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Preliminaries

Reference
Joint with Thomas Brüstle, Kiyoshi Igusa and Gordana Todorov.
Preprint on arXiv:1503.07945

Notation

I K denotes a field,

I Q (acyclic) quiver with

I n vertices.



Mutation

I Fomin and Zelevinsky introduced the notation of mutation for
(integer) skew-symmetrizable matrices to formalize
combinatorial properties of canonical bases / total positivity.

I Can be interpreted as mutation of quivers (skew-symmetric)
or more generally valued quivers (skew-symmetrizable).

I Given Q and k ∈ {1, . . . , n} can mutate Q in the direction k
to form new quiver µkQ.
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c-Vectors

I Much of the dynamics of cluster mutation encoded in
c-vectors.

I Form quiver Q̃ by adding arrows i → i ′ (still only mutate at
original vertices).

I Q̃ ′ = µkQ̃ contains µkQ as a full subquiver.

Definition
If Q ′ is obtained from Q by a sequence of mutations, the c-vectors
are the vectors c(i) = (c1, c2 . . . , cn) where

cj(i) = #(arrows i → j ′ in Q̃ ′)−#(arrows j ′ → i in Q̃ ′)



Green Mutation

Theorem (Sign Coherence1 )

Each of the c-vectors either has nonnegative entries or nonpositive
entries.

Definition
A vertex k ∈ {1, . . . , n} of Q ′ is

I green if the k-th c-vector nonnegative, and is

I red if the k-th c-vector is nonpositive.

A maximal green sequence is a sequence (k0, k1, . . . , km) of
vertices so that:

1. each ks is green in µks−1 ◦ · · · ◦ µk1 ◦ µk0Q, and

2. all indices of µkm ◦ · · · ◦ µk1 ◦ µk0Q are red.

1Fomin-Zelevinsky, Derksen-Weyman-Zelevinsky,
Igusa-Orr-Todorov-Weyman,Gross-Hacking-Keel-Kontsevich



Green Mutation

Example (Mutation for A2)
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Problems

1. Does every Q admit a maximal green sequence?
I No: e.g., once-punctured torus (Brüstle-Dupont-Pérotin).
I Yes for Q mutation type An (Garver-Musiker).

2. If Q admits a maximal green sequence, does it only
admit finitely many?

I Yes for Q tame acyclic (Brüstle-Dupont-Pérotin).
I Yes for Q mutation equivalent to tame (BHIT).

3. Can every sequence of green mutations be completed to
a maximal green sequence?

I In particular, cannot mutate at the source of a multiple arrow
(BHIT).

4. Existence of maximal green sequences preserved under
mutation?

I No in general: There exist quivers having no maximal green
sequences mutation equivalent to quiver which do (Muller).



Results

We will use geometry of quiver semi-invariants to understand
maximal green sequences.

Theorem (Source/Target Theorem, Brüstle-H.-Igusa-Todorov)

Let Q be an acyclic valued quiver and (k0, k1, . . . , km) a maximal
green sequence. Then at each step, ks is not the source of an
infinite type arrow of µks ◦ · · · ◦ µk0Q.

Theorem (Finiteness Theorem, Brüstle-H.-Igusa-Todorov)

Let Q be a valued quiver mutation equivalent to an acyclic tame
valued quiver. Then Q admits only finitely many maximal green
sequences.



Semi-Invariant Domains

Definition

1. The Euler matrix E has entries

Eij = dimK Hom(Si ,Sj)− dimK Ext(Si , Sj)

where Si is the simple representation supported at i .

2. Have the Euler-Ringel bilinear form

〈 , 〉 : Zn ⊗ Zn → Zn

given by 〈α, β〉 = αtEβ.

3. For representations M and N have

〈dimM,dimN〉 = dimK Hom(M,N)− dimK Ext(M,N)



Semi-Invariant Domains

Definition
A vector β ∈ Zn is a root of Q if there is an indecomposable
β-dimensional representation of Q. A root β is

1. real if 〈β, β〉 > 0

2. Schur if End(Mβ) = K general Mβ with dimMβ = β.

A root β′ is a subroot of β if a general β-dimensional
representation has a β′-dimensional subrepresentation.

Definition
Let β be a real Schur root. The semi-invariant domain

D(β) = {x ∈ Rn : 〈x , β〉 = 0 and 〈x , β′〉 ≤ 0 for all β′ ⊆ β}



Semi-Invariant Domains

I Consider Rep(Q, α) the space of α-dimensional
representations.

I Carries an action of GL(α). Orbits correspond to isomorphism
classes of representations.

I A polynomial f : Rep(Q, α)→ K is semi-invariant of weight β
if (g · f )(x) = det(g)βf (x).

Theorem (Virtual Stability Theorem,
Igusa-Orr-Todorov-Weyman2)

The integer points of the domain D(β) are the α ∈ Zn such that
Rep(Q, α) has a semi-invariant of weight β.

(Really should use presentation spaces / virtual representation
spaces for α ∈ Zn.)

2cf. also King, Derksen-Weyman



Semi-Invariant Pictures

The domains D(β) give a simplicial fan in Rn with walls labeled by
real Schur roots.

Definition
The semi-invariant picture L(Q) is obtained by stereographic
projection of

⋃
β D(β) ∩ Sn−1.

I Walls in L(Q) have a specified normal orientation given by
curvature.

I Internal vertices L(Q) in bijection with rigid modules.

I When Q infinite representation type, L(Q) is a simplicial
complex with L(Q) = Sn−1.



Semi-Invariant Pictures

Example (Semi-Invariant Picture for 3← 2← 1)
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Mutation via Semi-Invariant Pictures

Theorem (Igusa-Orr-Todorov-Weyman3)

Consider the cluster category CQ = Db(KQ)/τ−1 ◦ [1]. There are
bijections:

1. {real Schur roots of Q} ↔ {walls of L(Q)}
2. {indecomposable rigids of CQ} ↔ {vertices of L(Q)}

So that:

3. T1 ⊕ · · · ⊕ Tn is a cluster tilting object in CQ if and only if
corresponding vertices span a (n − 1)-simplex in L(Q)

4. Clusters differ by a mutation if and only if the corresponding
simplices share a wall.

3cf. also Schofield, Derksen-Weyman



Mutation via Semi-Invariant Pictures

Example (Clusters for 3← 2← 1)
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c-Vector Theorem

Theorem (c-Vector Theorem, Igusa-Orr-Todorov-Weyman)

Suppose T = T1 ⊕ · · · ⊕Tn is a cluster and the wall opposite of Ti

is D(βi ). Then the c-vectors associated to T are ±βi with sign
determined by normal orientation of D(βi ).

I A mutation is green if and only if
crossing from “outside” of a wall
to “inside.”

I Maximal green sequence goes
from simplex labelled KQ[1] to
simplex labelled KQ.
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Mutation via Semi-Invariant Pictures

Example (3← 2← 1)
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Mutation via Semi-Invariant Pictures
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Proofs of Theorems

Now sketch proofs of the following theorems using semi-invariant
pictures.

Theorem (Source/Target Theorem, Brüstle-H.-Igusa-Todorov)

If Q is acyclic (k0, k1, . . . , km) is a maximal green sequence. Then
at each step, ks is not the source of an infinite type arrow of
µks ◦ · · · ◦ µk0Q.

Theorem (Finiteness Theorem, Brüstle-H.-Igusa-Todorov)

If Q is mutation equivalent to an acyclic tame quiver, then Q
admits only finitely many maximal green sequences.



The Rotation Lemma

Both theorems rely on the Rotation Lemma:

Theorem (Rotation Lemma, BHIT)

If (k0, . . . , km) is a maximal green sequence for Q, then

(k1, . . . , km, σ
−1(k0))

is a maximal green sequence for µk0Q where σ is the permutation
associated to the maximal green sequence.



The Rotation Lemma

Example (Original maximal green sequence)

D(321)

D(2)D(3)

D(1)

D(32)

D(21)



The Rotation Lemma

Example (Rotating the Maximal Green Sequence: Step 1)

D(31)

D(1)

D(31)

D(2)

D(23)

D(3)

D(12)

D(3)

D(1)



The Rotation Lemma

Example (Rotating the Maximal Green Sequence: Step 2)

D(31)

D(1)
D(31)

D(2)

D(23)

D(3)

D(12)

D(3)

D(1)



The Rotation Lemma

Example (Rotating the Maximal Green Sequence: Step 3)

D(12)

D(3)D(2)

D(1)

D(23)

D(31)



Proof of Source/Target Theorem

Theorem (Source/Target Theorem)

If Q is acyclic (k0, k1, . . . , km) is a maximal green sequence. Then
at each step, ks is not the source of an infinite type arrow of
µks ◦ · · · ◦ µk0Q.

Proof (Sketch)

1. Suppose there is a maximal green sequence where we mutate
at the source of a multiple arrow.

2. Use rotation lemma to reduce to case where first mutation is
at the source of a multiple arrow, say 2⇒ 1.

3. (Acyclic assumption ensures mutated quiver still has a
multiple arrow).

4. In L(Q) have to cross D(2) before D(1).

5. Multiple arrow gives infinite collection of walls to cross.



Proof of Source/Target Theorem

Example (Semi-Invariant Picture for 1⇔ 2← 3)

D(2)D(1)

D(3)



Proof of Finiteness Theorem

Theorem (Finiteness Theorem)

If Q is mutation equivalent to an acyclic tame quiver, then Q
admits only finitely many maximal green sequences.

Proof (Sketch)

1. Use rotation lemma to reduce to case of acyclic and tame.

2. Invoke Brüstle-Dupont-Pérotin, or,

3. There is a region in L(Q) that no green sequence can
enter/escape, outside of which there are only finitely many
walls.
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