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Outline

Goal: Explicitly describe exceptional sequences of kQ where Q is an
orientation of

1 2 n− 1 n.
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Exceptional sequences

Let k � k and Q an acyclic quiver.

Definition
An ordered pair of representations pE1,E2q of Q is called an
exceptional pair if

iq each Ei is indecomposable,
iiq Ext1pEi,Eiq � 0 for each Ei,

iiiq HompE2,E1q � 0,Ext1pE2,E1q � 0.

A sequence pE1, . . . ,Ekq (k ¤ n :� #Q0) of representations of Q
is an exceptional sequence if pEi,Ejq is an exceptional pair for
any i   j. [Gorodentsev-Rudakov 1987]

A set tE1, . . . ,Eku (k ¤ n) of representations of Q is an
exceptional collection if pEσp1q, . . . ,Eσpkqq is an exceptional
sequence for some σ P Sk.

An exceptional sequence or collection is complete if k � n.
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Exceptional sequences

Lemma
The indecomposable representations of a type A quiver Q are exactly
those of the form Xi,j :

1 i j n

0
0
� � � �

0
� 0

0
� k

1
� � � �

1
� k

0
� 0

0
� � � �

0
� 0

where 0 ¤ i   j ¤ n.

Example
Consider the quiver 1 2 3. The sequence
pX0,1,X1,2,X2,3q is not a complete exceptional sequence (CES) since

dimk Ext1pX2,3,X1,2q � #t3 α
ÝÑ 2 P Q1u � 1.

The sequence pX2,3,X0,1,X1,2q is a CES.
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Exceptional sequences

The braid group Bn acts transitively on complete exceptional
sequences. [Crawley-Boevey 1993] [Ringel 1994]

If Q is Dynkin, complete exceptional sequences are in bijection
with maximal chains in the lattice of noncrossing partitions of
WQ. [Ingalls-Thomas 2009]

If Q is acyclic, certain types of complete exceptional sequences
are in bijection with c-matrices of Q. [Speyer-Thomas 2013]
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Exceptional sequences

Given a type A quiver Q,

1 2 3 4 5

We arbitrarily choose the values of ε0 and εn.
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Exceptional sequences

Given a type A quiver Q,

1 2 3 4 5
+ − − −

we can associate a vector ε � pε0, ε1, ..., εn�1, εnq P t�,�u
n�1.

We arbitrarily choose the values of ε0 and εn.
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Strand diagrams

Fix a type A quiver and a corresponding ε vector. Denote by Sn,ε a
collection of n � 1 points arranged in a horizontal line.

ε0 ε1 ε2 εn−1 εn

Can write εi � pxi, yiq P R2.

Definition
Let i, j P r0, ns where i � j. A strand cpi, jq on Sn,ε is an isotopy class
of simple curves in R2 where any γ P cpi, jq satisfies:

the endpoints of γ are εi and εj,

as a subset of R2,
γ � tpx, yq P R2 : xi ¤ x ¤ xjuztεi�1, εi�2, . . . , εj�1u,

if k P t0, ..., nu satisfies i ¤ k ¤ j and εk � � (resp. εk � �),
then γ is locally below (resp. above) εk.
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Strand diagrams

Definition
There is a natural map Φ from indprepkpQqq to the set of strands on
Sn,ε given by ΦpXi,jq :� cpi, jq.

Example
Let Q � 1 ÐÝ 2.

k 0−
0X0,1

0 k−
0X1,2

k k−
1X0,2

+

+

+

+

+

+

−

−

−

8 / 25



Strand diagrams

Let cpi1, j1q and cpi2, j2q be distinct strands.

Definition
Two strands cpi1, j1q and cpi2, j2q intersect nontrivially if any two
curves γ` P cpi`, j`q with ` P t1, 2u have at least one crossing.

Definition
We say cpi2, j2q is clockwise from cpi1, j1q if and only if any
γ1 P cpi1, j1q and γ2 P cpi2, j2q share an endpoint εk and appear in one
of the following two configurations up to isotopy.

εk = +

c(i1, j1)c(i2, j2)

εk = −
c(i1, j1) c(i2, j2)
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Strand diagrams

Definition
A strand diagram d � tcpi`, j`qu`Prks (k ¤ n) on Sn,ε is a collection
of strands on Sn,ε that satisfies the following conditions:

distinct strands do not intersect nontrivially,

the graph determined by d is a forest (i.e. a disjoint union of
trees),

Let Dn,ε denote the set of strand diagrams on Sn,ε.

Example

Let ε � p�,�,�,�,�q so that Q � 1 �
ÝÑ 2 �

ÐÝ 3 �
ÝÑ 4. Then we

have that d1 � tcp0, 1q, cp0, 2q, cp2, 3q, cp2, 4qu and
d2 � tcp0, 4q, cp1, 3q, cp2, 4qu are elements of D4,ε.

+ + + +
−

+

−
+ ++
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Strand diagrams and exceptional sequences

Main Technical Lemma (G.–Igusa–Matherne–Ostroff)
Let Q and ε be given. Fix two distinct indecomposable representations
U,V P indprepkpQqq.

1 The strands Φn,εpUq and Φn,εpVq intersect nontrivially if and
only if neither pU,Vq nor pV,Uq are exceptional pairs.

2 The strand Φn,εpUq is clockwise from Φn,εpVq if and only if
pU,Vq is an exceptional pair and pV,Uq is not an exceptional
pair.

3 The strands Φn,εpUq and Φn,εpVq do not intersect at any of their
endpoints and they do not intersect nontrivially if and only if
pU,Vq and pV,Uq are both exceptional pairs.
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Strand diagrams and exceptional sequences

Recall Dn,ε :� tdiagrams d � tcpi`, j`qu`Prksu and let
Eε :� texceptional collections with k objects ξu.

Theorem (G.–Igusa–Matherne–Ostroff)
The following map is a bijection

Eε
Φn,ε
ÝÑ Dn,ε

ξ � tXi1,j1 , . . . ,Xik,jku ÞÝÑ tcpi`, j`qu`Prks.

Example

Let n � 4 and ε � p�,�,�,�,�q so that

Q � 1 �
ÝÑ 2 �

ÐÝ 3 �
ÝÑ 4

tX0,1,X0,2,X2,3,X2,4u ÞÑ
+ + + +

−
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Labeled strand diagrams

Definition
A labeled diagram dpkq � tpcpi`, j`q, s`qu`Prks is a strand diagram
whose strands are bijectively labeled by elements of rks.

Definition
A labeled diagram dpkq has a good labeling if for each point εi P Sn,ε,
the labels of the strands connected to i increase when one reads
through them clockwise.

Example

1

2

3
4

3

2

1

good not good
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Labeled strand diagrams

Let Dn,εpkq denote the set of labeled strand diagrams on Sn,ε with k
strands and with good strand labelings.
Let Eεpkq :� texceptional sequences of length ku.

Theorem (G.–Igusa–Matherne–Ostroff)
The following map is a bijection

Eεpkq
rΦ
ÝÑ Dn,εpkq

ξε � pXi1,j1 , . . . ,Xik,jkq ÞÝÑ tpcpi`, j`q, k � 1 � `qu`Prks.

Example

Let n � 4 and ε � p�,�,�,�,�q so that

Q � 1 �
ÝÑ 2 �

ÐÝ 3 �
ÝÑ 4

pX1,3,X2,3,X0,2,X3,4q ÞÑ
2 3 1

4

14 / 25



Labeled strand diagrams

Let Dn,εpkq denote the set of labeled strand diagrams on Sn,ε with k
strands and with good strand labelings.
Let Eεpkq :� texceptional sequences of length ku.

Theorem (G.–Igusa–Matherne–Ostroff)
The following map is a bijection

Eεpkq
rΦ
ÝÑ Dn,εpkq

ξε � pXi1,j1 , . . . ,Xik,jkq ÞÝÑ tpcpi`, j`q, k � 1 � `qu`Prks.

Example

Let n � 4 and ε � p�,�,�,�,�q so that

Q � 1 �
ÝÑ 2 �

ÐÝ 3 �
ÝÑ 4

pX1,3,X2,3,X0,2,X3,4q ÞÑ
2 3 1

4

14 / 25



Applications
c-matrices

Change of setting
We now allow Q to be any quiver without loops or 2-cycles.

Example

1 3

2

1 2

1

2

3

4oo

??������ ��?
??

??
?

oo
oo
��

OO //
oo

//

OO
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Applications
c-matrices

Shifting setting
We now allow Q to be any quiver without loops or 2-cycles.

Example

1 3

2

1 2

1

2

3

4oo

??������ ��?
??

??
?

oo
oo

OO

//

OO
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Applications
c-matrices

Definition
Given a quiver Q without loops or 2-cycles, the framed quiver (resp.
coframed quiver) of Q, denoted pQ (resp. qQ), is formed by

1 adding a frozen vertex i1 for each vertex i in Q
2 adding an arrow i Ñ i1 (resp. i Ð i1) for each vertex i in Q.

Example

Q = 1

2

3

??��� ��?
??

oo
pQ �

1

2

3

11
21

31
??��� ��?

??

oo

OO

OO

OO qQ �

1

2

3

11
21

31
??��� ��?

??

oo
��

��

��

The quiver pQ is an ice quiver and has vertices rnsloomoon
mutable

\ rn1sloomoon
frozen

.
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Applications
c-matrices

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′
∼=

µ1

µ2

µ2

µ1

µ2

∼=

∼=

µ1

µ2

µ2

µ1

µ2

[
0 1 1 0
−1 0 0 1

]

[
0 −1 1 1
1 0 0 −1

]

[
0 −1 −1 0
1 0 0 1

]

[
0 1 −1 0
−1 0 0 −1

]

[
0 1 −1 −1
−1 0 0 1

]

[
0 −1 0 −1
1 0 −1 0

]
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Applications
c-matrices

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′

1 2

1′ 2′
∼=

µ1

µ2

µ2

µ1

µ2

∼=

∼=

µ1

µ2

µ2

µ1

µ2

[
1 0
0 1

]

[
1 1
0 −1

]

[
−1 0
0 1

]

[
−1 0
0 −1

]

[
−1 −1
0 1

]

[
0 −1
−1 0

]

c-mat(Q)
[NZ]

The row vectors of C P c-matpQq are called c-vectors.
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Applications
c-matrices

Theorem (“Sign-coherence" Derksen–Weyman–Zelevinsky 2008)
Any c-vector ÝÑc is a nonzero element of Zn

¥0 or Zn
¤0.

Theorem (Chavez 2013)
Let Q be acyclic. If ÝÑc is a c-vector appearing in some C P c-mat(Q),
then there exists an exceptional representation V P repkpQq such that
|ÝÑc | � dimpVq.

Notation
Let ÝÑc be a c-vector of an acyclic quiver Q. Define

|ÝÑc | :�
" ÝÑc : if ÝÑc is positive
�ÝÑc : if ÝÑc is negative.

20 / 25



Applications
c-matrices

Theorem (“Sign-coherence" Derksen–Weyman–Zelevinsky 2008)
Any c-vector ÝÑc is a nonzero element of Zn

¥0 or Zn
¤0.

Theorem (Chavez 2013)
Let Q be acyclic. If ÝÑc is a c-vector appearing in some C P c-mat(Q),
then there exists an exceptional representation V P repkpQq such that
|ÝÑc | � dimpVq.

Notation
Let ÝÑc be a c-vector of an acyclic quiver Q. Define

|ÝÑc | :�
" ÝÑc : if ÝÑc is positive
�ÝÑc : if ÝÑc is negative.

20 / 25



Applications
c-matrices

Theorem (Speyer–Thomas 2013)

Let C P c-matpQq, let tÝÑci uiPrns denote its c-vectors, and let
|ÝÑci | � dimpViq for some V P indprepkpQqq. There exists a
permutation σ P Sn such that

pVσp1q, ...,Vσpjqlooooooomooooooon
�

,Vσpj�1q, . . . ,Vσpnqlooooooooomooooooooon
�

q

is a CES, and HomkQpVi,Vjq � 0 if ÝÑci ,ÝÑcj have the same sign.
Conversely, any set of n vectors tÝÑci uiPrns having these properties
defines a c-matrix whose rows are tÝÑci uiPrns.

Idea: c-matrices are complete exceptional collections with certain
properties.
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Applications
c-matrices

Change of setting
Return to the setting of a type A quiver.

Definition

An oriented diagram ÝÑd � tÝÑc pi`, j`qu`Prks is a strand diagram whose
strands ÝÑc pi`, j`q are oriented from i` to j`.

Example

Let ε � p�,�,�,�,�q so that Q � 1 �
ÝÑ 2 �

ÐÝ 3 �
ÝÑ 4. Then

µ3 � µ2

�pQ	 has the following c-matrix and diagram.

C �

�
���

1 1 0 0
0 0 1 0
0 �1 �1 0
0 0 0 1

�
��� −→

d C
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Applications
c-matrices

Theorem (G.–Igusa–Matherne–Ostroff)

Let ÝÑD n,ε denote the set of oriented diagrams ÝÑd � tÝÑc pi`, j`qu`Prns on
Sn,ε with the property that any oriented subdiagram ÝÑd 1 of ÝÑd
consisting only of oriented strands connected to εk in Sn,ε for some
k P r0, ns is a subdiagram of one of the following:

tÝÑc pk, i1q,ÝÑc pk, i2q,ÝÑc pj, kqu where i1   k   i2 and εk � �,

tÝÑc pi1, kq,ÝÑc pi2, kq,ÝÑc pk, jqu where i1   k   i2 and εk � �.

εk = + εk = −

Then a matrix C belongs to c-mat(Q) if and only if ÝÑd C P
ÝÑD n,ε.
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Applications
Noncrossing partitions

Theorem (G.–Igusa–Matherne–Ostroff)
Exceptional sequences of Q � 1 Ð � � � Ð n are in bijection with
saturated chains in NCpSn�1q, the lattice of noncrossing partitions,
that contain its bottom element ttiuuiPrn�1s.

13

2

ÞÝÑ ≤ ≤ ≤

1 1 1 1

4 4 4 4

6 6 6 6

5555

2 2 2 2

3 3 3 3

1 3

2 ÞÝÑ ≤ ≤ ≤

1 1 1 1

4 4 4 4

6 6 6 6

5555

2 2 2 2

3 3 3 3
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The End
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