Syzygies over 2-Calabi Yau tilted algebras

Ana Garcia Elsener - Universidad Nacional de Mar del Plata Ralf Schiffler - University of Connecticut

Maurice Auslander Conference - 2015

April 30, 2015

PART 1: Definitions and general results

- 2-CY tilted algebras
- d-Gorenstein algebras
- Results
- Part 2: 2-CY tilted algebras arising from surfaces
 - Unpunctured case
 - Punctured disc

2-Calabi Yau tilted algebras

Let *k* be an algebraic closed field. A *k*-linear Hom-finite triangulated category C with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D\text{Ext}_{C}^{1}(X, Y) \simeq \text{Ext}_{C}^{1}(Y, X)$, for X, Y in C.

2-Calabi Yau tilted algebras

Let *k* be an algebraic closed field. A *k*-linear Hom-finite triangulated category \mathcal{C} with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D\text{Ext}^1_{\mathcal{C}}(X, Y) \simeq \text{Ext}^1_{\mathcal{C}}(Y, X)$, for X, Y in \mathcal{C} .

A *k*-linear subcategory \mathcal{T} of \mathcal{C} is cluster tilting if $\operatorname{Ext}^{1}_{\mathcal{C}}(\mathcal{T}, \mathcal{T}') = 0$ for all $\mathcal{T}, \mathcal{T}' \in \mathcal{T}$, and if there is an $X \in \mathcal{C}$ such that $\operatorname{Ext}^{1}_{\mathcal{C}}(X, \mathcal{T}) = 0$ for all $\mathcal{T} \in \mathcal{T}$, then $X \in \mathcal{T}$.

2-Calabi Yau tilted algebras

Let k be an algebraic closed field. A k-linear Hom-finite triangulated category \mathcal{C} with suspension functor [1] is 2-Calabi Yau (2-CY) if there is a functorial isomorphism $D\text{Ext}^1_{\mathcal{C}}(X,Y) \simeq \text{Ext}^1_{\mathcal{C}}(Y,X)$, for X, Y in \mathcal{C} .

A *k*-linear subcategory \mathcal{T} of \mathcal{C} is cluster tilting if $\operatorname{Ext}^{1}_{\mathcal{C}}(\mathcal{T}, \mathcal{T}') = 0$ for all $\mathcal{T}, \mathcal{T}' \in \mathcal{T}$, and if there is an $X \in \mathcal{C}$ such that $\operatorname{Ext}^{1}_{\mathcal{C}}(X, \mathcal{T}) = 0$ for all $\mathcal{T} \in \mathcal{T}$, then $X \in \mathcal{T}$.

The endomorphism algebra $B = End_{\mathcal{C}}(T)$ is called a 2-CY tilted algebra.

Properties

For each object X in C there are triangles

$$T_1 \to T_0 \to X \to T_1[1] \tag{1}$$

$$T_1'[1] \rightarrow X \rightarrow T_0'[2] \rightarrow T_1'[2] \tag{2}$$

where T_0, T_1, T'_0, T'_1 are in \mathcal{T} .

For each object X in C there are triangles

$$T_1 \to T_0 \to X \to T_1[1] \tag{1}$$

$$T_1'[1] \rightarrow X \rightarrow T_0'[2] \rightarrow T_1'[2] \tag{2}$$

where T_0, T_1, T'_0, T'_1 are in \mathcal{T} .

If we denote by $(\mathcal{T}[1])$ the ideal of all morphisms which factor through an element in $\mathcal{T}[1]$, there is an equivalence [BMR07] [KR07].

 $F: \mathcal{C}/(\mathcal{T}[1]) \rightarrow \mathsf{modB}$ $X \rightarrow \mathsf{Hom}_{\mathcal{C}}(\mathcal{T}, X)$

For each object X in C there are triangles

$$T_1 \to T_0 \to X \to T_1[1] \tag{1}$$

$$T_1'[1] \rightarrow X \rightarrow T_0'[2] \rightarrow T_1'[2] \tag{2}$$

where T_0, T_1, T'_0, T'_1 are in \mathcal{T} .

If we denote by $(\mathcal{T}[1])$ the ideal of all morphisms which factor through an element in $\mathcal{T}[1]$, there is an equivalence [BMR07] [KR07].

$$F: \mathcal{C}/(\mathcal{T}[1])
ightarrow \mathsf{modB}$$

 $X
ightarrow \mathsf{Hom}_{\mathcal{C}}(\mathcal{T}, X)$

Every 2-CY tilted algebra B is Gorenstein of dimension at most one [KR07].

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d(d-Gorenstein) if $d = \text{proj.dim}_{\Lambda} D(\Lambda_{\Lambda}) = \text{inj.dim}_{\Lambda} \Lambda < \infty$.

d-Gorenstein algebras

A finite dimensional Artin algebra Λ is Gorenstein of dimension d(d-Gorenstein) if $d = \operatorname{proj.dim}_{\Lambda} D(\Lambda_{\Lambda}) = \operatorname{inj.dim}_{\Lambda} \Lambda < \infty$.

 $M \in \text{mod}\Lambda$ is projectively Cohen-Macaulay (CMP) if $\text{Ext}_{\Lambda}^{i}(M,\Lambda) = 0 \ \forall i > 0$. $N \in \text{mod}\Lambda$ is injectively Cohen-Macaulay (CMI) if $\text{Ext}_{\Lambda}^{i}(D\Lambda, N) = 0 \ \forall i > 0$. A finite dimensional Artin algebra Λ is Gorenstein of dimension d(d-Gorenstein) if $d = \text{proj.dim}_{\Lambda} D(\Lambda_{\Lambda}) = \text{inj.dim}_{\Lambda} \Lambda < \infty$.

 $M \in \text{mod}\Lambda$ is projectively Cohen-Macaulay (CMP) if $\text{Ext}_{\Lambda}^{i}(M,\Lambda) = 0 \ \forall i > 0$. $N \in \text{mod}\Lambda$ is injectively Cohen-Macaulay (CMI) if $\text{Ext}_{\Lambda}^{i}(D\Lambda, N) = 0 \ \forall i > 0$.

The category CMP(Λ) is a full exact subcategory of mod Λ , it is Frobenius, the projective-injective objects are the projectives in mod Λ . The stable category <u>CMP(Λ)</u> is triangulated, the inverse shift is given by the usual syzygy operator Ω . (Dual <u>CMI(Λ)</u> and Ω^{-1}) [Bu86].

A finite dimensional Artin algebra Λ is Gorenstein of dimension d(d-Gorenstein) if $d = \text{proj.dim}_{\Lambda} D(\Lambda_{\Lambda}) = \text{inj.dim}_{\Lambda} \Lambda < \infty$.

 $M \in \text{mod}\Lambda$ is projectively Cohen-Macaulay (CMP) if $\text{Ext}^{i}_{\Lambda}(M,\Lambda) = 0 \ \forall i > 0$. $N \in \text{mod}\Lambda$ is injectively Cohen-Macaulay (CMI) if $\text{Ext}^{i}_{\Lambda}(D\Lambda, N) = 0 \ \forall i > 0$.

The category CMP(Λ) is a full exact subcategory of mod Λ , it is Frobenius, the projective-injective objects are the projectives in mod Λ . The stable category <u>CMP(Λ)</u> is triangulated, the inverse shift is given by the usual syzygy operator Ω . (Dual <u>CMI(Λ)</u> and Ω^{-1}) [Bu86].

The AR translations act as triangle quasi-inverse equivalences [BR07].

 $\tau : \underline{\mathsf{CMP}}(\Lambda) \ \rightleftharpoons \ \underline{\mathsf{CMI}}(\Lambda) : \tau^{-1}$

Theorem (GE-Schiffler)

For indecomposable modules M and N in a 2-CY tilted algebra ${\rm B},$ the following statements are equivalent

- (a1) *M* is a non projective syzygy,
- (a2) *M* belongs to <u>CMP(</u>B),
- (a3) $\Omega^2 \tau M \simeq M$,

(a4) $\Omega^{-2}M \simeq \tau M$.

- (b1) N is a non injective co-syzygy,
- (b2) N belongs to $\underline{CMI}(B)$,

(b3)
$$\Omega^{-2}\tau^{-1}N\simeq N$$
,

(b4)
$$\Omega^2 N \simeq \tau^{-1} N$$
.

Corollary

The objects in $\underline{CMP}(B)$ are the non projective syzygies on modB. The objects in $\underline{CMI}(B)$ are the non injective co-syzygies on modB.

Theorem (GE-Schiffler)

For indecomposable modules M and N in a 2-CY tilted algebra ${\rm B},$ the following statements are equivalent

- (a1) *M* is a non projective syzygy,
- (a2) *M* belongs to <u>CMP(B)</u>,
- (a3) $\Omega^2 \tau M \simeq M$,

(a4) $\Omega^{-2}M \simeq \tau M$.

(b1) N is a non injective co-syzygy,

(b2) N belongs to $\underline{CMI}(B)$,

(b3)
$$\Omega^{-2}\tau^{-1}N\simeq N$$
,

(b4)
$$\Omega^2 N \simeq \tau^{-1} N$$
.

Corollary

The objects in $\underline{CMP}(B)$ are the non projective syzygies on modB. The objects in $\underline{CMI}(B)$ are the non injective co-syzygies on modB.

If Λ is a d-Gorenstein Artin algebra then the objects in <u>CMP</u>(Λ) are the d-th non projective syzygies on mod Λ . [Bel00].

If $\rm B$ is a tame cluster tilted algebra, then rep.dim $\rm B \leq$ 3.

If $\rm B$ is a tame cluster tilted algebra, then rep.dim $\rm B \leq$ 3.

If follows from

If $\rm B$ is a tame cluster tilted algebra, then rep.dim $\rm B \leq$ 3.

If follows from

• The objects in <u>CMP(B)</u> are the non projective syzygies on modB.

If $\rm B$ is a tame cluster tilted algebra, then rep.dim $\rm B \leq$ 3.

If follows from

- The objects in <u>CMP(B)</u> are the non projective syzygies on modB.
- If $\rm B$ is a tame cluster tilted algebra, then $\underline{\sf CMP}(\rm B)$ has a finite number of indecomposable modules. [BO11]

If $\rm B$ is a tame cluster tilted algebra, then rep.dim $\rm B \leq$ 3.

If follows from

- The objects in <u>CMP(B)</u> are the non projective syzygies on modB.
- If $\rm B$ is a tame cluster tilted algebra, then $\underline{\sf CMP}(\rm B)$ has a finite number of indecomposable modules. [BO11]
- If an Artin algebra A is torsionless finite (the number of indecomposable submodules of projective modules is finite) then rep.dim $A \leq 3$. [Rin11]

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- \bullet were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- \bullet were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Theorem (GE-Schiffler)

Let Λ be a d-Gorenstein artin algebra, then $\phi \dim(\Lambda) = \psi \dim(\Lambda) = d$.

Consider ϕ and ψ the Igusa-Todorov functions. [IT05]

- they generalize the concept of projective dimension of a module
- \bullet were used to prove finitistic dimension conjecture for algebras with representation dimension repdim $\Lambda \leq 3$

Theorem (GE-Schiffler)

Let Λ be a d-Gorenstein artin algebra, then $\phi \dim(\Lambda) = \psi \dim(\Lambda) = d$.

Corollary

For every 2-CY tilted algebra B, $\phi dim(B) = \psi dim(B) \leq 1$.

PART 1: Definitions and general results

- 2-CY tilted algebras
- d-Gorenstein algebras
- Results
- Part 2: 2-CY tilted algebras arising from surfaces
 - Unpunctured case
 - Punctured disc

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

For gentle algebras, the only indecomposable non projective syzygies are summands on the radical of an indecomposable projective. [K14]

Unpunctured case

The class of 2-CY tilted algebras arising from unpunctured surfaces was defined in [ABCJP]. These algebras are gentle.

For gentle algebras, the only indecomposable non projective syzygies are summands on the radical of an indecomposable projective. [K14]

The cluster category of type \mathbb{D}_n has a geometric model given by the punctured disc with *n* marked points on the boundary [S08]. There are bijections:

Arcs (tagged arcs)	\leftrightarrow	Indecomposable objects in $\mathcal{C}_{\mathbb{D}_n}$
Triangulations	\leftrightarrow	Cluster tilting objects in $\mathcal{C}_{\mathbb{D}_n}$
Arcs \notin triangulation	\leftrightarrow	Indecomposable modules in $modB$
AR translation $ au$	\leftrightarrow	Clockwise rotation of angle $2\pi/n$ (change tags)

Punctured disc

We classify the triangulations in three types

- Type II: all the non projective syzygies arise from internal triangles with 3 vertices on the boundary (unpunctured case)
- Type III: all except 3 non projective syzygies arise from internal triangles with 3 vertices on the boundary (unpunctured case)

For Type I, we define a color-index label for marked points in the boundary such that

Theorem (GE-Schiffler)

In a Type I triangulation, given $M(r_i, b_j)$ where $j \in \{i + 2, ..., i - 1\}$, then

 $\Omega M(r_i, b_j) = M(r_{j-1}, b_i)$

For Type I, we define a color-index label for marked points in the boundary such that

Theorem (GE-Schiffler)

In a Type I triangulation, given $M(r_i, b_j)$ where $j \in \{i + 2, ..., i - 1\}$, then

 $\Omega M(r_i, b_j) = M(r_{j-1}, b_i)$

and we prove that in this case, all non projective syzygies

- arise from internal triangles with 3 vertices on the boundary, or
- belong to the family $M(r_i, b_j)$ described in the theorem

Definition and general results 2-CY tilted algebras arising from surfaces

Punctured disc

Figure: Type I triangulation with colored points. Curves associated to the modules $M(r_7, b_2)$, $M(r_5, b_4)$ and $M(r_4, b_3)$

- [*Bu*86] Maximal Cohen-Macaulay modules and Tate cohomology. R.O. Buchweitz.
- [*Be*/00] The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization. A. Beligiannis.
- [*IT*05] On the finitistic global dimension conjecture for Artin algebras. K. Igusa, G. Todorov.
- [KR07] Cluster Tilted Algebras are Gorenstein and Stably Calabi Yau. B. Keller, I. Reiten.
- [*BR*07] Homological and Homotopical Aspects of Torsion Theories. A. Beligiannis, I. Reiten.
- [S08] A Geometric Model for Cluster Categories of type D_n . R. Schiffler.
- [*ABCJP*] Gentle algebras arising from surface triangulations . Assem, Brüstle, Charbonneau-Jodoin, Plamondon.
- [BO11] Cluster tilting and complexity. A. Bergh, S. Oppermann.
- [*Rin*11] On the representation dimension of artin algebras. C.M. Ringel.
- [Kal14] Singularity categories of gentle algebras. M. Kalck.

Thanks

$(\mathbf{Thanks})^2$