A McKay correspondence for reflections groups joint work with Ragnar-Olaf Buchweitz and Colin Ingalls

Eleonore Faber

University of Michigan
Auslander Conference, Woods Hole 2016

Kleinian singularities

Focus on $n=2$, and $k=\mathbb{C}$. Then
Theorem (F. Klein, 1884)
Let $\Gamma \subseteq S L_{2}(\mathbb{C})$ be a finite group. Then the quotient singularity $X=\mathbb{C}^{2} / \Gamma=\operatorname{Spec}\left(S^{\Gamma}\right)$, i.e., the orbit space of Γ acting on \mathbb{C}^{2}, is of the form

$$
X=\operatorname{Spec}(\mathbb{C}[x, y, z] /(f))
$$

Kleinian singularities

Focus on $n=2$, and $k=\mathbb{C}$. Then
Theorem (F. Klein, 1884)
Let $\Gamma \subseteq S L_{2}(\mathbb{C})$ be a finite group. Then the quotient singularity $X=\mathbb{C}^{2} / \Gamma=\operatorname{Spec}\left(S^{\Gamma}\right)$, i.e., the orbit space of Γ acting on \mathbb{C}^{2}, is of the form

$$
X=\operatorname{Spec}(\mathbb{C}[x, y, z] /(f))
$$

where f is of type

- $A_{n}: z^{2}+y^{2}+x^{n+1}$,
- $D_{n}: z^{2}+x\left(y^{2}+x^{n-2}\right)$ for $n \geq 4$,
- $E_{6}: z^{2}+x^{3}+y^{4}$,
- $E_{7}: z^{2}+x\left(x^{2}+y^{3}\right)$,
- $E_{8}: z^{2}+x^{3}+y^{5}$.

A_{1} and A_{2} - the cone and the cusp

A_{3} and A_{4}

$$
z^{2}+y^{2}-x^{5}=0
$$

A_{5} and A_{6}

$$
z^{2}+y^{2}-x^{7}=0
$$

$$
D 4: z^{2}+x\left(y^{2}-x^{2}\right)=0
$$

D_{5} and D_{6}

D_{7} and D_{8}

$z^{2}+x\left(y^{2}-x^{5}\right)=0$

$$
z^{2}+x\left(y^{2}-x^{6}\right)=0
$$

$$
E_{6}: \quad z^{2}+x^{3}+y^{4}=0
$$

$$
E_{7}: \quad z^{2}+x\left(x^{2}+y^{3}\right)=0
$$

$$
E_{8}: \quad z^{2}+x^{3}+y^{5}=0
$$

Dual resolution graphs

Let X be a normal surface singularity and let $\pi: \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_{i} E_{i}$.

Dual resolution graphs

Let X be a normal surface singularity and let $\pi: \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_{i} E_{i}$.
Form a graph with

- vertices: $i \longleftrightarrow E_{i}$
- edges: $i-j \longleftrightarrow E_{i} \cap E_{j} \neq \emptyset$.

Dual resolution graphs

Let X be a normal surface singularity and let $\pi: \widetilde{X} \longrightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_{i} E_{i}$.
Form a graph with

- vertices: $i \longleftrightarrow E_{i}$
- edges: $i-j \longleftrightarrow E_{i} \cap E_{j} \neq \emptyset$.

Theorem (Du Val)

The dual resolution resolution graphs of the Kleinian singularities are Coxeter-Dynkin diagrams of type ADE.

Example: $x^{2}+y^{2}=z^{2}$

Dual resolution graph of type A_{1} :

Example: $z^{2}+x\left(y^{2}-x^{2}\right)=0$

Example: $z^{2}+x\left(y^{2}-x^{2}\right)=0$

Dual resolution graph of type D_{4} :

McKay correspondence

Let $\Gamma \subseteq S L_{2}(\mathbb{C})$ be a finite group with irreducible representations $\rho_{0}, \ldots \rho_{m}$:
$\rho_{0}=$ trivial representation, $\rho_{1}=c=$ canonical representation $\Gamma \hookrightarrow G L_{2}(\mathbb{C})$.

McKay correspondence

Let $\Gamma \subseteq S L_{2}(\mathbb{C})$ be a finite group with irreducible representations $\rho_{0}, \ldots \rho_{m}$:
$\rho_{0}=$ trivial representation,
$\rho_{1}=c=$ canonical representation $\Gamma \hookrightarrow G L_{2}(\mathbb{C})$.

Form a graph:

- vertices: $i \longleftrightarrow \rho_{i}$
- arrows: $i \xrightarrow{m_{i j}} j$ iff ρ_{j} appears with multiplicity $m_{i j}$ in the tensor product represenation $\boldsymbol{c} \otimes \rho_{i}$

McKay correspondence

Let $\Gamma \subseteq S L_{2}(\mathbb{C})$ be a finite group with irreducible representations $\rho_{0}, \ldots \rho_{m}$:
$\rho_{0}=$ trivial representation,
$\rho_{1}=c=$ canonical representation $\Gamma \hookrightarrow G L_{2}(\mathbb{C})$.

Form a graph:

- vertices: $i \longleftrightarrow \rho_{i}$
- arrows: $i \xrightarrow{m_{i j}} j$ iff ρ_{j} appears with multiplicity $m_{i j}$ in the tensor product represenation $c \otimes \rho_{i}$
Observation (J. McKay, 1979): These graphs are extended Coxeter Dynkin diagrams of type ADE (with arrows in both directions).

Example: D_{4}

The group Γ is generated by

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Five irreps ρ_{i}, four one-dimensional and one two-dimensional $\rho_{1}=c$.

Example: D_{4}

The group Γ is generated by

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Five irreps ρ_{i}, four one-dimensional and one two-dimensional $\rho_{1}=c$. The McKay graph:

McKay correspondence

Thus for $n=2$ and $\Gamma \in S L_{2}(\mathbb{C})$:
Have 1-1 correspondence between

- exceptional curves E_{i} on the minimal resolution of \mathbb{C}^{2} / Γ.
- irreducible representations of Γ (mod the trivial representation).
- indecomposable projective $\Gamma * S=$ End $_{R} S$-modules (modulo the trivial module).
- indecomposable CM-modules over R (modulo R itself). [This follows from Herzog's theorem, which says that $\left.\operatorname{add}_{R}(S)=\mathbf{C M}(R).\right]$

Theorem (Buchweitz-F-Ingalls)
If $G \subseteq G L_{2}(\mathbb{C})$ is a reflection group, let $z=\prod_{s \in \operatorname{reflections}(G)} I_{s}$ be the hyperplane arrangement and set $\Delta=z^{2}$. Let further $A=G * S, e=\frac{1}{|G|} \sum_{g \in G} g, \bar{A}=A / A e A$ and $T=S^{G}$. Then

$$
\bar{A} \cong \operatorname{End}_{T / \Delta}(S / z)
$$

is a $N C R$ of T / Δ, that is, gldim $\bar{A}=2$ and S / z is in $\operatorname{CM}(T / \Delta)$.

Theorem (Buchweitz-F-Ingalls)
If $G \subseteq G L_{2}(\mathbb{C})$ is a reflection group, let $z=\prod_{s \in \operatorname{reflections}(G)} I_{s}$ be the hyperplane arrangement and set $\Delta=z^{2}$. Let further $A=G * S, e=\frac{1}{|G|} \sum_{g \in G} g, \bar{A}=A / A e A$ and $T=S^{G}$. Then

$$
\bar{A} \cong \operatorname{End}_{T / \Delta}(S / z)
$$

is a $N C R$ of T / Δ, that is, gldim $\bar{A}=2$ and S / z is in $\operatorname{CM}(T / \Delta)$. In particular:

$$
\operatorname{add}_{T / \Delta}(S / z)=\mathbf{C M}(T / \Delta)
$$

i.e., S / z is a CM-representation generator.

The swallowtail: Δ of S_{4} $16 x^{4} z-4 x^{3} y^{2}-128 x^{2} z^{2}+144 x y^{2} z-27 y^{4}+256 z^{3}=0$

The swallowtail: Δ of S_{4} $16 x^{4} z-4 x^{3} y^{2}-128 x^{2} z^{2}+144 x y^{2} z-27 y^{4}+256 z^{3}=0$

Here $S / z \cong T / \Delta \oplus \widetilde{T / \Delta} \oplus \operatorname{syz}(\widetilde{T / \Delta}) \oplus M_{2,0}^{2}$.

Questions

- What are the R-direct summands of S / z ?
- Can one describe the R-direct summands of S / z for some specific groups, e.g., S_{n} ?
- What about the geometry?

