Maximal Green Sequences via Quiver Semi-Invariants

Stephen Hermes Wellesley College, Wellesley, MA

Maurice Auslander Distinguished Lectures and International Conference
Woods Hole

May 3, 2015

Preliminaries

Reference

Joint with Thomas Brüstle, Kiyoshi Igusa and Gordana Todorov. Preprint on arXiv:1503.07945

Notation

- K denotes a field,
- Q (acyclic) quiver with
- n vertices.

Mutation

- Fomin and Zelevinsky introduced the notation of mutation for (integer) skew-symmetrizable matrices to formalize combinatorial properties of canonical bases / total positivity.
- Can be interpreted as mutation of quivers (skew-symmetric) or more generally valued quivers (skew-symmetrizable).
- ▶ Given Q and $k \in \{1, ..., n\}$ can mutate Q in the direction k to form new quiver $\mu_k Q$.

Example (Mutation)

c-Vectors

- Much of the dynamics of cluster mutation encoded in c-vectors.
- ▶ Form quiver \widetilde{Q} by adding arrows $i \to i'$ (still only mutate at original vertices).
- $ightharpoonup \widetilde{Q}' = \mu_k \widetilde{Q}$ contains $\mu_k Q$ as a full subquiver.

Definition

If Q' is obtained from Q by a sequence of mutations, the c-vectors are the vectors $c(i) = (c_1, c_2, \ldots, c_n)$ where

$$c_j(i) = \#(ext{arrows } i o j' ext{ in } \widetilde{Q}') - \#(ext{arrows } j' o i ext{ in } \widetilde{Q}')$$

Green Mutation

Theorem (Sign Coherence¹)

Each of the c-vectors either has nonnegative entries or nonpositive entries.

Definition

A vertex $k \in \{1, ..., n\}$ of Q' is

- ▶ green if the k-th c-vector nonnegative, and is
- ▶ red if the k-th c-vector is nonpositive.

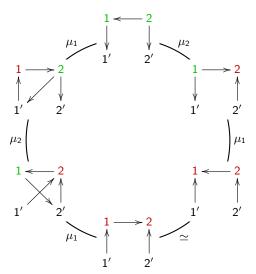
A maximal green sequence is a sequence (k_0, k_1, \ldots, k_m) of vertices so that:

- 1. each k_s is green in $\mu_{k_{s-1}} \circ \cdots \circ \mu_{k_1} \circ \mu_{k_0} Q$, and
- 2. all indices of $\mu_{k_m} \circ \cdots \circ \mu_{k_1} \circ \mu_{k_0} Q$ are red.

¹Fomin-Zelevinsky, Derksen-Weyman-Zelevinsky, Igusa-Orr-Todorov-Weyman,Gross-Hacking-Keel-Kontsevich (□) → ⟨□⟩

Green Mutation

Example (Mutation for A_2)



Problems

- 1. Does every Q admit a maximal green sequence?
 - ▶ No: e.g., once-punctured torus (Brüstle-Dupont-Pérotin).
 - ▶ Yes for Q mutation type A_n (Garver-Musiker).
- 2. If Q admits a maximal green sequence, does it only admit finitely many?
 - ▶ Yes for *Q* tame acyclic (Brüstle-Dupont-Pérotin).
 - Yes for Q mutation equivalent to tame (BHIT).
- 3. Can every sequence of green mutations be completed to a maximal green sequence?
 - In particular, cannot mutate at the source of a multiple arrow (BHIT).
- 4. Existence of maximal green sequences preserved under mutation?
 - ▶ No in general: There exist quivers having no maximal green sequences mutation equivalent to quiver which do (Muller).

Results

We will use geometry of quiver semi-invariants to understand maximal green sequences.

Theorem (Source/Target Theorem, Brüstle-H.-Igusa-Todorov)

Let Q be an acyclic valued quiver and (k_0, k_1, \ldots, k_m) a maximal green sequence. Then at each step, k_s is not the source of an infinite type arrow of $\mu_{k_s} \circ \cdots \circ \mu_{k_0} Q$.

Theorem (Finiteness Theorem, Brüstle-H.-Igusa-Todorov)

Let Q be a valued quiver mutation equivalent to an acyclic tame valued quiver. Then Q admits only finitely many maximal green sequences.

Semi-Invariant Domains

Definition

1. The Euler matrix E has entries

$$E_{ij} = \dim_K \operatorname{\mathsf{Hom}}(S_i, S_j) - \dim_K \operatorname{\mathsf{Ext}}(S_i, S_j)$$

where S_i is the simple representation supported at i.

2. Have the Euler-Ringel bilinear form

$$\langle \ , \ \rangle : \mathbb{Z}^n \otimes \mathbb{Z}^n \to \mathbb{Z}^n$$

given by $\langle \alpha, \beta \rangle = \alpha^t E \beta$.

3. For representations M and N have

$$\langle \operatorname{dim} M, \operatorname{dim} N \rangle = \operatorname{dim}_K \operatorname{Hom}(M, N) - \operatorname{dim}_K \operatorname{Ext}(M, N)$$

Semi-Invariant Domains

Definition

A vector $\beta \in \mathbb{Z}^n$ is a *root* of Q if there is an indecomposable β -dimensional representation of Q. A root β is

- 1. real if $\langle \beta, \beta \rangle > 0$
- 2. Schur if $\operatorname{End}(M_{\beta}) = K$ general M_{β} with $\operatorname{dim} M_{\beta} = \beta$.

A root β' is a *subroot* of β if a general β -dimensional representation has a β' -dimensional subrepresentation.

Definition

Let β be a real Schur root. The *semi-invariant domain*

$$D(\beta) = \{x \in \mathbb{R}^n : \langle x, \beta \rangle = 0 \text{ and } \langle x, \beta' \rangle \leq 0 \text{ for all } \beta' \subseteq \beta\}$$

Semi-Invariant Domains

- ▶ Consider $Rep(Q, \alpha)$ the space of α -dimensional representations.
- ▶ Carries an action of $GL(\alpha)$. Orbits correspond to isomorphism classes of representations.
- ▶ A polynomial $f : Rep(Q, \alpha) \to K$ is *semi-invariant* of weight β if $(g \cdot f)(x) = \det(g)^{\beta} f(x)$.

Theorem (Virtual Stability Theorem, Igusa-Orr-Todorov-Weyman²)

The integer points of the domain $D(\beta)$ are the $\alpha \in \mathbb{Z}^n$ such that $Rep(Q, \alpha)$ has a semi-invariant of weight β .

(Really should use presentation spaces / virtual representation spaces for $\alpha \in \mathbb{Z}^n$.)

²cf. also King, Derksen-Weyman

Semi-Invariant Pictures

The domains $D(\beta)$ give a simplicial fan in \mathbb{R}^n with walls labeled by real Schur roots.

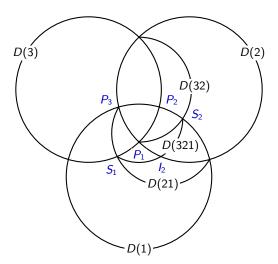
Definition

The *semi-invariant picture* L(Q) is obtained by stereographic projection of $\bigcup_{\beta} D(\beta) \cap S^{n-1}$.

- ► Walls in *L*(*Q*) have a specified normal orientation given by curvature.
- ▶ Internal vertices L(Q) in bijection with rigid modules.
- ▶ When Q infinite representation type, L(Q) is a simplicial complex with $\overline{L(Q)} = S^{n-1}$.

Semi-Invariant Pictures

Example (Semi-Invariant Picture for $3 \leftarrow 2 \leftarrow 1$)



Theorem (Igusa-Orr-Todorov-Weyman³)

Consider the cluster category $C_Q = \mathcal{D}^b(KQ)/\tau^{-1} \circ [1]$. There are bijections:

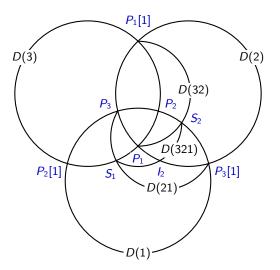
- 1. $\{real\ Schur\ roots\ of\ Q\} \leftrightarrow \{walls\ of\ L(Q)\}$
- 2. $\{indecomposable \ rigids \ of \ \mathcal{C}_Q\} \leftrightarrow \{vertices \ of \ L(Q)\}$

So that:

- 3. $T_1 \oplus \cdots \oplus T_n$ is a cluster tilting object in C_Q if and only if corresponding vertices span a (n-1)-simplex in L(Q)
- 4. Clusters differ by a mutation if and only if the corresponding simplices share a wall.

³cf. also Schofield, Derksen-Weyman

Example (Clusters for $3 \leftarrow 2 \leftarrow 1$)

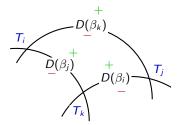


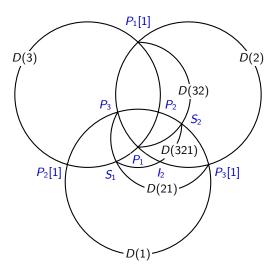
c-Vector Theorem

Theorem (c-Vector Theorem, Igusa-Orr-Todorov-Weyman)

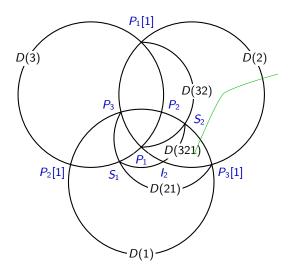
Suppose $T = T_1 \oplus \cdots \oplus T_n$ is a cluster and the wall opposite of T_i is $D(\beta_i)$. Then the c-vectors associated to T are $\pm \beta_i$ with sign determined by normal orientation of $D(\beta_i)$.

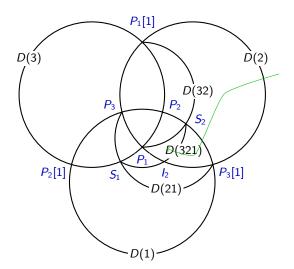
- A mutation is green if and only if crossing from "outside" of a wall to "inside."
- Maximal green sequence goes from simplex labelled KQ[1] to simplex labelled KQ.

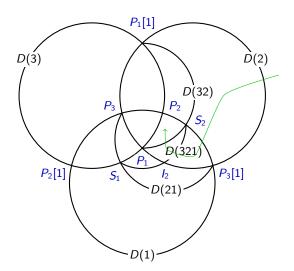


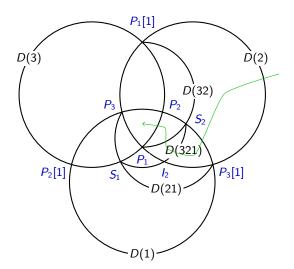












Proofs of Theorems

Now sketch proofs of the following theorems using semi-invariant pictures.

Theorem (Source/Target Theorem, Brüstle-H.-Igusa-Todorov)

If Q is acyclic (k_0, k_1, \ldots, k_m) is a maximal green sequence. Then at each step, k_s is not the source of an infinite type arrow of $\mu_{k_s} \circ \cdots \circ \mu_{k_0} Q$.

Theorem (Finiteness Theorem, Brüstle-H.-Igusa-Todorov)

If Q is mutation equivalent to an acyclic tame quiver, then Q admits only finitely many maximal green sequences.

Both theorems rely on the Rotation Lemma:

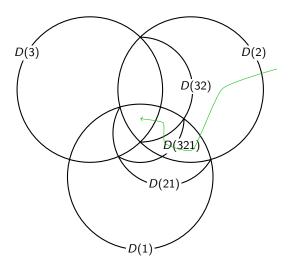
Theorem (Rotation Lemma, BHIT)

If (k_0, \ldots, k_m) is a maximal green sequence for Q, then

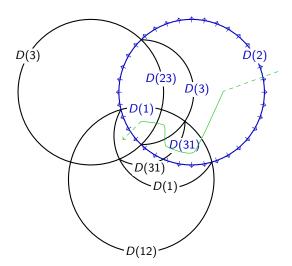
$$(k_1,\ldots,k_m,\sigma^{-1}(k_0))$$

is a maximal green sequence for $\mu_{k_0}Q$ where σ is the permutation associated to the maximal green sequence.

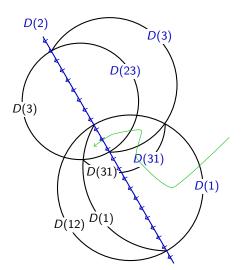
Example (Original maximal green sequence)



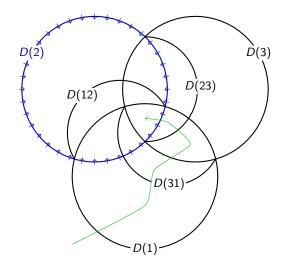
Example (Rotating the Maximal Green Sequence: Step 1)



Example (Rotating the Maximal Green Sequence: Step 2)



Example (Rotating the Maximal Green Sequence: Step 3)



Proof of Source/Target Theorem

Theorem (Source/Target Theorem)

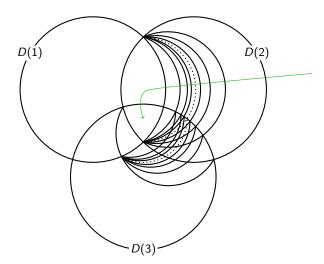
If Q is acyclic (k_0, k_1, \ldots, k_m) is a maximal green sequence. Then at each step, k_s is not the source of an infinite type arrow of $\mu_{k_s} \circ \cdots \circ \mu_{k_0} Q$.

Proof (Sketch)

- 1. Suppose there is a maximal green sequence where we mutate at the source of a multiple arrow.
- 2. Use rotation lemma to reduce to case where first mutation is at the source of a multiple arrow, say $2 \Rightarrow 1$.
- (Acyclic assumption ensures mutated quiver still has a multiple arrow).
- 4. In L(Q) have to cross D(2) before D(1).
- 5. Multiple arrow gives infinite collection of walls to cross.

Proof of Source/Target Theorem

Example (Semi-Invariant Picture for $1 \rightleftharpoons 2 \leftarrow 3$)



Proof of Finiteness Theorem

Theorem (Finiteness Theorem)

If Q is mutation equivalent to an acyclic tame quiver, then Q admits only finitely many maximal green sequences.

Proof (Sketch)

- 1. Use rotation lemma to reduce to case of acyclic and tame.
- 2. Invoke Brüstle-Dupont-Pérotin, or,
- 3. There is a region in L(Q) that no green sequence can enter/escape, outside of which there are only finitely many walls.

References

- [1] T. Brüstle, G. Dupont and M. Pérotin, On maximal green sequences.
- [2] T. Brüstle, S. Hermes, K. Igusa and G. Todorov, Semi-invariant pictures and two conjectures about maximal green sequences.
- [3] H. Derksen and J. Weyman, On the canonical decomposition of quiver representations.
- [4] H. Derksen and J. Weyman, Semi-invariants for quivers and saturation of Littlewood-Richardson coefficients.
- [5] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potential and their representations II: Applications to cluster algebras.
- [6] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients.
- [7] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras.
- [8] K. Igusa, K. Orr, G. Todorov and J. Weyman, Cluster complexes via semi-invariants.
- [9] K. Igusa, K. Orr, G. Todorov and J. Weyman, Modulated semi-invariants.
- [10] A. King, Moduli of representations of finite dimensional algebras.
- [11] G. Muller, The existence of a maximal green sequence is not invariant under quiver mutation.
- [12] A. Schofield, Semi-invariants of quivers.

Thank You!