Combinatorics of Exceptional Sequences in Type $\mathbb A$

Al Garver

(joint with Kiyoshi Igusa, Jacob Matherne, and Jonah Ostroff)

Maurice Auslander Distinguished Lectures and International Conference

May 2, 2015

Goal: Explicitly describe exceptional sequences of $\Bbbk Q$ where Q is an orientation of

 $1 \quad \underline{\qquad} \quad 2 \quad \underline{\qquad} \quad n-1 \quad \underline{\qquad} \quad n.$

- Exceptional sequences
- Strand diagrams
- Applications

Let $\mathbb{k} = \overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations (E_1, E_2) of Q is called an **exceptional pair** if

- *i*) each E_i is indecomposable,
- *ii*) $\operatorname{Ext}^1(E_i, E_i) = 0$ for each E_i ,

iii) Hom
$$(E_2, E_1) = 0$$
, Ext¹ $(E_2, E_1) = 0$.

Let $\mathbb{k} = \overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations (E_1, E_2) of Q is called an **exceptional pair** if

- *i*) each E_i is indecomposable,
- *ii*) $\operatorname{Ext}^1(E_i, E_i) = 0$ for each E_i ,

iii) Hom
$$(E_2, E_1) = 0$$
, Ext¹ $(E_2, E_1) = 0$.

A sequence (E₁,..., E_k) (k ≤ n := #Q₀) of representations of Q is an exceptional sequence if (E_i, E_j) is an exceptional pair for any i < j. [Gorodentsev-Rudakov 1987]

Let $\mathbb{k} = \overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations (E_1, E_2) of Q is called an **exceptional pair** if

- *i*) each E_i is indecomposable,
- *ii*) $\operatorname{Ext}^1(E_i, E_i) = 0$ for each E_i ,

iii) Hom
$$(E_2, E_1) = 0$$
, Ext¹ $(E_2, E_1) = 0$.

- A sequence (E₁,..., E_k) (k ≤ n := #Q₀) of representations of Q is an exceptional sequence if (E_i, E_j) is an exceptional pair for any i < j. [Gorodentsev-Rudakov 1987]
- A set {E₁,..., E_k} (k ≤ n) of representations of Q is an exceptional collection if (E_{σ(1)},..., E_{σ(k)}) is an exceptional sequence for some σ ∈ 𝔅_k.

Let $\mathbb{k} = \overline{\mathbb{k}}$ and Q an acyclic quiver.

Definition

An ordered pair of representations (E_1, E_2) of Q is called an **exceptional pair** if

- *i*) each E_i is indecomposable,
- *ii*) $\operatorname{Ext}^1(E_i, E_i) = 0$ for each E_i ,

iii) Hom
$$(E_2, E_1) = 0$$
, Ext¹ $(E_2, E_1) = 0$.

- A sequence (E₁,..., E_k) (k ≤ n := #Q₀) of representations of Q is an exceptional sequence if (E_i, E_j) is an exceptional pair for any i < j. [Gorodentsev-Rudakov 1987]
- A set {E₁,..., E_k} (k ≤ n) of representations of Q is an exceptional collection if (E_{σ(1)},..., E_{σ(k)}) is an exceptional sequence for some σ ∈ 𝔅_k.
- An exceptional sequence or collection is **complete** if k = n.

Lemma

The indecomposable representations of a type \mathbb{A} quiver Q are exactly those of the form $X_{i,j}$:

Example

Consider the quiver $1 \longrightarrow 2 \ll 3$. The sequence $(X_{0,1}, X_{1,2}, X_{2,3})$ is not a complete exceptional sequence (CES) since

$$\dim_{\mathbb{k}} \operatorname{Ext}^{1}(X_{2,3}, X_{1,2}) = \#\{3 \xrightarrow{\alpha} 2 \in Q_{1}\} = 1.$$

The sequence $(X_{2,3}, X_{0,1}, X_{1,2})$ is a CES.

• The braid group \mathcal{B}_n acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]

- The braid group \mathcal{B}_n acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]
- If *Q* is Dynkin, complete exceptional sequences are in bijection with maximal chains in the lattice of noncrossing partitions of *W*_{*Q*}. [Ingalls-Thomas 2009]

- The braid group \mathcal{B}_n acts transitively on complete exceptional sequences. [Crawley-Boevey 1993] [Ringel 1994]
- If *Q* is Dynkin, complete exceptional sequences are in bijection with maximal chains in the lattice of noncrossing partitions of *W*_{*Q*}. [Ingalls-Thomas 2009]
- If *Q* is acyclic, certain types of complete exceptional sequences are in bijection with **c**-matrices of *Q*. [Speyer-Thomas 2013]

 $1 \longrightarrow 2 \iff 3 \iff 4 \iff 5$

$$1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xleftarrow{-} 4 \xleftarrow{-} 5$$

we can associate a vector $\epsilon = (\epsilon_0, \epsilon_1, ..., \epsilon_{n-1}, \epsilon_n) \in \{+, -\}^{n+1}$.

$$1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xleftarrow{-} 4 \xleftarrow{-} 5$$

we can associate a vector $\epsilon = (\epsilon_0, \epsilon_1, ..., \epsilon_{n-1}, \epsilon_n) \in \{+, -\}^{n+1}$. We arbitrarily choose the values of ϵ_0 and ϵ_n .

$$1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xleftarrow{-} 4 \xleftarrow{-} 5$$

we can associate a vector $\epsilon = (\epsilon_0, \epsilon_1, ..., \epsilon_{n-1}, \epsilon_n) \in \{+, -\}^{n+1}$. We arbitrarily choose the values of ϵ_0 and ϵ_n .

Fix a type \mathbb{A} quiver and a corresponding ϵ vector. Denote by $S_{n,\epsilon}$ a collection of n + 1 points arranged in a horizontal line.

$$\begin{array}{ccc} \bullet_{0} & \bullet_{1} & \bullet_{2} & \cdots & \bullet_{n-1} & \bullet_{n} \\ \\ \text{Can write } \epsilon_{i} = (x_{i}, y_{i}) \in \mathbb{R}^{2}. \end{array}$$

Fix a type A quiver and a corresponding ϵ vector. Denote by $S_{n,\epsilon}$ a collection of n + 1 points arranged in a horizontal line.

$$\epsilon_0 \qquad \epsilon_1 \qquad \epsilon_2 \qquad \cdots \qquad \epsilon_{n-1} \qquad \epsilon_n$$

Can write $\epsilon_i = (x_i, y_i) \in \mathbb{R}^2$.

Definition

Let $i, j \in [0, n]$ where $i \neq j$. A **strand** c(i, j) on $S_{n,\epsilon}$ is an isotopy class of simple curves in \mathbb{R}^2 where any $\gamma \in c(i, j)$ satisfies:

- the endpoints of γ are ϵ_i and ϵ_j ,
- as a subset of \mathbb{R}^2 , $\gamma \subset \{(x, y) \in \mathbb{R}^2 : x_i \leq x \leq x_j\} \setminus \{\epsilon_{i+1}, \epsilon_{i+2}, \dots, \epsilon_{j-1}\},\$
- if k ∈ {0,...,n} satisfies i ≤ k ≤ j and ε_k = + (resp. ε_k = −), then γ is locally below (resp. above) ε_k.

Definition

There is a natural map Φ from $\operatorname{ind}(\operatorname{rep}_{\Bbbk}(Q))$ to the set of strands on $S_{n,\epsilon}$ given by $\Phi(X_{i,j}) := c(i,j)$.

Example

Let $Q = 1 \leftarrow 2$. $X_{0,1} \qquad \Bbbk < \frac{0}{-} \quad 0 \qquad \stackrel{+}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{+}{\bullet} \qquad X_{1,2} \qquad 0 < \frac{0}{-} \quad \Bbbk \qquad \stackrel{+}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{+}{\bullet} \qquad X_{0,2} \qquad \Bbbk < \frac{1}{-} \quad \Bbbk \qquad \stackrel{+}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{+}{\bullet} \qquad \stackrel{-}{\bullet} \qquad \stackrel{$

Let $c(i_1, j_1)$ and $c(i_2, j_2)$ be distinct strands.

Definition

Two strands $c(i_1, j_1)$ and $c(i_2, j_2)$ **intersect nontrivially** if any two curves $\gamma_{\ell} \in c(i_{\ell}, j_{\ell})$ with $\ell \in \{1, 2\}$ have at least one crossing.

Let $c(i_1, j_1)$ and $c(i_2, j_2)$ be distinct strands.

Definition

Two strands $c(i_1, j_1)$ and $c(i_2, j_2)$ **intersect nontrivially** if any two curves $\gamma_{\ell} \in c(i_{\ell}, j_{\ell})$ with $\ell \in \{1, 2\}$ have at least one crossing.

Definition

We say $c(i_2, j_2)$ is **clockwise** from $c(i_1, j_1)$ if and only if any $\gamma_1 \in c(i_1, j_1)$ and $\gamma_2 \in c(i_2, j_2)$ share an endpoint ϵ_k and appear in one of the following two configurations up to isotopy.

$$c(i_2, j_2) \land c(i_1, j_1) \qquad c(i_1, j_1) \land c(i_2, j_2)$$

$$\epsilon_k = + \qquad \epsilon_k = -$$

Definition

A strand diagram $d = \{c(i_{\ell}, j_{\ell})\}_{\ell \in [k]}$ $(k \leq n)$ on $S_{n,\epsilon}$ is a collection of strands on $S_{n,\epsilon}$ that satisfies the following conditions:

- distinct strands do not intersect nontrivially,
- the graph determined by *d* is a **forest** (i.e. a disjoint union of trees),

Let $\mathcal{D}_{n,\epsilon}$ denote the set of strand diagrams on $\mathcal{S}_{n,\epsilon}$.

Definition

A strand diagram $d = \{c(i_{\ell}, j_{\ell})\}_{\ell \in [k]}$ $(k \leq n)$ on $S_{n,\epsilon}$ is a collection of strands on $S_{n,\epsilon}$ that satisfies the following conditions:

- distinct strands do not intersect nontrivially,
- the graph determined by *d* is a **forest** (i.e. a disjoint union of trees),

Let $\mathcal{D}_{n,\epsilon}$ denote the set of strand diagrams on $\mathcal{S}_{n,\epsilon}$.

Example

Let
$$\epsilon = (+, +, -, +, +)$$
 so that $Q = 1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xrightarrow{+} 4$. Then we have that $d_1 = \{c(0, 1), c(0, 2), c(2, 3), c(2, 4)\}$ and $d_2 = \{c(0, 4), c(1, 3), c(2, 4)\}$ are elements of $\mathcal{D}_{4,\epsilon}$.

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in ind(rep_{\Bbbk}(Q))$.

• The strands $\Phi_{n,\epsilon}(U)$ and $\Phi_{n,\epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in ind(rep_{\Bbbk}(Q))$.

- The strands $\Phi_{n,\epsilon}(U)$ and $\Phi_{n,\epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.
- The strand $\Phi_{n,\epsilon}(U)$ is clockwise from $\Phi_{n,\epsilon}(V)$ if and only if (U, V) is an exceptional pair and (V, U) is not an exceptional pair.

Main Technical Lemma (G.-Igusa-Matherne-Ostroff)

Let Q and ϵ be given. Fix two distinct indecomposable representations $U, V \in ind(rep_{\Bbbk}(Q))$.

- The strands $\Phi_{n,\epsilon}(U)$ and $\Phi_{n,\epsilon}(V)$ intersect nontrivially if and only if neither (U, V) nor (V, U) are exceptional pairs.
- The strand $\Phi_{n,\epsilon}(U)$ is clockwise from $\Phi_{n,\epsilon}(V)$ if and only if (U, V) is an exceptional pair and (V, U) is not an exceptional pair.
- The strands Φ_{n,ε}(U) and Φ_{n,ε}(V) do not intersect at any of their endpoints and they do not intersect nontrivially if and only if (U, V) and (V, U) are both exceptional pairs.

Strand diagrams and exceptional sequences

Recall $\mathcal{D}_{n,\epsilon} := \{ \text{diagrams } d = \{ c(i_{\ell}, j_{\ell}) \}_{\ell \in [k]} \}$ and let $\overline{\mathcal{E}}_{\epsilon} := \{ \text{exceptional collections with } k \text{ objects } \overline{\xi} \}.$

Theorem (G.–Igusa–Matherne–Ostroff)

The following map is a bijection

$$\overline{\mathcal{E}}_{\epsilon} \xrightarrow{\Phi_{n,\epsilon}} \mathcal{D}_{n,\epsilon}$$

$$\overline{\xi} = \{X_{i_1,j_1}, \dots, X_{i_k,j_k}\} \longmapsto \{c(i_\ell, j_\ell)\}_{\ell \in [k]}.$$

Strand diagrams and exceptional sequences

Recall $\mathcal{D}_{n,\epsilon} := \{ \text{diagrams } d = \{ c(i_{\ell}, j_{\ell}) \}_{\ell \in [k]} \}$ and let $\overline{\mathcal{E}}_{\epsilon} := \{ \text{exceptional collections with } k \text{ objects } \overline{\xi} \}.$

Theorem (G.–Igusa–Matherne–Ostroff)

The following map is a bijection

$$\overline{\mathcal{E}}_{\epsilon} \xrightarrow{\Phi_{n,\epsilon}} \mathcal{D}_{n,\epsilon}$$

$$\overline{\xi} = \{X_{i_1,j_1}, \dots, X_{i_k,j_k}\} \longmapsto \{c(i_\ell, j_\ell)\}_{\ell \in [k]}.$$

Example

Let
$$n = 4$$
 and $\epsilon = (+, +, -, +, +)$ so that

$$Q = 1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xrightarrow{+} 4$$

$$\{X_{0,1}, X_{0,2}, X_{2,3}, X_{2,4}\} \mapsto \overset{\dagger}{}$$

Labeled strand diagrams

Definition

A labeled diagram $d(k) = \{(c(i_{\ell}, j_{\ell}), s_{\ell})\}_{\ell \in [k]}$ is a strand diagram whose strands are bijectively labeled by elements of [k].

Definition

A labeled diagram $d(k) = \{(c(i_{\ell}, j_{\ell}), s_{\ell})\}_{\ell \in [k]}$ is a strand diagram whose strands are bijectively labeled by elements of [k].

Definition

A labeled diagram d(k) has a **good labeling** if for each point $\epsilon_i \in S_{n,\epsilon}$, the labels of the strands connected to *i* increase when one reads through them clockwise.

Definition

A labeled diagram $d(k) = \{(c(i_{\ell}, j_{\ell}), s_{\ell})\}_{\ell \in [k]}$ is a strand diagram whose strands are bijectively labeled by elements of [k].

Definition

A labeled diagram d(k) has a **good labeling** if for each point $\epsilon_i \in S_{n,\epsilon}$, the labels of the strands connected to *i* increase when one reads through them clockwise.

Labeled strand diagrams

Let $\mathcal{D}_{n,\epsilon}(k)$ denote the set of labeled strand diagrams on $\mathcal{S}_{n,\epsilon}$ with k strands and with good strand labelings.

Let $\mathcal{E}_{\epsilon}(k) := \{ \text{exceptional sequences of length } k \}.$

Theorem (G.–Igusa–Matherne–Ostroff)

The following map is a bijection

$$\begin{array}{ccc} \mathcal{E}_{\epsilon}(k) & \stackrel{\Phi}{\longrightarrow} & \mathcal{D}_{n,\epsilon}(k) \\ \xi_{\epsilon} = (X_{i_1,j_1},\ldots,X_{i_k,j_k}) & \longmapsto & \{(c(i_{\ell},j_{\ell}),k+1-\ell)\}_{\ell \in [k]}. \end{array}$$

Labeled strand diagrams

Let $\mathcal{D}_{n,\epsilon}(k)$ denote the set of labeled strand diagrams on $\mathcal{S}_{n,\epsilon}$ with *k* strands and with good strand labelings.

Let $\mathcal{E}_{\epsilon}(k) := \{ \text{exceptional sequences of length } k \}.$

Theorem (G.–Igusa–Matherne–Ostroff)

The following map is a bijection

$$\begin{array}{ccc} \mathcal{E}_{\epsilon}(k) & \stackrel{\Phi}{\longrightarrow} & \mathcal{D}_{n,\epsilon}(k) \\ \xi_{\epsilon} = (X_{i_1,j_1},\ldots,X_{i_k,j_k}) & \longmapsto & \{(c(i_{\ell},j_{\ell}),k+1-\ell)\}_{\ell \in [k]}. \end{array}$$

Example

Let
$$n = 4$$
 and $\epsilon = (+, +, -, +, +)$ so that

$$Q = 1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xrightarrow{+} 4$$

Change of setting

We now allow Q to be any quiver without loops or 2-cycles.

Shifting setting

We now allow Q to be any quiver without loops or 2-cycles.

Definition

Given a quiver Q without loops or 2-cycles, the **framed quiver** (resp. **coframed quiver**) of Q, denoted \hat{Q} (resp. \check{Q}), is formed by

- adding a frozen vertex i' for each vertex i in Q
- 2 adding an arrow $i \to i'$ (resp. $i \leftarrow i'$) for each vertex *i* in *Q*.

Example $Q = \frac{2}{1 - 3} \quad \hat{Q} = \frac{1}{1 - 3} \quad \hat{Z} = \frac{2}{1 - 3} \quad \hat{Z} = \frac{1}{1 - 3} \quad \hat$

mutable

frozen

The row vectors of $C \in \mathbf{c}$ -mat(Q) are called **c-vectors**.

Theorem ("Sign-coherence" Derksen–Weyman–Zelevinsky 2008)

Any *c*-vector \overrightarrow{c} is a nonzero element of $\mathbb{Z}^n_{\geq 0}$ or $\mathbb{Z}^n_{\leq 0}$.

Theorem ("Sign-coherence" Derksen–Weyman–Zelevinsky 2008)

Any *c*-vector \vec{c} is a nonzero element of $\mathbb{Z}_{\leq 0}^n$ or $\mathbb{Z}_{\leq 0}^n$.

Theorem (Chavez 2013)

Let Q be acyclic. If \overrightarrow{c} is a *c*-vector appearing in some $C \in c$ -mat(Q), then there exists an exceptional representation $V \in rep_{\Bbbk}(Q)$ such that $|\overrightarrow{c}| = \underline{\dim}(V)$.

Notation

Let \overrightarrow{c} be a *c*-vector of an acyclic quiver *Q*. Define

$$|\vec{c}| := \begin{cases} \vec{c} : & \text{if } \vec{c} \text{ is positive} \\ -\vec{c} : & \text{if } \vec{c} \text{ is negative} \end{cases}$$

Theorem (Speyer–Thomas 2013)

Let $C \in \mathbf{c}$ -mat(Q), let $\{\overrightarrow{c_i}\}_{i \in [n]}$ denote its \mathbf{c} -vectors, and let $|\overrightarrow{c_i}| = \underline{\dim}(V_i)$ for some $V \in ind(rep_{\Bbbk}(Q))$. There exists a permutation $\sigma \in \mathfrak{S}_n$ such that

$$(\underbrace{V_{\sigma(1)},...,V_{\sigma(j)}}_{-},\underbrace{V_{\sigma(j+1)},\ldots,V_{\sigma(n)}}_{+})$$

is a CES, and $Hom_{\Bbbk Q}(V_i, V_j) = 0$ if $\overrightarrow{c_i}, \overrightarrow{c_j}$ have the same sign. Conversely, any set of *n* vectors $\{\overrightarrow{c_i}\}_{i \in [n]}$ having these properties defines a **c**-matrix whose rows are $\{\overrightarrow{c_i}\}_{i \in [n]}$.

Idea: **c**-matrices are complete exceptional collections with certain properties.

Change of setting

Return to the setting of a type \mathbb{A} quiver.

Change of setting

Return to the setting of a type \mathbb{A} quiver.

Definition

An **oriented diagram** $\vec{d} = \{\vec{c}(i_{\ell}, j_{\ell})\}_{\ell \in [k]}$ is a strand diagram whose strands $\vec{c}(i_{\ell}, j_{\ell})$ are oriented from i_{ℓ} to j_{ℓ} .

Change of setting

Return to the setting of a type \mathbb{A} quiver.

Definition

An **oriented diagram** $\vec{d} = \{\vec{c}(i_{\ell}, j_{\ell})\}_{\ell \in [k]}$ is a strand diagram whose strands $\vec{c}(i_{\ell}, j_{\ell})$ are oriented from i_{ℓ} to j_{ℓ} .

Example

Let
$$\epsilon = (+, +, -, +, +)$$
 so that $Q = 1 \xrightarrow{+} 2 \xleftarrow{-} 3 \xrightarrow{+} 4$. Then $\mu_3 \circ \mu_2(\hat{Q})$ has the following **c**-matrix and diagram.

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (G.-Igusa-Matherne-Ostroff)

Let $\overrightarrow{D}_{n,\epsilon}$ denote the set of oriented diagrams $\overrightarrow{d} = \{\overrightarrow{c}(i_{\ell}, j_{\ell})\}_{\ell \in [n]}$ on $S_{n,\epsilon}$ with the property that any oriented subdiagram \overrightarrow{d}_1 of \overrightarrow{d} consisting only of oriented strands connected to ϵ_k in $S_{n,\epsilon}$ for some $k \in [0, n]$ is a subdiagram of one of the following:

- { $\overrightarrow{c}(k,i_1), \overrightarrow{c}(k,i_2), \overrightarrow{c}(j,k)$ } where $i_1 < k < i_2$ and $\epsilon_k = +$,
- { $\overrightarrow{c}(i_1,k), \overrightarrow{c}(i_2,k), \overrightarrow{c}(k,j)$ } where $i_1 < k < i_2$ and $\epsilon_k = -$.

Then a matrix C belongs to c-mat(Q) if and only if $\overrightarrow{d}_C \in \overrightarrow{\mathcal{D}}_{n,\epsilon}$.

Theorem (G.–Igusa–Matherne–Ostroff)

Exceptional sequences of $Q = 1 \leftarrow \cdots \leftarrow n$ are in bijection with saturated chains in $NC(\mathfrak{S}_{n+1})$, the lattice of noncrossing partitions, that contain its bottom element $\{\{i\}\}_{i \in [n+1]}$.

TX + XX =