Convex Algebras

Edward L. Green

Department of Mathematics Virginia Tech

Auslander Distinguished Lectures and International Conference April/May 2016

General question

Given a rings surjection $\varphi \colon B \to A$ under what conditions is there a relationship between the homological properties of A and the homological properties of B.

By homological properties I mean projective resolutions, global dimension, and finitistic dimension. In general these properties do not behave well.

For example, let A = KQ/I for some admissible ideal I and assume that Q has at least one oriented cycle. Let J be the ideal generated by the arrows of Q.

General question con't

Then, for some N, we have a surjection $\varphi \colon KQ/J^N \to KQ/I$.

Then finitisitic dimension of KQ/J^n is finite but unknown, in general, for A.

The global dimension of KQ/J^N is infinite but the global dimension of *A*,in general, can be any finite number or infinite.

Projective resolutions of simple KQ/J^N -modules are reasonably well behaved but not much is known about projective resolutions of simple modules over an arbitrary ring A.

Convex subquivers

Joint work with Eduardo N. Marcos

 $\ensuremath{\mathcal{Q}}$ is an arbitrary quiver.

 \mathcal{L} is a full subquiver of \mathcal{Q} . (All subquivers are assumed to be full).

For a while, we work only with quivers and the results will be independent of any relations.

We say a full subquiver \mathcal{L} of \mathcal{Q} is convex if every path from a vertex in \mathcal{L} to a vertex in \mathcal{L} lies in \mathcal{L} .

That is, if $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$ with $v_1, v_n \in \mathcal{L}_0$, then $v_i \in \mathcal{L}_0$ for $1 \leq i \leq n$.

The Convex Hull

Note that ${\mathcal Q}$ and the empty quiver are convex subquivers of ${\mathcal Q}$

The full subquiver with vertex set consisting of one vertex v is convex if and only if the only cycles through v are loops. The arrow set in this case is the set of loops at v.

If $\{\mathcal{L}_i\}$ is a collection of convex subquivers of \mathcal{Q} then

$$\bigcap_{i} \mathcal{L}_{i} \text{ is a convex subquiver}$$

Thus, every subquiver of Q is contained in a unique smallest convex subquiver called the convex hull of \mathcal{L} .

The convex hull of a vertex $v \in Q_0$ is the full subquiver of Q with vertex set consisting of the vertices that lie on an oriented cycle having v as one of its vertices.

Some subquiver constructions

Given a subquiver ${\cal L}$ of ${\cal Q},$ there are 3 important subquivers associated to it.

 $\mathcal{L}^+, \mathcal{L}^-, \mathcal{L}^o$

The vertex set of \mathcal{L}^+ is the set of vertices v such that v is not in \mathcal{L} and there is a path (in \mathcal{Q}) from a vertex in \mathcal{L} to v.

The vertex set of \mathcal{L}^- is the set of vertices v such that v is not in \mathcal{L} and there is a path from v to a vertex in \mathcal{L} .

The vertex set of \mathcal{L}^o is the set of vertices v such that v is not in \mathcal{L} and there are no paths from or to v to or from a vertex in \mathcal{L} .

Properties

Some basic properties:

1. $Q = \mathcal{L} \cup \mathcal{L}^+ \cup \mathcal{L}^- \cup \mathcal{L}^o$

2. If \mathcal{L} is convex, then $\mathcal{L}^+, \mathcal{L}^-$, and \mathcal{L}^o are convex.

3. $\mathcal{L} \cup \mathcal{L}^+$ and $\mathcal{L} \cup \mathcal{L}^-$ are convex.

4. \mathcal{L} is convex if and only if $\mathcal{L}^+ \cap \mathcal{L}^-$ is empty.

Given a quiver Q and a vertex v in Q, the path connected component of v is the full subquiver whose vertex set consisting of the vertices w such that both v and w lie on cycle. A path connected component is convex.

Note that the path component of a vertex v is the convex hull of the vertex v.

More properties

If either \mathcal{L}^+ or \mathcal{L}^- is empty, then \mathcal{L} is convex. **Proof** If \mathcal{L}^+ is empty, then $\mathcal{L}^+ \cap \mathcal{L}^-$ is empty. Hence \mathcal{L} is convex.

$$(\mathcal{L}\cup\mathcal{L}^+)^+$$
 and $(\mathcal{L}\cup\mathcal{L}^-)^-$ are empty and hence $(\mathcal{L}\cup\mathcal{L}^+)$ and $(\mathcal{L}\cup\mathcal{L}^-)$ are convex.

Path connected components

We assume that the trivial path of length 0 consisting of a vertex v is considered to be a cyclic (the trivial cycle).

It is easy to see that if \sim is the relation on the vertices of \mathcal{Q} given by $v \sim w$ if v and w are vertices on some oriented cycle in \mathcal{Q} , then \sim is a equivalence relation.

The equivalence classes of \sim are the path connected components.

The trivial subquiver of Q at vertex v consists of one vertex, v and no arrows. The trivial subquiver at v is a path connected component if and only if v does not lie on an oriented cycle (of length ≥ 1).

Homological description of convexity

Proposition

Let \mathcal{L} be a full subquiver of \mathcal{Q} and $\Lambda = K\mathcal{Q}/J^2$, where J is the ideal in $K\mathcal{Q}$ generated by the arrows of \mathcal{Q} . The following statements are equivalent.

- 1. \mathcal{L} is not convex
- 2. There exist positive integers a and b and vertices u, v, w with $u, v \in \mathcal{L}_0$ and $w \notin \mathcal{L}_0$ such that both $\operatorname{Ext}^a_{\Lambda}(S_u, S_w)$ and $\operatorname{Ext}^b_{\Lambda}(S_w, S_v)$ are nonzero.

Uses that since $\Lambda = KQ/J^2$ is a Koszul algebra $\operatorname{Ext}^n_{\Lambda}(S_u, S_v)$ corresponds to a path of length *n* in Q from *u* to *v*.

We give another algebraic description of convexity later.

Algebras

Let $\Lambda = KQ/I$ be a K-algebra. K is an arbitrary field and I is an ideal contained in ideal generated by paths of length 2 in KQ.

Let \mathcal{L} be a full subquiver of \mathcal{Q} .

Let *e* be idempotent in KQ or Λ corresponding to the sum of the vertices in \mathcal{L} . Let *e'* be idempotent in KQ or Λ corresponding to the sum of the vertices not in \mathcal{L} .

The algebra associated to \mathcal{L} and Λ is $\Gamma = \Lambda/(\Lambda e'\Lambda)$.

The algebra assoc to ${\cal L}$ and Λ

An equally fine choice could have been $e\Lambda e$.

We have surjections:

$$\Lambda \rightarrow e \Lambda e$$
 given by $\lambda \rightarrow e \lambda e$

and

 $\Lambda \to \Lambda/(\Lambda e'\Lambda)$, the canonical surjection.

The first map is not a ring homomorphism in general.

 $\Gamma=\Lambda/(\Lambda e'\Lambda)$ and $e\Lambda e$ are, in general not isomorphic as algebras.

Example

Convexity

Lemma

Suppose that \mathcal{L} is a convex subquiver of \mathcal{Q} . Then if $\lambda, \gamma \in \Lambda$, $e\lambda e\gamma e = e\lambda\gamma e$. In particular, $e\lambda e'\gamma e = 0$.

Note that if \mathcal{L} is convex, then the map $\Lambda \to e\Lambda e$, given by λ is sent to $e\lambda e$, is a ring homorphism.

There is a splitting of this homomorphism, namely the inclusion $e\Lambda e \rightarrow \Lambda$. This is a splitting as rings without identity .

Proposition

If \mathcal{L} is convex then $\Gamma = \Lambda/(\Lambda e'\Lambda)$ is isomorphic to $e\Lambda e$, sending $\overline{\lambda}$ to $e\lambda e$, where $\lambda \in \Lambda$ and $\overline{\lambda}$ denotes the image of λ in $\Lambda/(\Lambda e'\Lambda)$.

A few references

Auslander, Platzeck, Todorov Idempotent ideals TAMS 1992

G, Madsen, Marcos: Comparison theorem $\dots e\Lambda e$

G and Psaroudakis, Chrysostomos: Morita contexts JPAA 2015

Psaroudakis, Chrysostomos; Skartsaeterhagen, Oeystein Ingmar; Solberg, Oeyvind. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements, TAMS

Diracca, Luca; Koenig, Steffen. Cohomological reduction by split pairs. J. Pure Appl. Algebra 212 (2008), no. 3, 471-485.

Another description of convexity

Let I = (0). Thus $\Lambda = KQ$. Now suppose that \mathcal{L} is a subquiver of Q and let Γ be the algebra associated to \mathcal{L} and Λ Then the following statements are equivalent.

1. \mathcal{L} is a convex

2. $e\Lambda e$ is isomorphic to Γ .

For the remainder of this talk $\Lambda = KQ/I$, \mathcal{L} is a full subquiver of Q, and $\Gamma = \Lambda/(\Lambda e'\Lambda)$ is the algebra associated to \mathcal{L} and Λ .

Proposition

Suppose that \mathcal{L}^+ is empty. If P is a projective Γ -module, then P is a projective Λ -module. Furthermore, if $M, N \in Mod(\Gamma)$, then $Hom_{\Gamma}(M, N) = Hom_{\Lambda}(M, N)$

Relation to idempotent ideals -APT

Assuming \mathcal{L}^+ is empty, one can show that $\Lambda e'\Lambda = e'\Lambda$ and hence $\Lambda e'\Lambda$ is a strong idempotent ideal. Parts (2) and (3) below have been observed by Auslander, Platzeck, and Todorov (under the assumption that Λ is an artin algebra).

In APT, the duality between left and right modules is used. In the previous result and the following result, we do not assume that Λ is finite dimensional.

\mathcal{L}^+ empty con't

Theorem

Suppose that \mathcal{L}^+ is empty. The following statements hold.

- If (*): ··· → P² → P¹ → P⁰ → M → 0 is a projective Γ-resolution of the Γ-module M, then applying the forgetful functor(*) is a projective Λ-resolution of M. If (*) is minimal over Γ then (*) is minimal over Λ.
- 2. If M and N are Γ -modules, then the Ext-algebra $\operatorname{Ext}^*_{\Gamma}(M, N)$ is graded isomorphic $\operatorname{Ext}^*_{\Lambda}(M, N)$. That is, $\operatorname{Mod}(\Gamma) \to \operatorname{Mod}(\Lambda)$ is a homological embedding.
- 3. $gl.dim(\Lambda) \ge gl.dim(\Gamma)$.
- 4. If Λ satisfies the finitistic dimension conjecture, so does Γ .

There are similar results if \mathcal{L}^- is empty.

Convexity Result

Theorem

Let K be a field, Q a finite quiver, and $\Lambda = KQ/I$, where I is an ideal in KQ contained in ideal generated by paths of length 2 in Q. Suppose that \mathcal{L} is a convex subquiver of Q and let Γ be the algebra associated to Λ and \mathcal{L} . Then

- 1. $\operatorname{Ext}^*_{\Lambda}(M, N)$ is graded isomorphic to $\operatorname{Ext}^*_{\Gamma}(M, N)$, for all Γ -modules M and N.
- 2. $gl.dim(\Lambda) \ge gl.dim(\Gamma)$.
- 3. The finitistic dimension of $\Lambda \geq$ the finitistic dimension of Γ .

Hochschild cohomology

 $\Lambda = KQ/I$, where I is an admissible ideal in KQ.

It is well-known that $\Lambda^e = \Lambda^{op} \otimes_K \Lambda = K \mathcal{Q}^* / I^*$ where \mathcal{Q}^* is the quiver with vertex set $\mathcal{Q}^{op} \times \mathcal{Q}$ where $\mathcal{Q}^{op} = \{v^{op} \mid v \in \mathcal{Q}_0\}$ and arrow set $\{(a^{op}, v) \mid a \in \mathcal{Q}_1, v \in \mathcal{Q}_0\} \cup \{(v^{op}, a) \mid v^{op} \in \mathcal{Q}_0^{op}, a \in \mathcal{Q}_1\},$ where $a^{op} \colon v^{op} \to w^{op}$ if $a \colon w \to v$.

The ideal I^* is generated by the elements of the form $r^{op} \otimes 1$ and $1 \otimes r'$, where $r^{op} \in I^{op}$ and $r' \in I$ together with commutativity relations coming from the tensor product $\Lambda^{op} \otimes_{\mathcal{K}} \Lambda$.

Convexity in this setting

Lemma

Suppose that \mathcal{L} is a convex subquiver of \mathcal{Q} . Then $\mathcal{L}^{op} \times \mathcal{L}$ is a convex subquiver of \mathcal{Q}^* .

Let Γ be the algebra associated to Λ and \mathcal{L} . The algebra associated to Λ^e and $\mathcal{L}^{op} \times \mathcal{L}$ is isomorphic to Γ^e .

Theorem

Let K be a field, Q a finite quiver, and $\Lambda = KQ/I$, where I is an admissible ideal in KQ. Suppose that \mathcal{L} is a convex subquiver of Q and let Γ be the algebra associated to Λ and \mathcal{L} . Then $\operatorname{Ext}_{\Lambda^e}^*(\Gamma, N)$ is graded isomorphic to $HH^*(\Gamma, N)$, for all Γ -bimodules N. In particular, $\operatorname{Ext}_{\Lambda^e}^*(\Gamma, \Gamma)$ is graded isomorphic to $HH^*(\Gamma)$.

The homological heart of an algebra

Let

 $X = \{v \in Q_0 \mid v \text{ is a vertex in a nontrivial cycle in } Q\}$

and let

 $Y = X \cup \{y \in Q_0 \mid y \text{ is a vertex in a path with origin}$

and terminus vertices in X }.

Let $\mathcal{H}(\mathcal{Q})$, or simply \mathcal{H} when no confusion could arise, be the subquiver of \mathcal{Q} with vertex set Y. We call \mathcal{H} the homological heart of \mathcal{Q} .

Note that \mathcal{H} depends only on \mathcal{Q} .

Basic properties

Proposition

Let \mathcal{H} be the homological heart of \mathcal{Q} . Then the following statements hold.

- 1. The subquiver \mathcal{H} is the empty quiver if and only if \mathcal{Q} contains no nontrivial cycles; that is, \mathcal{Q} is triangular.
- 2. The subquiver \mathcal{H} is the convex hull of X.
- 3. The quiver H is the smallest convex subquiver of Q that contains all the nontrivial path connected components of Q.
- 4. The homological heart of Q is an invariant of Q.
- 5. The subquiver $\mathcal{H}^+ \cup \mathcal{H}^- \cup \mathcal{H}^0$ contains no oriented cycles.

Useful results

We set t to be the longest path in \mathcal{Q} with support in $\mathcal{H}^- \cup \mathcal{H}^0 \cup \mathcal{H}^+$.

Lemma

Let M be a Λ -module. Then, for $\ell \geq t$

- 1. the ℓ -th syzygy of a Λ -module has support in $\mathcal{H} \cup \mathcal{H}^+$ and
- 2. the ℓ -th cosyzygy of Λ -module has support in $\mathcal{H} \cup \mathcal{H}^-$.

Let *C* be a Λ -module. Define *C*⁺ to be the largest submodule of *C* having support contained in \mathcal{H}^+ and *C*₋ be the smallest submodule of *C* such that C/C_- has support contained \mathcal{H}^- .

Main result about homological hearts

First a proposition.

Proposition

Let A be a Λ -module whose support is contained in $\mathcal{H} \cup \mathcal{H}^+$. If $\dots \rightarrow P^2 \rightarrow P^1 \rightarrow P^0 \rightarrow A \rightarrow 0$ is a minimal projective Λ -resolution of A, then

$$\cdots
ightarrow P^2/(P^2)^+
ightarrow P^1/(P^1)^+
ightarrow P^0/(P^0)^+
ightarrow A/A^+
ightarrow 0$$

is a minimal projective Γ -resolution of A/A^+ .

Theorem

Let K be a field, Q a finite quiver, and $\Lambda = KQ/I$, where I is an admissible ideal I in KQ. Let H be the homological heart of Q and Γ be the algebra associated to Λ and H.

Theorem (Con't)

Let t be length of the longest path in Q having support contained in $\mathcal{H}^+ \cup \mathcal{H}^- \cup \mathcal{H}^0$.

Then

- 1. $gl.dim(\Lambda)$ is finite if and only if $gl.dim(\Gamma)$ is finite.
- 2. The finitistic dimension of Λ is finite if and only if the finitistic dimension of Γ is finite.
- 3. If M and N are Λ -modules and $\ell \geq 2t + 1$, then

 $\operatorname{Ext}^{\ell}_{\Lambda}(M, N)$ is naturally isomorphic to $\operatorname{Ext}^{\ell-2t}_{\Gamma}(A_M, B_N)$,

where $A_M = \Omega^t(M)/(\Omega^t(M))^+$ and $B_N = \Omega^{-t}(N)_-$.