Resonance varieties, Hilbert series and Chen ranks

He Wang
(joint with Alex Suciu)

Northeastern University

Auslander Distinguished Lectures and International Conference
Woods Hole, MA

April 29, 2015
Overview

1. Cohomology jump loci
 - The resonance varieties
 - The characteristic varieties

2. Alexander Modules and Chen Lie algebras

3. McCool groups

4. Picture groups
The resonance varieties

- G: finitely generated group.
The resonance varieties

- G: finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
The resonance varieties

- G: finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
The resonance varieties

- G: finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$(A, a) : A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.
The resonance varieties

- G : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$(A, a) : A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots ,$$

with differentials given by left-multiplication by a.

Definition

The *resonance varieties* of G are the homogeneous subvarieties of A^1

$$R^i_d(G, \mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \geq d \} ,$$

defined for all integers $i \geq 1$ and $d \geq 1$.
The resonance varieties

- G : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$(A, a) : A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots,$$

with differentials given by left-multiplication by a.

Definition

The *resonance varieties* of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_d^i(G, \mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \geq d \},$$

defined for all integers $i \geq 1$ and $d \geq 1$.

- $\mathcal{R}_1^1(\mathbb{Z}^n, \mathbb{C}) = \{0\}; \mathcal{R}_1^1(\pi_1(\Sigma_g), \mathbb{C}) = \mathbb{C}^{2g}, \ g \geq 2.$
The characteristic varieties

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.

\[T(X) := \text{Hom}(G, \mathbb{C}^\ast) = \text{Hom}(G_{ab}, \mathbb{C}^\ast) \] is an algebraic group, with multiplication

\[f_1 \circ f_2(g) = f_1(g) f_2(g) \] and identity \(id(g) = 1 \) for \(g \in G \) and \(f_i \in \text{Hom}(G, \mathbb{C}^\ast) \).

The rank 1 local system on \(X \) is a 1-dimensional \(\mathbb{C} \)-vector space \(C^\rho \) with a right \(C^G \)-module structure \(C^\rho \times G \rightarrow C^\rho \) given by \(\rho(g) \cdot a \) for \(a \in C^\rho \) and \(g \in G \) for \(\rho \in T(X) \).

Definition

The characteristic varieties of \(X \) over \(C \) are the Zariski closed subsets

\[V_i^d(X, C) = \{ \rho \in T(X) = \text{Hom}(G, \mathbb{C}^\ast) | \dim \mathbb{C}H_i(X, C^\rho) \geq d \} \] for \(i \geq 1 \) and \(d \geq 1 \).

\[V_1^1(T_n, C) = \{ 1 \}; \quad V_1^1(\Sigma_g, C) = (\mathbb{C}^\ast)^{2g} \text{ for } g \geq 2. \]
The characteristic varieties

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
The characteristic varieties

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The **character variety** $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The **rank 1 local system** on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \rightarrow \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \mathbb{T}(X)$.
The characteristic varieties

- \(X \): connected CW-complex of finite type.
- \(G = \pi_1(X) \).
- The **character variety** \(\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*) \) is an algebraic group, with multiplication \(f_1 \circ f_2(g) = f_1(g)f_2(g) \) and identity \(\text{id}(g) = 1 \) for \(g \in G \) and \(f_i \in \text{Hom}(G, \mathbb{C}^*) \).
- The **rank 1 local system** on \(X \) is a 1-dimensional \(\mathbb{C} \)-vector space \(\mathbb{C}_\rho \) with a right \(\mathbb{C}G \)-module structure \(\mathbb{C}_\rho \times G \to \mathbb{C}_\rho \) given by \(\rho(g) \cdot a \) for \(a \in \mathbb{C}_\rho \) and \(g \in G \) for \(\rho \in \mathbb{T}(X) \).

Definition

The **characteristic varieties** of \(X \) over \(\mathbb{C} \) are the Zariski closed subsets

\[
V_d^i(X, \mathbb{C}) = \{ \rho \in \mathbb{T}(X) = \text{Hom}(G, \mathbb{C}^*) \mid \dim_{\mathbb{C}} H_i(X, \mathbb{C}_\rho) \geq d \}
\]

for \(i \geq 1 \) and \(d \geq 1 \).
The characteristic varieties

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The rank 1 local system on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \rightarrow \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \mathbb{T}(X)$.

Definition

The characteristic varieties of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}_d^i(X, \mathbb{C}) = \{ \rho \in \mathbb{T}(X) = \text{Hom}(G, \mathbb{C}^*) \mid \dim_{\mathbb{C}} H_i(X, \mathbb{C}_\rho) \geq d \}$$

for $i \geq 1$ and $d \geq 1$.

- $\mathcal{V}_1^1(T^n, \mathbb{C}) = \{1\}$; $\mathcal{V}_1^1(\Sigma_g, \mathbb{C}) = (\mathbb{C}^*)^{2g}$ for $g \geq 2$.
Tangent Cone Theorem

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\text{TC}_1(\mathcal{V}_d^1(G, \mathbb{C}))$ equals $\mathcal{R}_d^1(G, \mathbb{C})$. Moreover, $\mathcal{R}_d^1(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.
Alexander invariant

- **Alexander invariant** is the $\mathbb{Z}[G_{ab}]$-module $B(G) = G'/G''$, where $G' = [G, G]$ and $G'' = [G', G']$ are the 1st and 2nd derived subgroups.
Alexander invariant

- **Alexander invariant** is the $\mathbb{Z}[G_{ab}]$-module $B(G) = G'/G''$, where $G' = [G, G]$ and $G'' = [G', G']$ are the 1st and 2nd derived subgroups.
- The $\mathbb{Z}[G_{ab}]$-module structure on $B(G)$ is determined by the extension

$$0 \to G'/G'' \to G/G'' \to G/G' \to 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.
Alexander invariant

- **Alexander invariant** is the $\mathbb{Z}[G_{ab}]$-module $B(G) = G'/G''$, where $G' = [G, G]$ and $G'' = [G', G']$ are the 1st and 2nd derived subgroups.
- The $\mathbb{Z}[G_{ab}]$-module structure on $B(G)$ is determined by the extension

$$0 \to G'/G'' \to G/G'' \to G/G' \to 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.
- The i-th **Fitting ideal** of a $\mathbb{C}[G_{ab}]$-module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension i minors of the presentation matrix.
Alexander invariant

- **Alexander invariant** is the \(\mathbb{Z}[G_{ab}] \)-module \(B(G) = G'/G'' \), where \(G' = [G, G] \) and \(G'' = [G', G'] \) are the 1st and 2ed derived subgroups.
- The \(\mathbb{Z}[G_{ab}] \)-module structure on \(B(G) \) is determined by the extension

\[
0 \to G'/G'' \to G/G'' \to G/G' \to 0.
\]

with \(G/G' \) acting on the cosets of \(G'' \) via conjugation:

\[
gG' \cdot hG'' = ghg^{-1}G'', \text{ for } g \in G, \ h \in G'.
\]
- The \(i \)-th **Fitting ideal** of a \(\mathbb{C}[G_{ab}] \)-module is the ideal in \(\mathbb{C}[G_{ab}] \) generated by the co-dimension \(i \) minors of the presentation matrix.

Proposition (Hironaka(97), Libgober(98) ...)

\[
\mathcal{V}_d^1(G, \mathbb{C}) = V(E_{d-1}(B(G) \otimes \mathbb{C})) \text{ for } d \geq 1.
\]
Chen Lie algebras

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.

The associated graded Lie algebra of a group G is defined to be $\text{gr}(G; C) := \bigoplus_{k \geq 1} (\Gamma_k(G) / \Gamma_{k+1}(G)) \otimes \mathbb{Z}C$.

The Chen Lie algebra of a group G is defined to be $\text{gr}(G / G''; C) := \bigoplus_{k \geq 1} (\Gamma_k(G / G'') / \Gamma_{k+1}(G / G'')) \otimes \mathbb{Z}C$.

The quotient map $h: G \twoheadrightarrow G / G''$ induces $\text{gr}(G; C) \twoheadrightarrow \text{gr}(G / G''; C)$.

The LCS ranks of G are defined as $\phi_k(G) := \text{rank}(\text{gr}_k(G; C))$.

The Chen ranks of G are defined as $\theta_k(G) := \text{rank}(\text{gr}_k(G / G''; C))$.

$\theta_k(G) = \phi_k(G)$ for $k \leq 3$.

$\theta_k(F_n) = (k - 1)(n + k - 2)$, $k \geq 2$. [Chen (51)]
Chen Lie algebras

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The associated graded Lie algebra of a group G is defined to be
 \[
 \text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G) / \Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.
 \]
Chen Lie algebras

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The associated graded Lie algebra of a group G is defined to be
 \[\text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G) / \Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}. \]
- The Chen Lie algebra of a group G is defined to be
 \[\text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'') / \Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}. \]
Chen Lie algebras

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The *associated graded Lie algebra* of a group G is defined to be
 \[
 \text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.
 \]
- The *Chen Lie algebra* of a group G is defined to be
 \[
 \text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.
 \]
- The quotient map $h: G \to G/G''$ induces $\text{gr}(G; \mathbb{C}) \to \text{gr}(G/G''; \mathbb{C})$.

He Wang (joint with Alex Suciu)

Resonance, Hilbert series and Chen ranks

April 29, 2015 7 / 16
Chen Lie algebras

- The **lower central series** of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The **associated graded Lie algebra** of a group G is defined to be

$$\text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The **Chen Lie algebra** of a group G is defined to be

$$\text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $\text{gr}(G; \mathbb{C}) \rightarrow \text{gr}(G/G''; \mathbb{C})$.
- The **LCS ranks** of G are defined as $\phi_k(G) := \text{rank}(\text{gr}_k(G; \mathbb{C}))$.
Chen Lie algebras

- The lower central series of \(G \): \(\Gamma_1 G = G \), \(\Gamma_2 G = G' = [G, G] \), \(\Gamma_{k+1} G = [\Gamma_k G, G] \), \(k \geq 1 \).
- The associated graded Lie algebra of a group \(G \) is defined to be
 \[
 \text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.
 \]
- The Chen Lie algebra of a group \(G \) is defined to be
 \[
 \text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.
 \]
- The quotient map \(h \): \(G \to G/G'' \) induces \(\text{gr}(G; \mathbb{C}) \to \text{gr}(G/G''; \mathbb{C}) \).
- The LCS ranks of \(G \) are defined as \(\phi_k(G) := \text{rank}(\text{gr}_k(G; \mathbb{C})) \).
- The Chen ranks of \(G \) are defined as \(\theta_k(G) := \text{rank}(\text{gr}_k(G/G''; \mathbb{C})) \).
Chen Lie algebras

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The associated graded Lie algebra of a group G is defined to be
 $$\text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The Chen Lie algebra of a group G is defined to be
 $$\text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The quotient map $h: G \rightarrow G/G''$ induces $\text{gr}(G; \mathbb{C}) \rightarrow \text{gr}(G/G''; \mathbb{C})$.
- The LCS ranks of G are defined as $\phi_k(G) := \text{rank}(\text{gr}_k(G; \mathbb{C}))$.
- The Chen ranks of G are defined as $\theta_k(G) := \text{rank}(\text{gr}_k(G/G''; \mathbb{C}))$.
- $\theta_k(G) = \phi_k(G)$ for $k \leq 3$.

He Wang (joint with Alex Suciu) Resonance, Hilbert series and Chen ranks April 29, 2015 7 / 16
Chen Lie algebras

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The associated graded Lie algebra of a group G is defined to be

 $$\text{gr}(G; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The Chen Lie algebra of a group G is defined to be

 $$\text{gr}(G/G''; \mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The quotient map $h: G \rightarrow G/G''$ induces $\text{gr}(G; \mathbb{C}) \rightarrow \text{gr}(G/G''; \mathbb{C})$.
- The LCS ranks of G are defined as $\phi_k(G) := \text{rank}(\text{gr}_k(G; \mathbb{C}))$.
- The Chen ranks of G are defined as $\theta_k(G) := \text{rank}(\text{gr}_k(G/G''; \mathbb{C}))$.
- $\theta_k(G) = \phi_k(G)$ for $k \leq 3$.
- $\theta_k(F_n) = (k - 1)(n + k - 2)$, $k \geq 2$. [Chen (51)]
Hilbert series and Chen ranks

\[I := \ker \epsilon : \mathbb{Z}[G_{ab}] \rightarrow \mathbb{Z}. \]
Hilbert series and Chen ranks

- \(l := \ker \epsilon : \mathbb{Z}[G_{ab}] \to \mathbb{Z} \).
- The module \(B(G) \) has an \(l \)-adic filtration \(\{ l^k B(G) \}_{k \geq 0} \).
Hilbert series and Chen ranks

- $I := \ker \epsilon : \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
- The module $B(G)$ has an I-adic filtration $\{I^k B(G)\}_{k \geq 0}$.
- $\text{gr}(B(G)) = \bigoplus_{k \geq 0} I^k B(G) / I^{k+1} B(G)$ is a graded $\text{gr}(\mathbb{Z}[G_{ab}])$-module.
Hilbert series and Chen ranks

- \(I := \ker \epsilon : \mathbb{Z}[G_{ab}] \to \mathbb{Z} \).
- The module \(B(G) \) has an \(I \)-adic filtration \(\{I^k B(G)\}_{k \geq 0} \).
- \(\text{gr}(B(G)) = \bigoplus_{k \geq 0} I^k B(G) / I^{k+1} B(G) \) is a graded \(\text{gr}(\mathbb{Z}[G_{ab}]) \)-module.

Proposition (Massey (80))

For each \(k \geq 2 \), there exists an isomorphism

\[
\text{gr}_k(G/G'') \cong \text{gr}_{k-2}(B(G)).
\]
Hilbert series and Chen ranks

- \(l := \ker \epsilon : \mathbb{Z}[G_{ab}] \to \mathbb{Z} \).
- The module \(B(G) \) has an \(l \)-adic filtration \(\{ l^k B(G) \}_{k \geq 0} \).
- \(\text{gr}(B(G)) = \bigoplus_{k \geq 0} l^k B(G)/l^{k+1} B(G) \) is a graded \(\text{gr}(\mathbb{Z}[G_{ab}]) \)-module.

Proposition (Massey (80))

For each \(k \geq 2 \), there exists an isomorphism

\[
\text{gr}_k(G/G'') \cong \text{gr}_{k-2}(B(G)).
\]

Corollary

\[
\text{Hilb}(B(G) \otimes \mathbb{C}, t) = \sum_{k \geq 0} \theta_{k+2}(G) t^k.
\]
McCool groups (pure welded braid groups) (group of loops)

- The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of $IA_n := \ker(\text{Aut}(F_n) \to \text{GL}_n(\mathbb{Z}))$.

$H^*(wP_n, \mathbb{C})$ was computed by Jensen, McCammond, and Meier (06).

Theorem (D. Cohen (09))

The first resonance variety of McCool group wP_n is $R_{11}(wP_n, \mathbb{C}) = \bigcup 1 \leq i < j \leq n C_{ij} \cup \bigcup 1 \leq i < j < k \leq n C_{ijk}$, where $C_{ij} = C_2$ and $C_{ijk} = C_3$.

He Wang (joint with Alex Suciu)

Resonance, Hilbert series and Chen ranks
April 29, 2015 9 / 16
McCool groups (pure welded braid groups) (group of loops)

- The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of
 \[IA_n := \ker(\text{Aut}(F_n) \rightarrow \text{GL}_n(\mathbb{Z})). \]

- The McCool groups wP_n has a presentation [McCool (86)] with generators: x_{ij}, for $1 \leq i \neq j \leq n$ and relations: $x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}$; $[x_{ij}, x_{kl}] = 1$; $[x_{ij}, x_{kj}] = 1$, for i, j, k, l distinct.
The McCool group \mathcal{wP}_n is the group of basis-conjugating automorphisms, which is a subgroup of $\text{IA}_n := \ker(\text{Aut}(F_n) \to \text{GL}_n(\mathbb{Z}))$.

The McCool groups \mathcal{wP}_n has a presentation [McCool (86)] with generators: x_{ij}, for $1 \leq i \neq j \leq n$ and relations: $x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}$; $[x_{ij}, x_{kl}] = 1$; $[x_{ij}, x_{kj}] = 1$, for i, j, k, l distinct.

$H^*(\mathcal{wP}_n, \mathbb{C})$ was computed by Jensen, McCammond, and Meier (06).
McCool groups (pure welded braid groups) (group of loops)

- The McCool group \(wP_n \) is the group of basis-conjugating automorphisms, which is a subgroup of \(IA_n := \ker(\text{Aut}(F_n) \to \text{GL}_n(\mathbb{Z})) \).
- The McCool groups \(wP_n \) has a presentation [McCool (86)] with generators: \(x_{ij} \), for \(1 \leq i \neq j \leq n \) and relations: \(x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij} \); \([x_{ij}, x_{kl}] = 1\); \([x_{ij}, x_{kj}] = 1\), for \(i, j, k, l \) distinct.
- \(H^*(wP_n, \mathbb{C}) \) was computed by Jensen, McCammond, and Meier (06).

Theorem (D.Cohen (09))

The first resonance variety of McCool group \(wP_n \) is

\[
\mathcal{R}_1^1(wP_n, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n} C_{ij} \cup \bigcup_{1 \leq i < j < k \leq n} C_{ijk},
\]

where \(C_{ij} = \mathbb{C}^2 \) and \(C_{ijk} = \mathbb{C}^3 \).
Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$.

F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$.

The LCS ranks $\varphi_k(wP_n^+)$ and the Betti numbers $b_k(wP_n^+)$, where P_n is the pure braid group.

They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$? For $n = 4$, the question was answered by Bardakov and Mikhailov (08) using Alexander polynomials. (There is a gap in the proof.)

Theorem (Suciu, W. (15)) The Chen ranks θ_k of wP_n^+ are given by

- $\theta_1 = \binom{n^2}{2}$,
- $\theta_2 = \binom{n^3}{3}$,
- $\theta_3 = 2 \binom{n+1^4}{4}$,
- $\theta_k = \binom{n+k-2}{k-2} + \theta_{k-1} = k \sum_{i=3}^{k} \binom{n+i-2}{i-2} + \binom{n+1^4}{4}$, $k \geq 4$.
Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$.

He Wang (joint with Alex Suciu)
Resonance, Hilbert series and Chen ranks
April 29, 2015 10 / 16
Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group.
The upper McCool group \(wP_n^+ \) is the subgroup of \(wP_n \) generated by the \(x_{ij} \) for \(1 \leq i < j \leq n \).

F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring \(H^*(wP_n^+; \mathbb{Z}) \). The LCS ranks \(\phi_k(wP_n^+) = \phi_k(P_n) \) and the Betti numbers \(b_k(wP_n^+) = b_k(P_n) \), where \(P_n \) is the pure braid group. They ask a question: are \(wP_n^+ \) and \(P_n \) isomorphic for \(n \geq 4 \)?
Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group. They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$?
- For $n = 4$, the question was answered by Bardakov and Mikhailov (08) using Alexander polynomials. (There is a gap in the proof.)
Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group. They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$?
- For $n = 4$, the question was answered by Bardakov and Mikhailov (08) using Alexander polynomials. (There is a gap in the proof.)

Theorem (Suciu, W. (15))

The Chen ranks θ_k of wP^+ are given by $\theta_1 = \binom{n}{2}$, $\theta_2 = \binom{n}{3}$, $\theta_3 = 2\binom{n+1}{4}$, $\theta_k = \binom{n+k-2}{k+1} + \theta_{k-1} = \sum_{i=3}^{k} \binom{n+i-2}{i+1} + \binom{n+1}{4}$, $k \geq 4$.

He Wang (joint with Alex Suciu)
Corollary

The pure braid group P_n, the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \geq 4$.
Corollary

The pure braid group P_n, the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are *not* isomorphic for $n \geq 4$.

Proof:

\[\theta_4(P_n) = 3 \binom{n+1}{4}, \quad \theta_4(P\Sigma_n^+) = 2 \binom{n+1}{4} + \binom{n+2}{5}, \quad \theta_4(\Pi_n) = 3 \binom{n+2}{5}.\]

The Chen ranks of P_n and Π_n were computed by D. Cohen and Suciu (95).
The pure braid group P_n, the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \geq 4$.

Proof:
\[\theta_4(P_n) = 3 \binom{n+1}{4}, \theta_4(P\Sigma_n^+) = 2 \binom{n+1}{4} + \binom{n+2}{5}, \theta_4(\Pi_n) = 3 \binom{n+2}{5}. \]

The Chen ranks of P_n and Π_n were computed by D. Cohen and Suciu (95).

Theorem (Suciu, W. (15))

The first resonance variety of upper McCool group wP_n^+ is
\[R_1^{1}(wP_n^+, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n-1} C_{i,j}, \]
where $C_{i,j} = \mathbb{C}^{j+1}$.
Remark

There is a close connection (under some conditions) between the Chen ranks $\theta_k(G)$ and the resonance varieties $\mathcal{R}_1(G)$:

$$\theta_k(G) = \sum_{n \geq 2} c_m \cdot \theta_k(F_n), \quad \text{for} \quad k \gg 1,$$

where c_n is the number of n-dimensional components of $\mathcal{R}_1(G)$.

(Suciu(01)) (Schenck and Suciu(04)) (D. Cohen and Schenck (14))

The pure braid groups P_n, the McCool groups wP_n, satisfy this formula. However, the upper McCool groups wP_n^+ does not satisfies this formula for $n \geq 4$.

He Wang (joint with Alex Suciu)
Resonance, Hilbert series and Chen ranks
April 29, 2015 12 / 16
Picture groups

For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
Picture groups

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- \(G(A_n)\): the picture group of type \(A_n\) with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
Picture groups

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
- $G(A_n)$ is generated by $x_{ij}, (1 \leq i < j \leq n + 1)$, with relations
 \[
 \begin{cases}
 (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing}; \\
 (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k,
 \end{cases}
 \]
 where $(a, b) = b^{-1}aba^{-1}$.

Picture groups

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
- $G(A_n)$ is generated by $x_{ij}, (1 \leq i < j \leq n + 1)$, with relations
 \[
 \begin{cases}
 (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing}; \\
 (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k,
 \end{cases}
 \]
 where $(a, b) = b^{-1}aba^{-1}$.
- $R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle$.

He Wang (joint with Alex Suciu)
Resonance, Hilbert series and Chen ranks
April 29, 2015
13 / 16
Picture groups

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).

- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).

- $G(A_n)$ is generated by $x_{ij}, (1 \leq i < j \leq n + 1)$, with relations
 $\begin{cases} (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing}; \\ (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k, \end{cases}$
 where $(a, b) = b^{-1}aba^{-1}$.

- $R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle$.

Lemma

There exists a surjection $R(A_n) \twoheadrightarrow G(A_n)$ inducing isomorphism on the resonance varieties $\mathcal{R}_d^1(G(A_n)) = \mathcal{R}_d^1(R(A_n))$.
$R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle$ is a right-angled Artin group.
$R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle$ is a right-angled Artin group.

All resonance varieties and characteristic varieties of right-angled Artin groups were computed by Papadima and Suciu (09). We only review the first resonance varieties here.

Theorem (Papadima-Suciu (06))

Let $\Gamma = (V, E)$ be a finite graph. Then $R_1(\Gamma; \mathbb{C}) = \bigcup W \mathbb{C} W$, where the union is over all subsets $W \subset V$ such that the induced subgraph Γ_W is disconnected. Here, $\mathbb{C} W$ is the corresponding coordinate subspace of $\mathbb{C} V$.

$R(A_3)$

$R(A_4)$

$R(A_5)$

$R(A_6)$
• \(R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle \) is a right-angled Artin group.

![Diagrams of R(A3), R(A4), R(A5), R(A6)]

• All resonance varieties and characteristic varieties of right-angled Artin groups were computed by Papadima and Suciu (09). We only review the first resonance varieties here.
\(R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j - 1 \rangle \) is a right-angled Artin group.

All resonance varieties and characteristic varieties of right-angled Artin groups were computed by Papadima and Suciu (09). We only review the first resonance varieties here.

Theorem (Papadima-Suciu (06))

Let \(\Gamma = (V, E) \) be a finite graph. Then \(\mathcal{R}_1(G_\Gamma; \mathbb{C}) = \bigcup_W \mathbb{C}^W \), where the union is over all subsets \(W \subset V \) such that the induced subgraph \(\Gamma_W \) is disconnected. Here, \(\mathbb{C}^W \) is the corresponding coordinate subspace of \(\mathbb{C}^V \).
Corollary

Recall that the graph corresponding to $R(A_n)$ has vertex set $\{x_{i,i+1}, (1 \leq i \leq n)\}$ and edges $(x_{i,i+1}, x_{j,j+1})$ for $i < j - 1$.

$$\mathcal{R}_1^1(G(A_n)) = \mathcal{R}_1^1(R(A_n)) = \bigcup_{i=1}^{n-2} \mathcal{C}^W_i$$

where $W_i = \{x_{i,i+1}, x_{i+1,i+2}, x_{i+2,i+3}\}$.
Recall that the graph corresponding to $R(A_n)$ has vertex set \(\{x_{i,i+1}, (1 \leq i \leq n)\}\) and edges \((x_{i,i+1}, x_{j,j+1})\) for \(i < j - 1\).

\[
\mathcal{R}_1^1(G(A_n)) = \mathcal{R}_1^1(R(A_n)) = \bigcup_{i=1}^{n-2} C_{W_i}
\]

where \(W_i = \{x_{i,i+1}, x_{i+1,i+2}, x_{i+2,i+3}\}\).

\(R(A_3)\) \hspace{2cm} \(R(A_4)\) \hspace{2cm} \(R(A_5)\) \hspace{2cm} \(R(A_6)\)
Corollary

Recall that the graph corresponding to $R(A_n)$ has vertex set \{${x_i, i+1, (1 \leq i \leq n)}$\} and edges $(x_i, i+1, x_j, j+1)$ for $i < j - 1$.

$$\mathcal{R}_1^1(G(A_n)) = \mathcal{R}_1^1(R(A_n)) = \bigcup_{i=1}^{n-2} C W_i$$

where $W_i = \{x_i, i+1, x_{i+1}, i+2, x_{i+2}, i+3\}$.

Example

$$\mathcal{R}_1^1(G(A_3)) = \mathbb{C}^3 = H^1(G(A_3); \mathbb{C}).$$

$$\mathcal{R}_1^1(G(A_4)) = \mathbb{C}^3 \cup \mathbb{C}^3 \subset H^1(G(A_4); \mathbb{C}) = \mathbb{C}^4.$$

$$\mathcal{R}_1^1(G(A_5)) = \mathbb{C}^3 \cup \mathbb{C}^3 \cup \mathbb{C}^3 \subset H^1(G(A_5); \mathbb{C}) = \mathbb{C}^5.$$

$$\mathcal{R}_1^1(G(A_6)) = \mathbb{C}^3 \cup \mathbb{C}^3 \cup \mathbb{C}^3 \cup \mathbb{C}^3 \subset H^1(G(A_6); \mathbb{C}) = \mathbb{C}^6.$$
Future work

- Compute the characteristic varieties of the picture group $G(A_n)$.

- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.

- Investigate how these algebraic invariants reflect the information of the picture groups and the corresponding quivers.
Future work

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.
Future work

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.
- Investigate how these algebraic invariants reflect the information of the picture groups and the corresponding quivers.
Future work

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.
- Investigate how these algebraic invariants reflect the information of the picture groups and the corresponding quivers.

Thank You!