbb{R}^n .
- Project real Schur roots β onto unit sphere Sⁿ⁻¹. Same for dimΛ[1].
- Find hyperplane orthogonal to dimΛ.
- Stereographically project from dimΛ[1] onto hyperplane to get picture in ℝⁿ⁻¹.

・ロト ・ 一 ト ・ モト ・ モト

э

Example (Picture for $Q: 1 \leftarrow 2 \leftarrow 3$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Igusa-Orr-Todorov-Weyman)

- 1. Suppose $\mu_k : T \mapsto T'$ is a mutation, with corresponding cones C(T) and C(T') sharing the wall $D(\beta_k)$. The mutation μ_k is green if and only if C(T) on outside of $D(\beta_k)$ and C(T') on the inside.
- 2. Maximal green sequences are in bijection with (isotopy classes of) paths from $C(\Lambda[1])$ to $C(\Lambda)$ in $L(\Lambda)$ crossing walls $D(\beta_k)$ transversally from outside to inside.

Example (MGS for $Q: 1 \leftarrow 2 \leftarrow 3$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For A tame, there is a unique minimal root η with $\langle \eta, \eta \rangle = 0$ called the *null root*.

The set H(η) = {x ∈ ℝⁿ : ⟨x, η⟩ = 0} is a hyperplane in ℝⁿ. Gives an (n − 2)-sphere in semi-invariant picture.

• Contains the domain $D(\eta) = \{x \in \mathbb{R}^n : \langle x, \alpha \rangle \le 0 \text{ for all preprojective } \alpha \}.$

Semi-Regular Objects

Example (Affine type $A_{3.}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A cluster tilting object T is *semi-regular* if (the interior of) the cone C(T) crosses $H(\eta) \setminus D(\eta)$.

Lemma (Brüstle-H.-Igusa-Todorov)

A cluster tilting object T is semi-regular if and only if it has

- 1. a preprojective summand, and
- 2. a summand that is either preinjective or shifted projective.

- **Step 1.** Every maximal green sequence passes through some semi-regular object.
- **Step 2.** Fix a semi-regular T. Any two maximal green sequence through T lie in the same deformation class.
- **Step 3.** If T and T' are semi-regular, then there is a sequence of mutations

$$T = T^0, T^1, \ldots, T^k = T'$$

so that each T^i is semi-regular.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで