Syzygies over 2-Calabi Yau tilted algebras

Ana Garcia Elsener - Universidad Nacional de Mar del Plata Ralf Schiffler - University of Connecticut

Maurice Auslander Conference - 2015

April 30, 2015

PART 1: Definitions and general results

- 2-CY tilted algebras
- d-Gorenstein algebras
- Results

Part 2: 2-CY tilted algebras arising from surfaces

- Unpunctured case
- Punctured disc

2-Calabi Yau tilted algebras

Let k be an algebraic closed field. A k-linear Hom-finite triangulated category \mathcal{C} with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D \operatorname{Ext}_{\mathcal{C}}^{1}(X, Y) \simeq \operatorname{Ext}_{\mathcal{C}}^{1}(Y, X)$, for X, Y in \mathcal{C}.

2-Calabi Yau tilted algebras

Let k be an algebraic closed field. A k-linear Hom-finite triangulated category \mathcal{C} with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D \operatorname{Ext}_{\mathcal{C}}^{1}(X, Y) \simeq \operatorname{Ext}_{\mathcal{C}}^{1}(Y, X)$, for X, Y in \mathcal{C}.

A k-linear subcategory \mathcal{T} of \mathcal{C} is cluster tilting if $\operatorname{Ext}_{\mathcal{C}}^{1}\left(T, T^{\prime}\right)=0$ for all $T, T^{\prime} \in \mathcal{T}$, and if there is an $X \in \mathcal{C}$ such that $\operatorname{Ext}_{\mathcal{C}}^{1}(X, T)=0$ for all $T \in \mathcal{T}$, then $X \in \mathcal{T}$.

2-Calabi Yau tilted algebras

Let k be an algebraic closed field. A k-linear Hom-finite triangulated category \mathcal{C} with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D \operatorname{Ext}_{\mathcal{C}}^{1}(X, Y) \simeq \operatorname{Ext}_{\mathcal{C}}^{1}(Y, X)$, for X, Y in \mathcal{C}.

A k-linear subcategory \mathcal{T} of \mathcal{C} is cluster tilting if $\operatorname{Ext}_{\mathcal{C}}^{1}\left(T, T^{\prime}\right)=0$ for all $T, T^{\prime} \in \mathcal{T}$, and if there is an $X \in \mathcal{C}$ such that $\operatorname{Ext}_{\mathcal{C}}^{1}(X, T)=0$ for all $T \in \mathcal{T}$, then $X \in \mathcal{T}$.

The endomorphism algebra $\mathrm{B}=\operatorname{End}_{\mathcal{C}}(T)$ is called a $2-\mathrm{CY}$ tilted algebra.

Properties

For each object X in \mathcal{C} there are triangles

$$
\begin{gather*}
T_{1} \rightarrow T_{0} \rightarrow X \rightarrow T_{1}[1] \tag{1}\\
T_{1}^{\prime}[1] \rightarrow X \rightarrow T_{0}^{\prime}[2] \rightarrow T_{1}^{\prime}[2] \tag{2}
\end{gather*}
$$

where $T_{0}, T_{1}, T_{0}^{\prime}, T_{1}^{\prime}$ are in \mathcal{T}.

Properties

For each object X in \mathcal{C} there are triangles

$$
\begin{gather*}
T_{1} \rightarrow T_{0} \rightarrow X \rightarrow T_{1}[1] \tag{1}\\
T_{1}^{\prime}[1] \rightarrow X \rightarrow T_{0}^{\prime}[2] \rightarrow T_{1}^{\prime}[2] \tag{2}
\end{gather*}
$$

where $T_{0}, T_{1}, T_{0}^{\prime}, T_{1}^{\prime}$ are in \mathcal{T}.
If we denote by ($\mathcal{T}[1])$ the ideal of all morphisms which factor through an element in \mathcal{T} [1], there is an equivalence [BMR07] [KR07].

$$
\begin{array}{r}
F: \mathcal{C} /(\mathcal{T}[1]) \rightarrow \operatorname{modB} \\
\quad X \rightarrow \operatorname{Hom}_{\mathcal{C}}(\mathcal{T}, X)
\end{array}
$$

Properties

For each object X in \mathcal{C} there are triangles

$$
\begin{gather*}
T_{1} \rightarrow T_{0} \rightarrow X \rightarrow T_{1}[1] \tag{1}\\
T_{1}^{\prime}[1] \rightarrow X \rightarrow T_{0}^{\prime}[2] \rightarrow T_{1}^{\prime}[2] \tag{2}
\end{gather*}
$$

where $T_{0}, T_{1}, T_{0}^{\prime}, T_{1}^{\prime}$ are in \mathcal{T}.
If we denote by ($\mathcal{T}[1])$ the ideal of all morphisms which factor through an element in \mathcal{T} [1], there is an equivalence [BMR07] [KR07].

$$
\begin{array}{r}
F: \mathcal{C} /(\mathcal{T}[1]) \rightarrow \operatorname{modB} \\
\quad X \rightarrow \operatorname{Hom}_{\mathcal{C}}(\mathcal{T}, X)
\end{array}
$$

Every 2-CY tilted algebra B is Gorenstein of dimension at most one [KR07].

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d (d-Gorenstein) if $d=$ proj. $\cdot \operatorname{dim}_{\Lambda} D\left(\Lambda_{\Lambda}\right)=\operatorname{inj} \cdot \operatorname{dim}_{\Lambda} \Lambda<\infty$.

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d (d-Gorenstein) if $d=$ proj. $\operatorname{dim}_{\Lambda} D\left(\Lambda_{\Lambda}\right)=\operatorname{inj} \cdot \operatorname{dim}_{\Lambda} \Lambda<\infty$.
$M \in \bmod \Lambda$ is projectively Cohen-Macaulay $(C M P)$ if $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0 \forall i>0$. $N \in \bmod \Lambda$ is injectively Cohen-Macaulay (CMI) if $\operatorname{Ext}_{\Lambda}^{i}(D \Lambda, N)=0 \forall i>0$.

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d (d-Gorenstein) if $d=$ proj. $\operatorname{dim}_{\Lambda} D\left(\Lambda_{\Lambda}\right)=\mathrm{inj} \cdot \operatorname{dim}_{\Lambda} \Lambda<\infty$.
$M \in \bmod \Lambda$ is projectively Cohen-Macaulay $(C M P)$ if $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0 \forall i>0$. $N \in \bmod \Lambda$ is injectively Cohen-Macaulay (CMI) if $\operatorname{Ext}_{\Lambda}^{i}(D \Lambda, N)=0 \forall i>0$.

The category $\operatorname{CMP}(\Lambda)$ is a full exact subcategory of $\bmod \Lambda$, it is Frobenius, the projective-injective objects are the projectives in mod Λ. The stable category CMP (Λ) is triangulated, the inverse shift is given by the usual syzygy operator

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d (d-Gorenstein) if $d=$ proj. $\operatorname{dim}_{\Lambda} D\left(\Lambda_{\Lambda}\right)=\mathrm{inj} \cdot \operatorname{dim}_{\Lambda} \Lambda<\infty$.
$M \in \bmod \Lambda$ is projectively Cohen-Macaulay $(C M P)$ if $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0 \forall i>0$. $N \in \bmod \Lambda$ is injectively Cohen-Macaulay (CMI) if $\operatorname{Ext}_{\Lambda}^{i}(D \Lambda, N)=0 \forall i>0$.

The category $\operatorname{CMP}(\Lambda)$ is a full exact subcategory of $\bmod \Lambda$, it is Frobenius, the projective-injective objects are the projectives in mod Λ. The stable category CMP (Λ) is triangulated, the inverse shift is given by the usual syzygy operator

The AR translations act as triangle quasi-inverse equivalences [BR07].

$$
\tau: \underline{\mathrm{CMP}}(\Lambda) \rightleftarrows \underline{\mathrm{CMI}}(\Lambda): \tau^{-1}
$$

Results

Theorem (GE-Schiffler)

For indecomposable modules M and N in a 2-CY tilted algebra B, the following statements are equivalent
(a1) M is a non projective syzygy,
(a2) M belongs to $\mathrm{CMP}(\mathrm{B})$,
(a3) $\Omega^{2} \tau M \simeq M$,
(a4) $\Omega^{-2} M \simeq \tau M$.
(b1) N is a non injective co-syzygy,
(b2) N belongs to $\mathrm{CMI}(\mathrm{B})$,
(b3) $\Omega^{-2} \tau^{-1} N \simeq N$,
(b4) $\Omega^{2} N \simeq \tau^{-1} N$.

Corollary

The objects in CMP (B) are the non projective syzygies on modB. The objects in $\mathrm{CMI}(\mathrm{B})$ are the non injective co-syzygies on modB.

Results

Theorem (GE-Schiffler)

For indecomposable modules M and N in a 2-CY tilted algebra B, the following statements are equivalent
(a1) M is a non projective syzygy,
(a2) M belongs to $\mathrm{CMP}(\mathrm{B})$,
(a3) $\Omega^{2} \tau M \simeq M$,
(a4) $\Omega^{-2} M \simeq \tau M$.
(b1) N is a non injective co-syzygy,
(b2) N belongs to $\mathrm{CMI}(\mathrm{B})$,
(b3) $\Omega^{-2} \tau^{-1} N \simeq N$,
(b4) $\Omega^{2} N \simeq \tau^{-1} N$.

Corollary

The objects in CMP (B) are the non projective syzygies on modB. The objects in $\mathrm{CMI}(\mathrm{B})$ are the non injective co-syzygies on modB.

If Λ is a d-Gorenstein Artin algebra then the objects in $\underline{\mathrm{CMP}}(\Lambda)$ are the d-th non projective syzygies on mod Λ. [Bel00].

Results

Corollary

If B is a tame cluster tilted algebra, then rep. $\operatorname{dim} B \leq 3$.

Results

Corollary

If B is a tame cluster tilted algebra, then rep. $\operatorname{dimB} \leq 3$.
If follows from

Results

Corollary

If B is a tame cluster tilted algebra, then rep. $\operatorname{dim} B \leq 3$.
If follows from

- The objects in $\underline{C M P}(B)$ are the non projective syzygies on modB.

Corollary

If B is a tame cluster tilted algebra, then rep. $\operatorname{dimB} \leq 3$.
If follows from

- The objects in $\underline{C M P}(B)$ are the non projective syzygies on modB.
- If B is a tame cluster tilted algebra, then CMP(B) has a finite number of indecomposable modules. [BO11]

Results

Corollary

If B is a tame cluster tilted algebra, then rep. $\operatorname{dim} B \leq 3$.
If follows from

- The objects in $\underline{C M P}(B)$ are the non projective syzygies on modB.
- If B is a tame cluster tilted algebra, then CMP(B) has a finite number of indecomposable modules. [BO11]
- If an Artin algebra A is torsionless finite (the number of indecomposable submodules of projective modules is finite) then rep.dim $A \leq 3$. [$\operatorname{Rin} 11]$

Results

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Results

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Theorem (GE-Schiffler)

Let Λ be a d-Gorenstein artin algebra, then $\phi \operatorname{dim}(\Lambda)=\psi \operatorname{dim}(\Lambda)=d$.

Results

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Theorem (GE-Schiffler)

Let Λ be a d-Gorenstein artin algebra, then $\phi \operatorname{dim}(\Lambda)=\psi \operatorname{dim}(\Lambda)=d$.

Corollary

For every $2-\mathrm{CY}$ tilted algebra $\mathrm{B}, \phi \operatorname{dim}(\mathrm{B})=\psi \operatorname{dim}(\mathrm{B}) \leq 1$.

PART 1: Definitions and general results

- 2-CY tilted algebras
- d-Gorenstein algebras
- Results

Part 2: 2-CY tilted algebras arising from surfaces

- Unpunctured case
- Punctured disc

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

For gentle algebras, the only indecomposable non projective syzygies are summands on the radical of an indecomposable projective. [K14]

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

For gentle algebras, the only indecomposable non projective syzygies are summands on the radical of an indecomposable projective. [K14]

Punctured disc

The cluster category of type \mathbb{D}_{n} has a geometric model given by the punctured disc with n marked points on the boundary [S08]. There are bijections:

Arcs (tagged arcs) \leftrightarrow
Triangulations \leftrightarrow
Arcs \notin triangulation \leftrightarrow
AR translation $\tau \quad \leftrightarrow$

Indecomposable objects in $\mathcal{C}_{\mathbb{D}_{n}}$
Cluster tilting objects in $\mathcal{C}_{\mathbb{D}_{n}}$
Indecomposable modules in modB
Clockwise rotation of angle $2 \pi / n$ (change tags)

Punctured disc

We classify the triangulations in three types

- Type II: all the non projective syzygies arise from internal triangles with 3 vertices on the boundary (unpunctured case)
- Type III: all except 3 non projective syzygies arise from internal triangles with 3 vertices on the boundary (unpunctured case)

Punctured disc

For Type I, we define a color-index label for marked points in the boundary such that

Theorem (GE-Schiffler)

In a Type I triangulation, given $M\left(r_{i}, b_{j}\right)$ where $j \in\{i+2, \ldots, i-1\}$, then

$$
\Omega M\left(r_{i}, b_{j}\right)=M\left(r_{j-1}, b_{i}\right)
$$

Punctured disc

For Type I, we define a color-index label for marked points in the boundary such that

Theorem (GE-Schiffler)

In a Type I triangulation, given $M\left(r_{i}, b_{j}\right)$ where $j \in\{i+2, \ldots, i-1\}$, then

$$
\Omega M\left(r_{i}, b_{j}\right)=M\left(r_{j-1}, b_{i}\right)
$$

and we prove that in this case, all non projective syzygies

- arise from internal triangles with 3 vertices on the boundary, or
- belong to the family $M\left(r_{i}, b_{j}\right)$ described in the theorem

Punctured disc

Figure: Type I triangulation with colored points. Curves associated to the modules $M\left(r_{7}, b_{2}\right), M\left(r_{5}, b_{4}\right)$ and $M\left(r_{4}, b_{3}\right)$

- [Bu86] Maximal Cohen-Macaulay modules and Tate cohomology. R.O. Buchweitz.
- [Be/00] The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization. A. Beligiannis.
- [IT05] On the finitistic global dimension conjecture for Artin algebras. K. Igusa, G. Todorov.
- [KR07] Cluster Tilted Algebras are Gorenstein and Stably Calabi Yau. B. Keller, I. Reiten.
- [BR07] Homological and Homotopical Aspects of Torsion Theories. A. Beligiannis, I. Reiten.
- [S08] A Geometric Model for Cluster Categories of type \mathbf{D}_{n}. R. Schiffler.
- [ABCJP] Gentle algebras arising from surface triangulations. Assem, Brüstle, Charbonneau-Jodoin, Plamondon.
- [BO11] Cluster tilting and complexity. A. Bergh, S. Oppermann.
- [Rin11] On the representation dimension of artin algebras.
C.M. Ringel.
- [Ka/14] Singularity categories of gentle algebras. M. Kalck.

Thanks

(Thanks) ${ }^{2}$

