The Canonical Join Complex

Emily Barnard

North Carolina State University

April 29, 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The canonical join representation

The **canonical join representation** of an element in a lattice (when it exists) is a unique minimal join-representation.

Theorem [Mizuno]

Suppose that W is a finite Weyl group, and Π is the corresponding preprojective algebra. There is a bijection between the torsion-free classes of Π and the elements of W that is an isomorphism of lattices.

Introduction

The canonical join representation

The **canonical join representation** of an element in a lattice (when it exists) is a unique minimal join-representation.

Theorem [lyama, Reading, Reiten, and Thomas]

Suppose that Π is the preprojective algebra corresponding to the finite Weyl group W. Then the layers of the torsion-free class corresponding to w correspond to the canonical joinands of w.

Canonical Join Representation

Definition

The **canonical join representation** of w (when it exists) is the unique minimal join representation $w = \bigvee A$ in the following sense:

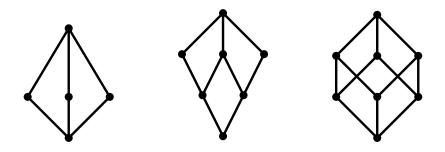
- **1** A is minimal in containment order, i.e. $\bigvee A$ is **irredundant**.
- 2 A is the minimal antichain in join-refinement order.

Easy

Each $j \in A$ is join-irreducible, and called a **canonical joinand of** w.

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Examples

Definitions and Fact

- If each element of *L* has a CJR, then *L* is **join-semidistributive**.
- Dually, if each element of *L* has a canonical meet representation, then *L* is **meet-semidistributive**.
- If *L* is join-semidistributive, then every irredundant join of atoms is a CJR.

Question

Which subsets of join-irreducible elements form a CJR?

The canonical join complex

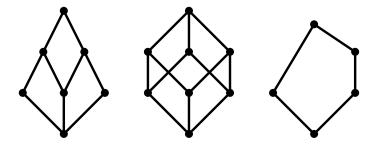
Proposition [Reading]

Suppose that $\bigvee A = w$ is a canonical join representation. Then the join $\bigvee A'$ for each subset $A' \subseteq A$ is also a canonical join representation.

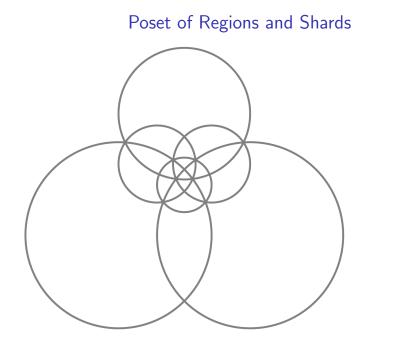
Definition

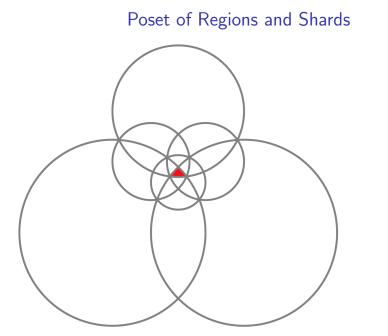
Suppose that L is a finite join-semidistributive lattice. The **canonical join complex** of L is the simplicial complex whose faces are the sets of join-irreducible elements that join canonically.

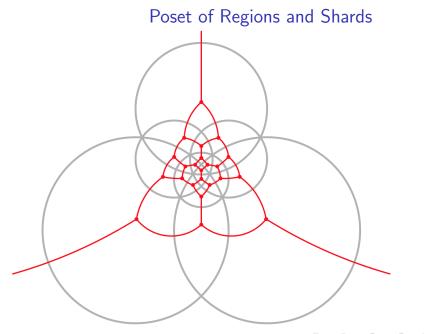
Examples



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ







Poset of Regions and Shards

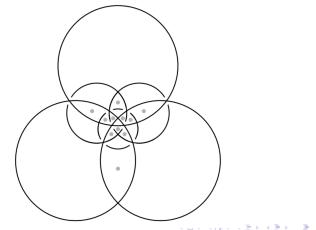
Facts

- If each region is a simplicial cone, then the poset of regions is a join-semidistributive lattice.
- The join-irreducible elements correspond to the **shards** of the arrangement.
- Shards are defined by 'cutting' hyperplanes in a way that encodes information about the lattice quotients of the poset of regions.

Poset of Regions and Shards

Fact

A pair of join-irreducible elements form a canonical join representation if and only if the corresponding shards intersect in their interiors.



The Weak order for a finite Coxeter Group

Definition

A **Coxeter system** (W, S) is a group with the presentation:

$$W = \langle s \in S : (ss')^{m(s,s')} = e \rangle$$

- m(s,s') = m(s',s) and m(s,s) = 1 for each $s,s' \in S$.
- Let c denote a Coxeter element for (W, S).

The Weak order for a finite Coxeter Group

• The weak order for a finite Coxeter group *W* can be realized as a lattice of regions.

• Since each region is a simplicial cone, the weak order is a join-semidistributive lattice.

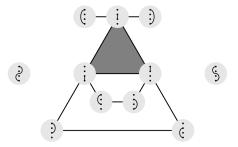
Question

What does the canonical join complex look like?

The Weak order for a finite Coxeter Group

Question

What does the canonical join complex look like?



 In type A, shards can be represented by noncrossing diagrams, which encode the defining inequalities of the shard.

Main Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem [Reading]

The canonical join complex for A_n is flag.

Question

Is the canonical join complex always flag?

Main Results

Theorem [Reading]

The canonical join complex for A_n is flag.

Question

Is the canonical join complex always flag?

Theorem [B.]

Suppose that L is a finite join-semidistributive lattice. The canonical join complex of L is flag if and only if L is also meet-semidistributive.

Consequences

Corollaries

- If the canonical join complex of *L* is flag, then every sublattice and quotient lattice of *L* also has a flag canonical join complex.
- If \mathcal{A} is simplicial, then the canonical join complex of the lattice regions for \mathcal{A} is flag.
- The canonical join complex for the weak order is flag.

Topological Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Tamari lattice is isomorphic to the lattice of torsion-free classes of the hereditary algebra for an equi-oriented type A quiver.

Topological Results

The Tamari lattice is isomorphic to the lattice of torsion-free classes of the hereditary algebra for an equi-oriented type A quiver. Theorem [B.]

- The canonical join complex for the Tamari lattice is either contractible or homotopy equivalent to the wedge of Catalan-many spheres all of the same dimension.
- 2 The canonical join complex for the type B Tamari lattice is homotopy equivalent to the wedge of type B Catalan-many spheres all of the same dimension.