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Classical McKay correspondence

Kleinian singularities

Focus on n = 2, and k = C. Then

Theorem (F. Klein, 1884)

Let Γ ⊆ SL2(C) be a finite group. Then the quotient singularity
X = C2/Γ = Spec(SΓ), i.e., the orbit space of Γ acting on C2, is of the
form

X = Spec(C[x , y , z]/(f )),

where f is of type
An: z2 + y2 + xn+1,
Dn: z2 + x(y2 + xn−2) for n ≥ 4,
E6: z2 + x3 + y4,
E7: z2 + x(x2 + y3),
E8: z2 + x3 + y5.
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Classical McKay correspondence

A1 and A2 – the cone and the cusp

x2 + y2 − z2 = 0 z2 + y2 − x3 = 0
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Classical McKay correspondence

A3 and A4

z2 + y2 − x4 = 0 z2 + y2 − x5 = 0
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Classical McKay correspondence

A5 and A6

z2 + y2 − x6 = 0 z2 + y2 − x7 = 0
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Classical McKay correspondence

D4 : z2 + x(y2 − x2) = 0
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Classical McKay correspondence

D5 and D6

z2 + x(y2 − x3) = 0 z2 + x(y2 − x4) = 0

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Classical McKay correspondence

D7 and D8

z2 + x(y2 − x5) = 0 z2 + x(y2 − x6) = 0

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Classical McKay correspondence

E6 : z2 + x3 + y4 = 0
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Classical McKay correspondence

E7 : z2 + x(x2 + y3) = 0
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Classical McKay correspondence

E8 : z2 + x3 + y5 = 0
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Classical McKay correspondence

Dual resolution graphs

Let X be a normal surface singularity and let π : X̃ −→ X be its
minimal resolution, with exceptional curves

⋃
i Ei .

Form a graph with
vertices: i ←→ Ei

edges: i − j ←→ Ei ∩ Ej 6= ∅.

Theorem (Du Val)
The dual resolution resolution graphs of the Kleinian singularities are
Coxeter–Dynkin diagrams of type ADE.
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Classical McKay correspondence

Example: x2 + y2 = z2

π−−−−→

Dual resolution graph of type A1:

•
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Classical McKay correspondence

Example: z2 + x(y2 − x2) = 0

π−−−−→
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Classical McKay correspondence

Example: z2 + x(y2 − x2) = 0

π−−−−→

Dual resolution graph of type D4:

•

• • •
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Classical McKay correspondence

McKay correspondence

Let Γ ⊆ SL2(C) be a finite group with irreducible representations
ρ0, . . . ρm:
ρ0 = trivial representation,
ρ1 = c = canonical representation Γ ↪→ GL2(C).

Form a graph:
vertices: i ←→ ρi

arrows: i
mij−→ j iff ρj appears with multiplicity mij in the tensor

product represenation c ⊗ ρi

Observation (J. McKay, 1979): These graphs are extended Coxeter
Dynkin diagrams of type ADE (with arrows in both directions).

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Classical McKay correspondence

McKay correspondence

Let Γ ⊆ SL2(C) be a finite group with irreducible representations
ρ0, . . . ρm:
ρ0 = trivial representation,
ρ1 = c = canonical representation Γ ↪→ GL2(C).

Form a graph:
vertices: i ←→ ρi

arrows: i
mij−→ j iff ρj appears with multiplicity mij in the tensor

product represenation c ⊗ ρi

Observation (J. McKay, 1979): These graphs are extended Coxeter
Dynkin diagrams of type ADE (with arrows in both directions).

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Classical McKay correspondence

McKay correspondence

Let Γ ⊆ SL2(C) be a finite group with irreducible representations
ρ0, . . . ρm:
ρ0 = trivial representation,
ρ1 = c = canonical representation Γ ↪→ GL2(C).

Form a graph:
vertices: i ←→ ρi

arrows: i
mij−→ j iff ρj appears with multiplicity mij in the tensor

product represenation c ⊗ ρi

Observation (J. McKay, 1979): These graphs are extended Coxeter
Dynkin diagrams of type ADE (with arrows in both directions).

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Classical McKay correspondence

Example: D4

The group Γ is generated by

±
(

1 0
0 1

)
,±
(

i 0
0 −i

)
,±
(

0 1
−1 0

)
,±
(

0 i
i 0

)
.

Five irreps ρi , four one-dimensional and one two-dimensional ρ1 = c.

The McKay graph:

ρ0 ρ1 ρ3

ρ4

ρ2
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Classical McKay correspondence

McKay correspondence

Thus for n = 2 and Γ ∈ SL2(C):
Have 1-1 correspondence between

exceptional curves Ei on the minimal resolution of C2/Γ.
irreducible representations of Γ (mod the trivial representation).
indecomposable projective Γ ∗ S = EndR S-modules (modulo the
trivial module).
indecomposable CM-modules over R (modulo R itself). [This
follows from Herzog’s theorem, which says that
addR(S) = CM(R).]
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McKay for reflection groups

Theorem (Buchweitz–F–Ingalls)

If G ⊆ GL2(C) is a reflection group, let z =
∏

s∈reflections(G) ls be the
hyperplane arrangement and set ∆ = z2.
Let further A = G ∗ S, e = 1

|G|
∑

g∈G g, Ā = A/AeA and T = SG.
Then

Ā ∼= EndT/∆(S/z)

is a NCR of T/∆, that is, gldim Ā = 2 and S/z is in CM(T/∆).

In particular:
addT/∆(S/z) = CM(T/∆),

i.e., S/z is a CM-representation generator.
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Higher dimension

The swallowtail: ∆ of S4

16x4z−4x3y2−128x2z2 +144xy2z−27y4 +256z3 = 0

Here S/z ∼= T/∆⊕ T̃/∆⊕ syz(T̃/∆)⊕M2
2,0.

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Higher dimension

The swallowtail: ∆ of S4

16x4z−4x3y2−128x2z2 +144xy2z−27y4 +256z3 = 0

Here S/z ∼= T/∆⊕ T̃/∆⊕ syz(T̃/∆)⊕M2
2,0.

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016



Questions

Questions

What are the R-direct summands of S/z?
Can one describe the R-direct summands of S/z for some
specific groups, e.g., Sn?
What about the geometry?
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