A McKay correspondence for reflections groups joint work with Ragnar-Olaf Buchweitz and Colin Ingalls

Eleonore Faber

University of Michigan

Auslander Conference, Woods Hole 2016

Kleinian singularities

Focus on n = 2, and $k = \mathbb{C}$. Then

Theorem (F. Klein, 1884)

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group. Then the quotient singularity $X = \mathbb{C}^2/\Gamma = \text{Spec}(S^{\Gamma})$, i.e., the orbit space of Γ acting on \mathbb{C}^2 , is of the form

 $X = \operatorname{Spec}(\mathbb{C}[x, y, z]/(f)),$

Kleinian singularities

Focus on n = 2, and $k = \mathbb{C}$. Then

Theorem (F. Klein, 1884)

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group. Then the quotient singularity $X = \mathbb{C}^2/\Gamma = \text{Spec}(S^{\Gamma})$, i.e., the orbit space of Γ acting on \mathbb{C}^2 , is of the form

 $X = \operatorname{Spec}(\mathbb{C}[x, y, z]/(f)),$

where f is of type

•
$$A_n$$
: $z^2 + y^2 + x^{n+1}$,
• D_n : $z^2 + x(y^2 + x^{n-2})$ for $n \ge 4$
• E_6 : $z^2 + x^3 + y^4$,
• E_7 : $z^2 + x(x^2 + y^3)$,
• E_8 : $z^2 + x^3 + y^5$.

A_1 and A_2 – the cone and the cusp

$$x^2 + y^2 - z^2 = 0$$

 $z^2 + y^2 - x^3 = 0$

A_3 and A_4

 A_5 and A_6

 $z^2 + y^2 - x^7 = 0$

$D4: z^2 + x(y^2 - x^2) = 0$

Eleonore Faber (University of Michigan)

Woods Hole 2016

D_5 and D_6

 $z^2 + x(y^2 - x^3) = 0$

 $z^2 + x(y^2 - x^4) = 0$

D_7 and D_8

 $z^2 + x(y^2 - x^5) = 0$

 $z^2 + x(y^2 - x^6) = 0$

$E_6: \quad z^2 + x^3 + y^4 = 0$

Eleonore Faber (University of Michigan)

 $E_7: z^2 + x(x^2 + y^3) = 0$

$E_8: \quad z^2 + x^3 + y^5 = 0$

Eleonore Faber (University of Michigan)

Dual resolution graphs

Let X be a normal surface singularity and let $\pi : \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$.

Dual resolution graphs

Let X be a normal surface singularity and let $\pi : \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$. Form a graph with

- vertices: $i \leftrightarrow E_i$
- edges: $i j \longleftrightarrow E_i \cap E_j \neq \emptyset$.

Dual resolution graphs

Let X be a normal surface singularity and let $\pi : \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$. Form a graph with

• vertices: $i \leftrightarrow E_i$

• edges:
$$i - j \longleftrightarrow E_i \cap E_j \neq \emptyset$$
.

Theorem (Du Val)

The dual resolution resolution graphs of the Kleinian singularities are Coxeter–Dynkin diagrams of type ADE.

Example: $x^2 + y^2 = z^2$

Dual resolution graph of type A_1 :

Example:
$$z^2 + x(y^2 - x^2) = 0$$

Example:
$$z^2 + x(y^2 - x^2) = 0$$

Dual resolution graph of type D_4 :

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations ρ_0, \dots, ρ_m :

 ρ_0 = trivial representation,

 $\rho_1 = c$ = canonical representation $\Gamma \hookrightarrow GL_2(\mathbb{C})$.

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations $\rho_0, \dots \rho_m$:

 ρ_0 = trivial representation,

 $\rho_1 = c$ = canonical representation $\Gamma \hookrightarrow GL_2(\mathbb{C})$.

Form a graph:

- vertices: $i \leftrightarrow \rho_i$
- arrows: $i \xrightarrow{m_{ij}} j$ iff ρ_j appears with multiplicity m_{ij} in the tensor product representation $c \otimes \rho_i$

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations $\rho_0, \ldots \rho_m$:

 ρ_0 = trivial representation,

 $\rho_1 = c$ = canonical representation $\Gamma \hookrightarrow GL_2(\mathbb{C})$.

Form a graph:

• vertices:
$$i \leftrightarrow \rho_i$$

• arrows: $i \xrightarrow{m_{ij}} j$ iff ρ_j appears with multiplicity m_{ij} in the tensor product representation $c \otimes \rho_i$

Observation (J. McKay, 1979): These graphs are extended Coxeter Dynkin diagrams of type ADE (with arrows in both directions).

Example: D₄

The group Γ is generated by

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Five irreps ρ_i , four one-dimensional and one two-dimensional $\rho_1 = c$.

Example: D₄

The group Γ is generated by

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Five irreps ρ_i , four one-dimensional and one two-dimensional $\rho_1 = c$. The McKay graph:

Thus for n = 2 and $\Gamma \in SL_2(\mathbb{C})$:

Have 1-1 correspondence between

- exceptional curves E_i on the minimal resolution of \mathbb{C}^2/Γ .
- irreducible representations of Γ (mod the trivial representation).
- indecomposable projective Γ * S = End_R S-modules (modulo the trivial module).
- indecomposable **CM**-modules over *R* (modulo *R* itself). [This follows from *Herzog's theorem*, which says that $add_R(S) = CM(R)$.]

Theorem (Buchweitz-F-Ingalls)

If $G \subseteq GL_2(\mathbb{C})$ is a reflection group, let $z = \prod_{s \in reflections(G)} I_s$ be the hyperplane arrangement and set $\Delta = z^2$. Let further A = G * S, $e = \frac{1}{|G|} \sum_{g \in G} g$, $\overline{A} = A/AeA$ and $T = S^G$. Then

 $\bar{A} \cong \operatorname{End}_{T/\Delta}(S/z)$

is a NCR of T/Δ , that is, gldim $\overline{A} = 2$ and S/z is in **CM** (T/Δ) .

Theorem (Buchweitz-F-Ingalls)

If $G \subseteq GL_2(\mathbb{C})$ is a reflection group, let $z = \prod_{s \in reflections(G)} I_s$ be the hyperplane arrangement and set $\Delta = z^2$. Let further A = G * S, $e = \frac{1}{|G|} \sum_{g \in G} g$, $\overline{A} = A/AeA$ and $T = S^G$. Then

 $\bar{A} \cong \operatorname{End}_{T/\Delta}(S/z)$

is a NCR of T/Δ , that is, gldim $\overline{A} = 2$ and S/z is in **CM** (T/Δ) . In particular:

$$\operatorname{add}_{T/\Delta}(S/z) = \operatorname{CM}(T/\Delta),$$

i.e., S/z is a **CM**-representation generator.

The swallowtail: Δ of S_4 $16x^4z - 4x^3y^2 - 128x^2z^2 + 144xy^2z - 27y^4 + 256z^3 = 0$

The swallowtail: Δ of S_4 $16x^4z - 4x^3y^2 - 128x^2z^2 + 144xy^2z - 27y^4 + 256z^3 = 0$

Here $S/z \cong T/\Delta \oplus \widetilde{T/\Delta} \oplus \operatorname{syz}(\widetilde{T/\Delta}) \oplus M^2_{2,0}$.

Eleonore Faber (University of Michigan)

McKay for reflections

Woods Hole 2016

Questions

- What are the *R*-direct summands of S/z?
- Can one describe the *R*-direct summands of *S*/*z* for some specific groups, e.g., *S_n*?
- What about the geometry?