Combinatorics of Exceptional Sequences in Type \mathbb{A}

Al Garver
(joint with Kiyoshi Igusa, Jacob Matherne, and Jonah Ostroff)

Maurice Auslander Distinguished Lectures and International Conference
May 2, 2015

Outline

Goal: Explicitly describe exceptional sequences of $\mathbb{k} Q$ where Q is an orientation of

$$
1-2-\cdots-n-1-n .
$$

(1) Exceptional sequences
(2) Strand diagrams
(3) Applications

Exceptional sequences

Let $\mathbb{k}=\overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations $\left(E_{1}, E_{2}\right)$ of Q is called an exceptional pair if
i) each E_{i} is indecomposable,
ii) $\operatorname{Ext}^{1}\left(E_{i}, E_{i}\right)=0$ for each E_{i},
iii) $\operatorname{Hom}\left(E_{2}, E_{1}\right)=0, \operatorname{Ext}^{1}\left(E_{2}, E_{1}\right)=0$.

Exceptional sequences

Let $\mathbb{k}=\overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations $\left(E_{1}, E_{2}\right)$ of Q is called an exceptional pair if
i) each E_{i} is indecomposable,
ii) $\operatorname{Ext}^{1}\left(E_{i}, E_{i}\right)=0$ for each E_{i},
iii) $\operatorname{Hom}\left(E_{2}, E_{1}\right)=0, \operatorname{Ext}^{1}\left(E_{2}, E_{1}\right)=0$.

- A sequence $\left(E_{1}, \ldots, E_{k}\right)\left(k \leqslant n:=\# Q_{0}\right)$ of representations of Q is an exceptional sequence if $\left(E_{i}, E_{j}\right)$ is an exceptional pair for any $i<j$. [Gorodentsev-Rudakov 1987]

Exceptional sequences

Let $\mathbb{k}=\overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations $\left(E_{1}, E_{2}\right)$ of Q is called an exceptional pair if
i) each E_{i} is indecomposable,
ii) $\operatorname{Ext}^{1}\left(E_{i}, E_{i}\right)=0$ for each E_{i},
iii) $\operatorname{Hom}\left(E_{2}, E_{1}\right)=0, \operatorname{Ext}^{1}\left(E_{2}, E_{1}\right)=0$.

- A sequence $\left(E_{1}, \ldots, E_{k}\right)\left(k \leqslant n:=\# Q_{0}\right)$ of representations of Q is an exceptional sequence if $\left(E_{i}, E_{j}\right)$ is an exceptional pair for any $i<j$. [Gorodentsev-Rudakov 1987]
- A set $\left\{E_{1}, \ldots, E_{k}\right\}(k \leqslant n)$ of representations of Q is an exceptional collection if $\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right)$ is an exceptional sequence for some $\sigma \in \mathfrak{S}_{k}$.

Exceptional sequences

Let $\mathbb{k}=\overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations $\left(E_{1}, E_{2}\right)$ of Q is called an exceptional pair if
i) each E_{i} is indecomposable,
ii) $\operatorname{Ext}^{1}\left(E_{i}, E_{i}\right)=0$ for each E_{i},
iii) $\operatorname{Hom}\left(E_{2}, E_{1}\right)=0, \operatorname{Ext}^{1}\left(E_{2}, E_{1}\right)=0$.

- A sequence $\left(E_{1}, \ldots, E_{k}\right)\left(k \leqslant n:=\# Q_{0}\right)$ of representations of Q is an exceptional sequence if $\left(E_{i}, E_{j}\right)$ is an exceptional pair for any $i<j$. [Gorodentsev-Rudakov 1987]
- A set $\left\{E_{1}, \ldots, E_{k}\right\}(k \leqslant n)$ of representations of Q is an exceptional collection if $\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right)$ is an exceptional sequence for some $\sigma \in \mathfrak{S}_{k}$.
- An exceptional sequence or collection is complete if $k=n$.

Exceptional sequences

Lemma

The indecomposable representations of a type \mathbb{A} quiver Q are exactly those of the form $X_{i, j}$:

\[

\]

where $0 \leqslant i<j \leqslant n$.

Example

Consider the quiver $1 \longrightarrow 2 \ll 3$. The sequence ($X_{0,1}, X_{1,2}, X_{2,3}$) is not a complete exceptional sequence (CES) since

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{Ext}^{1}\left(X_{2,3}, X_{1,2}\right)=\#\left\{3 \xrightarrow{\alpha} 2 \in Q_{1}\right\}=1 .
$$

The sequence ($X_{2,3}, X_{0,1}, X_{1,2}$) is a CES.

Exceptional sequences

- The braid group \mathcal{B}_{n} acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]

Exceptional sequences

- The braid group \mathcal{B}_{n} acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]
- If Q is Dynkin, complete exceptional sequences are in bijection with maximal chains in the lattice of noncrossing partitions of W_{Q}. [Ingalls-Thomas 2009]

Exceptional sequences

- The braid group \mathcal{B}_{n} acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]
- If Q is Dynkin, complete exceptional sequences are in bijection with maximal chains in the lattice of noncrossing partitions of W_{Q}. [Ingalls-Thomas 2009]
- If Q is acyclic, certain types of complete exceptional sequences are in bijection with c-matrices of Q. [Speyer-Thomas 2013]

Exceptional sequences

Given a type \mathbb{A} quiver Q,

$$
1 \longrightarrow 2<3<4<4
$$

Exceptional sequences

Given a type \mathbb{A} quiver Q,

$$
1 \xrightarrow{+}>2<-\quad 3<-\quad 4<--5
$$

we can associate a vector $\epsilon=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n-1}, \epsilon_{n}\right) \in\{+,-\}^{n+1}$.

Exceptional sequences

Given a type \mathbb{A} quiver Q,

$$
1 \xrightarrow{+} 2<-\quad 3<-\quad 4<--5
$$

we can associate a vector $\epsilon=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n-1}, \epsilon_{n}\right) \in\{+,-\}^{n+1}$. We arbitrarily choose the values of ϵ_{0} and ϵ_{n}.

Exceptional sequences

Given a type \mathbb{A} quiver Q,

$$
1 \xrightarrow{+} 2<-\quad 3<-\quad 4<--5
$$

we can associate a vector $\epsilon=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n-1}, \epsilon_{n}\right) \in\{+,-\}^{n+1}$. We arbitrarily choose the values of ϵ_{0} and ϵ_{n}.

Strand diagrams

Fix a type \mathbb{A} quiver and a corresponding ϵ vector. Denote by $\mathcal{S}_{n, \epsilon}$ a collection of $n+1$ points arranged in a horizontal line.

Can write $\epsilon_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$.

Strand diagrams

Fix a type \mathbb{A} quiver and a corresponding ϵ vector. Denote by $\mathcal{S}_{n, \epsilon}$ a collection of $n+1$ points arranged in a horizontal line.

Can write $\epsilon_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$.

Definition

Let $i, j \in[0, n]$ where $i \neq j$. A strand $c(i, j)$ on $\mathcal{S}_{n, \epsilon}$ is an isotopy class of simple curves in \mathbb{R}^{2} where any $\gamma \in c(i, j)$ satisfies:

- the endpoints of γ are ϵ_{i} and ϵ_{j},
- as a subset of \mathbb{R}^{2},

$$
\gamma \subset\left\{(x, y) \in \mathbb{R}^{2}: x_{i} \leqslant x \leqslant x_{j}\right\} \backslash\left\{\epsilon_{i+1}, \epsilon_{i+2}, \ldots, \epsilon_{j-1}\right\}
$$

- if $k \in\{0, \ldots, n\}$ satisfies $i \leqslant k \leqslant j$ and $\epsilon_{k}=+$ (resp. $\epsilon_{k}=-$), then γ is locally below (resp. above) ϵ_{k}.

Definition

There is a natural map Φ from $\operatorname{ind}\left(\operatorname{rep}_{\mathrm{k}_{\mathrm{k}}}(Q)\right)$ to the set of strands on $\mathcal{S}_{n, \epsilon}$ given by $\Phi\left(X_{i, j}\right):=c(i, j)$.

Example

Let $Q=1 \longleftarrow 2$.

$$
\begin{array}{llll}
X_{0,1} & \mathbb{k}<\frac{0}{-} 0 & \div & + \\
X_{1,2} & 0<\frac{0}{-} \mathbb{k} & \bullet & - \\
X_{0,2} & \mathbb{k}<\frac{1}{-} \mathbb{k} & + & \ddots
\end{array}
$$

Strand diagrams

Let $c\left(i_{1}, j_{1}\right)$ and $c\left(i_{2}, j_{2}\right)$ be distinct strands.

Definition

Two strands $c\left(i_{1}, j_{1}\right)$ and $c\left(i_{2}, j_{2}\right)$ intersect nontrivially if any two curves $\gamma_{\ell} \in c\left(i_{\ell}, j_{\ell}\right)$ with $\ell \in\{1,2\}$ have at least one crossing.

Strand diagrams

Let $c\left(i_{1}, j_{1}\right)$ and $c\left(i_{2}, j_{2}\right)$ be distinct strands.

Definition

Two strands $c\left(i_{1}, j_{1}\right)$ and $c\left(i_{2}, j_{2}\right)$ intersect nontrivially if any two curves $\gamma_{\ell} \in c\left(i_{\ell}, j_{\ell}\right)$ with $\ell \in\{1,2\}$ have at least one crossing.

Definition

We say $c\left(i_{2}, j_{2}\right)$ is clockwise from $c\left(i_{1}, j_{1}\right)$ if and only if any $\gamma_{1} \in c\left(i_{1}, j_{1}\right)$ and $\gamma_{2} \in c\left(i_{2}, j_{2}\right)$ share an endpoint ϵ_{k} and appear in one of the following two configurations up to isotopy.

$$
\begin{array}{cc}
c\left(i_{2}, j_{2}\right) \\
\epsilon_{k}=+ & c\left(i_{1}, j_{1}\right) \\
c\left(i_{1}, j_{1}\right) & \epsilon_{k}=-
\end{array}
$$

Strand diagrams

Definition

A strand diagram $d=\left\{c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}(k \leqslant n)$ on $\mathcal{S}_{n, \epsilon}$ is a collection of strands on $\mathcal{S}_{n, \epsilon}$ that satisfies the following conditions:

- distinct strands do not intersect nontrivially,
- the graph determined by d is a forest (i.e. a disjoint union of trees),
Let $\mathcal{D}_{n, \epsilon}$ denote the set of strand diagrams on $\mathcal{S}_{n, \epsilon}$.

Strand diagrams

Definition

A strand diagram $d=\left\{c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}(k \leqslant n)$ on $\mathcal{S}_{n, \epsilon}$ is a collection of strands on $\mathcal{S}_{n, \epsilon}$ that satisfies the following conditions:

- distinct strands do not intersect nontrivially,
- the graph determined by d is a forest (i.e. a disjoint union of trees),
Let $\mathcal{D}_{n, \epsilon}$ denote the set of strand diagrams on $\mathcal{S}_{n, \epsilon}$.

Example

Let $\epsilon=(+,+,-,+,+)$ so that $Q=1 \xrightarrow{+} 2 \longleftarrow 3 \xrightarrow{+} 4$. Then we have that $d_{1}=\{c(0,1), c(0,2), c(2,3), c(2,4)\}$ and $d_{2}=\{c(0,4), c(1,3), c(2,4)\}$ are elements of $\mathcal{D}_{4, \epsilon}$.

Strand diagrams and exceptional sequences

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in \operatorname{ind}\left(\right.$ rep $\left._{\mathrm{k}}(Q)\right)$.
(1) The strands $\Phi_{n, \epsilon}(U)$ and $\Phi_{n, \epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.

Strand diagrams and exceptional sequences

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in \operatorname{ind}\left(\right.$ rep $\left._{\mathrm{k}}(Q)\right)$.
(1) The strands $\Phi_{n, \epsilon}(U)$ and $\Phi_{n, \epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.
(2) The strand $\Phi_{n, \epsilon}(U)$ is clockwise from $\Phi_{n, \epsilon}(V)$ if and only if (U, V) is an exceptional pair and (V, U) is not an exceptional pair.

Strand diagrams and exceptional sequences

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in \operatorname{ind}\left(\operatorname{rep}_{\mathrm{k}}(Q)\right)$.
(1) The strands $\Phi_{n, \epsilon}(U)$ and $\Phi_{n, \epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.
(2) The strand $\Phi_{n, \epsilon}(U)$ is clockwise from $\Phi_{n, \epsilon}(V)$ if and only if (U, V) is an exceptional pair and (V, U) is not an exceptional pair.
(3) The strands $\Phi_{n, \epsilon}(U)$ and $\Phi_{n, \epsilon}(V)$ do not intersect at any of their endpoints and they do not intersect nontrivially if and only if (U, V) and (V, U) are both exceptional pairs.

Strand diagrams and exceptional sequences

Recall $\mathcal{D}_{n, \epsilon}:=\left\{\right.$ diagrams $\left.d=\left\{c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}\right\}$ and let $\overline{\mathcal{E}}_{\epsilon}:=\{$ exceptional collections with k objects $\bar{\xi}\}$.

Theorem (G.-Igusa-Matherne-Ostroff)
The following map is a bijection

$$
\begin{array}{rll}
\overline{\mathcal{E}}_{\epsilon} & \xrightarrow{\Phi_{n, \epsilon}} \mathcal{D}_{n, \epsilon} \\
\bar{\xi}=\left\{X_{i_{1}, j_{1}}, \ldots, X_{i_{k}, j_{k}}\right\} & \longmapsto & \left.\longmapsto c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]} .
\end{array}
$$

Strand diagrams and exceptional sequences

Recall $\mathcal{D}_{n, \epsilon}:=\left\{\right.$ diagrams $\left.d=\left\{c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}\right\}$ and let $\overline{\mathcal{E}}_{\epsilon}:=\{$ exceptional collections with k objects $\bar{\xi}\}$.

Theorem (G.-Igusa-Matherne-Ostroff)

The following map is a bijection

$$
\begin{array}{rll}
\overline{\mathcal{E}}_{\epsilon} & \xrightarrow{\Phi_{n, \epsilon}} \mathcal{D}_{n, \epsilon} \\
\bar{\xi}=\left\{X_{i_{1}, j_{1}}, \ldots, X_{i_{k}, j_{k}}\right\} & \longmapsto & \left.\longmapsto c\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]} .
\end{array}
$$

Example

Let $n=4$ and $\epsilon=(+,+,-,+,+)$ so that

$$
\begin{aligned}
& Q=1 \stackrel{+}{\longrightarrow} 2 \leftarrow \\
&\left\{X_{0,1}, X_{0,2}, X_{2,3}, X_{2,4}\right\} \mapsto+4
\end{aligned}
$$

Labeled strand diagrams

Definition

A labeled diagram $d(k)=\left\{\left(c\left(i_{\ell}, j_{\ell}\right), s_{\ell}\right)\right\}_{\ell \in[k]}$ is a strand diagram whose strands are bijectively labeled by elements of $[k]$.

Labeled strand diagrams

Definition

A labeled diagram $d(k)=\left\{\left(c\left(i_{\ell}, j_{\ell}\right), s_{\ell}\right)\right\}_{\ell \in[k]}$ is a strand diagram whose strands are bijectively labeled by elements of $[k]$.

Definition

A labeled diagram $d(k)$ has a good labeling if for each point $\epsilon_{i} \in \mathcal{S}_{n, \epsilon}$, the labels of the strands connected to i increase when one reads through them clockwise.

Example

Labeled strand diagrams

Definition

A labeled diagram $d(k)=\left\{\left(c\left(i_{\ell}, j_{\ell}\right), s_{\ell}\right)\right\}_{\ell \in[k]}$ is a strand diagram whose strands are bijectively labeled by elements of $[k]$.

Definition

A labeled diagram $d(k)$ has a good labeling if for each point $\epsilon_{i} \in \mathcal{S}_{n, \epsilon}$, the labels of the strands connected to i increase when one reads through them clockwise.

Example

Labeled strand diagrams

Let $\mathcal{D}_{n, \epsilon}(k)$ denote the set of labeled strand diagrams on $\mathcal{S}_{n, \epsilon}$ with k strands and with good strand labelings.
Let $\mathcal{E}_{\epsilon}(k):=\{$ exceptional sequences of length $k\}$.

Theorem (G.-Igusa-Matherne-Ostroff)

The following map is a bijection

$$
\begin{aligned}
\mathcal{E}_{\epsilon}(k) & \xrightarrow{\tilde{\Phi}} \mathcal{D}_{n, \epsilon}(k) \\
\xi_{\epsilon}=\left(X_{i_{1}, j_{1}}, \ldots, X_{i_{k}, j_{k}}\right) & \longmapsto>
\end{aligned}\left\{\left(c\left(i_{\ell}, j_{\ell}\right), k+1-\ell\right)\right\}_{\ell \in[k] .} .
$$

Labeled strand diagrams

Let $\mathcal{D}_{n, \epsilon}(k)$ denote the set of labeled strand diagrams on $\mathcal{S}_{n, \epsilon}$ with k strands and with good strand labelings.
Let $\mathcal{E}_{\epsilon}(k):=\{$ exceptional sequences of length $k\}$.

Theorem (G.-Igusa-Matherne-Ostroff)

The following map is a bijection

$$
\begin{aligned}
\mathcal{E}_{\epsilon}(k) & \xrightarrow{\widetilde{\Phi}} \mathcal{D}_{n, \epsilon}(k) \\
\xi_{\epsilon}=\left(X_{i_{1}, j_{1}}, \ldots, X_{i_{k}, j_{k}}\right) & \longmapsto
\end{aligned}\left\{\left(c\left(i_{\ell}, j_{\ell}\right), k+1-\ell\right)\right\}_{\ell \in[k]} .
$$

Example

Let $n=4$ and $\epsilon=(+,+,-,+,+)$ so that

$$
Q=1 \xrightarrow{+} 2 \stackrel{-}{\leftarrow} 3 \xrightarrow{+} 4
$$

$$
\left(X_{1,3}, X_{2,3}, X_{0,2}, X_{3,4}\right) \mapsto, \overbrace{3}^{4}
$$

Applications

Change of setting

We now allow Q to be any quiver without loops or 2-cycles.

Example

Applications

Shifting setting

We now allow Q to be any quiver without loops or 2-cycles.

Example

1

Applications

Definition

Given a quiver Q without loops or 2-cycles, the framed quiver (resp. coframed quiver) of Q, denoted \widehat{Q} (resp. \breve{Q}), is formed by
(1) adding a frozen vertex i^{\prime} for each vertex i in Q
(2) adding an arrow $i \rightarrow i^{\prime}$ (resp. $i \leftarrow i^{\prime}$) for each vertex i in Q.

Example

The quiver \hat{Q} is an ice quiver and has vertices $\underbrace{[n]}_{\text {mutable }} \sqcup \underbrace{\left[n^{\prime}\right]}_{\text {frozen }}$.

Applications

Applications

The row vectors of $C \in \mathbf{c}-\mathrm{mat}(Q)$ are called \mathbf{c}-vectors.

Applications
 c-matrices

Theorem ("Sign-coherence" Derksen-Weyman-Zelevinsky 2008)
 Anyc-vector \vec{c} is a nonzero element of $\mathbb{Z}_{\geqslant 0}^{n}$ or $\mathbb{Z}_{\leqslant 0}^{n}$.

Applications

Theorem ("Sign-coherence" Derksen-Weyman-Zelevinsky 2008)

Anyc-vector \vec{c} is a nonzero element of $\mathbb{Z}_{\geqslant 0}^{n}$ or $\mathbb{Z}_{\leqslant 0}^{n}$.

Theorem (Chavez 2013)

Let Q be acyclic. If \vec{c} is a \boldsymbol{c}-vector appearing in some $C \in \boldsymbol{c}-m a t(Q)$, then there exists an exceptional representation $V \in \operatorname{rep}_{\mathbb{k}}(Q)$ such that $|\vec{c}|=\underline{\operatorname{dim}}(V)$.

Notation

Let \vec{c} be a \boldsymbol{c}-vector of an acyclic quiver Q. Define

$$
|\vec{c}|:=\left\{\begin{aligned}
& \vec{c}: \text { if } \vec{c} \text { is positive } \\
&-\vec{c}: \\
& \text { if } \vec{c} \text { is negative } .
\end{aligned}\right.
$$

Applications

Theorem (Speyer-Thomas 2013)

Let $C \in \boldsymbol{c}-\operatorname{mat}(Q)$, let $\left\{\overrightarrow{c_{i}}\right\}_{i \in[n]}$ denote its \boldsymbol{c}-vectors, and let $\left|\overrightarrow{c_{i}}\right|=\underline{\operatorname{dim}}\left(V_{i}\right)$ for some $V \in \operatorname{ind}\left(\right.$ rep $\left._{\mathbb{k}}(Q)\right)$. There exists a permutation $\sigma \in \mathfrak{S}_{n}$ such that

$$
(\underbrace{V_{\sigma(1)}, \ldots, V_{\sigma(j)}}_{-}, \underbrace{\left.V_{\sigma(j+1)}, \ldots, V_{\sigma(n)}\right)}_{+})
$$

is a CES, and $H o m_{\mathbb{k} Q}\left(V_{i}, V_{j}\right)=0$ if $\overrightarrow{c_{i}}, \overrightarrow{c_{j}}$ have the same sign.
Conversely, any set of n vectors $\left\{\overrightarrow{c_{i}}\right\}_{i \in[n]}$ having these properties defines a c-matrix whose rows are $\left\{\overrightarrow{c_{i}}\right\}_{i \in[n]}$.

Idea: c-matrices are complete exceptional collections with certain properties.

Applications
 c-matrices

Change of setting
 Return to the setting of a type \mathbb{A} quiver.

Applications

Change of setting

Return to the setting of a type \mathbb{A} quiver.

Definition

An oriented diagram $\vec{d}=\left\{\vec{c}\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}$ is a strand diagram whose strands $\vec{c}\left(i_{\ell}, j_{\ell}\right)$ are oriented from i_{ℓ} to j_{ℓ}.

Applications
 c-matrices

Change of setting

Return to the setting of a type \mathbb{A} quiver.

Definition

An oriented diagram $\vec{d}=\left\{\vec{c}\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[k]}$ is a strand diagram whose strands $\vec{c}\left(i_{\ell}, j_{\ell}\right)$ are oriented from i_{ℓ} to j_{ℓ}.

Example

Let $\epsilon=(+,+,-,+,+)$ so that $Q=1 \xrightarrow{+} 2 \leftarrow 3 \xrightarrow{+} 4$. Then $\mu_{3} \circ \mu_{2}(\widehat{Q})$ has the following c-matrix and diagram.
$C=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Applications

Theorem (G.-Igusa-Matherne-Ostroff)

Let $\overrightarrow{\mathcal{D}}_{n, \epsilon}$ denote the set of oriented diagrams $\vec{d}=\left\{\vec{c}\left(i_{\ell}, j_{\ell}\right)\right\}_{\ell \in[n]}$ on $\mathcal{S}_{n, \epsilon}$ with the property that any oriented subdiagram \vec{d}_{1} of \vec{d} consisting only of oriented strands connected to ϵ_{k} in $\mathcal{S}_{n, \epsilon}$ for some $k \in[0, n]$ is a subdiagram of one of the following:

- $\left\{\vec{c}\left(k, i_{1}\right), \vec{c}\left(k, i_{2}\right), \vec{c}(j, k)\right\}$ where $i_{1}<k<i_{2}$ and $\epsilon_{k}=+$,
- $\left\{\vec{c}\left(i_{1}, k\right), \vec{c}\left(i_{2}, k\right), \vec{c}(k, j)\right\}$ where $i_{1}<k<i_{2}$ and $\epsilon_{k}=-$.

$\epsilon_{k}=+$
$\epsilon_{k}=-$
Then a matrix C belongs to $\boldsymbol{c}-$ mat (Q) if and only if $\vec{d}_{C} \in \overrightarrow{\mathcal{D}}_{n, \epsilon}$.

Applications
 Noncrossing partitions

Theorem (G.-Igusa-Matherne-Ostroff)

Exceptional sequences of $Q=1 \leftarrow \cdots \leftarrow n$ are in bijection with saturated chains in $N C\left(\mathfrak{S}_{n+1}\right)$, the lattice of noncrossing partitions, that contain its bottom element $\{\{i\}\}_{i \in[n+1]}$.

The End

TXANXS!

