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Y -systems

• Systems of functional algebraic relations coming from the study of TBA.

• Actively studied in the ’90 with ad-hoc methods.

• Usually complicated: it is hard to produce explicit solutions.

• Many of these system exhibit (in several cases conjectural) periodicity properties.



Classical Y -systems

Fix a finite type Dynkin diagram X. Let A = (amn) be the corresponding Cartan
matrix.
Consider the family of commuting variables

{Ym(u) |m ∈ X,u ∈ Z} .

Definition
The classical Y -system associated to X is the system of algebraic relations

Ym(u− 1)Ym(u+ 1) =
∏
n6=m

(1 + Yn(u))
−amn (1)



Classical Y -systems

Fix a finite type Dynkin diagram X. Let A = (amn) be the corresponding Cartan
matrix.
Consider the family of commuting variables

{Ym(u) |m ∈ X,u ∈ Z} .

Definition
The classical Y -system associated to X is the system of algebraic relations

Ym(u− 1)Ym(u+ 1) =
∏
n 6=m

(1 + Yn(u))
−amn (1)



Zamolodchikov’s Conjecture

Let h be the Coxeter number of X.

Conjecture
The solutions of (1) are periodic with period 2(h+ 2). That is, for any m ∈ X and
u ∈ Z,

Ym(u+ 2(h+ 2)) = Ym(u)

Proofs

• When X is of type An the conjecture was proved independently by
Frenkel-Szenes and Gliozzi-Tateo constructing the explicit solution.

• For general X the conjecture was proved by Fomin-Zelevinsky using y-pattern of
cluster algebras.
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Idea of the general proof

• Let X = X+ tX− be a bipartition of X such that m ∈ Xε(m).
Then the Y -system (1) only involves variables {Ym(u)} with a fixed parity of
ε(m)(−1)u.

• Impose Ym(u) = Ym(u+ 1) if ε(m) = (−1)u and combine with (1) to get

Ym(u+ 1) =

{ ∏
n6=m(1+Yn(u))−amn

Ym(u)
ε(m) = (−1)u+1

Ym(u) ε(m) = (−1)u
(2)

• Realize that (2) is the y-pattern evolution for a particular sequence of mutation
(bipartite) in a cluster algebra of type X



Idea of the general proof

• Let X = X+ tX− be a bipartition of X such that m ∈ Xε(m).
Then the Y -system (1) only involves variables {Ym(u)} with a fixed parity of
ε(m)(−1)u.

• Impose Ym(u) = Ym(u+ 1) if ε(m) = (−1)u and combine with (1) to get

Ym(u+ 1) =

{ ∏
n6=m(1+Yn(u))−amn

Ym(u)
ε(m) = (−1)u+1

Ym(u) ε(m) = (−1)u
(2)

• Realize that (2) is the y-pattern evolution for a particular sequence of mutation
(bipartite) in a cluster algebra of type X



Idea of the general proof

• Let X = X+ tX− be a bipartition of X such that m ∈ Xε(m).
Then the Y -system (1) only involves variables {Ym(u)} with a fixed parity of
ε(m)(−1)u.

• Impose Ym(u) = Ym(u+ 1) if ε(m) = (−1)u and combine with (1) to get

Ym(u+ 1) =

{ ∏
n6=m(1+Yn(u))−amn

Ym(u)
ε(m) = (−1)u+1

Ym(u) ε(m) = (−1)u
(2)

• Realize that (2) is the y-pattern evolution for a particular sequence of mutation
(bipartite) in a cluster algebra of type X



General philosophy

Periodic behaviour in Y -systems and cluster algebras are intimately related:

to any sequence of mutations fixing a seed of a cluster algebra corresponds an
(explicit) periodic Y -system.

The same holds for any sequence of mutations fixing a seed up to relabeling.
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Reduced sine-Gordon (RSG) and sine-Gordon (SG) Y -systems

• Generalization of classical Y -systems of types A and D respectively introduced by
Tateo in 1995.

• Obtained by grouping the variables into blocks (generations) and prescribing
different time evolutions for each block.

• The construction is “exotic”: it involves continued fractions.

• The equations involved are complicated but, surprisingly, the conjectural
periodicity is quite easy.



Reduced sine-Gordon Y -system
Let XRSG(n1, . . . , nF ) be the Dynkin diagram of type A indexed by pairs (a,m) as
follows:

• • •

a
1︷ ︸︸ ︷ 2︷ ︸︸ ︷ 3︷ ︸︸ ︷ F︷ ︸︸ ︷

m 1 · · · n1 − 2 1 · · · n2 1 1 · · · nF

To XRSG(n1, . . . , nF ) associate the continued fractions

ξa = [na, . . . , n1] :=
1

na +
1

na−1 +
1

. . . +
1

n1

. (3)

Write ξa as ratio of coprime integers:

ξa =:
pa

qa

and set ra := pa + qa.
Set also εa := (−1)a−1.
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• For a general (a,m) other than (2, 1), (3, 1), . . . , (F, 1)

Y
(a)
m (u− pa)Y (a)

m (u+ pa) =
∏

(b,k)∼(a,m)

(1 + Y
(b)
k (u)εb )εb ,

• For (a,m) = (2, 1) (i.e. the blue vertex)

Y
(2)
1 (u− p2)Y (2)

1 (u+ p2) = (1 + Y
(2)
2 (u)−1)−1(1 + Y

(1)
1 (u))

×
n1−2∏
m=1

(1 + Y
(1)
m (u− 1−m)−1)−1

×
n1−2∏
m=1

(1 + Y
(1)
m (u+ 1 +m)−1)−1.

• For (a,m) = (a, 1) with a = 3, . . . , F (i.e. the red vertices)
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(a−1)
m (u− pa + (na−1 + 1−m)pa−1)
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(1 + Y
(a−1)
m (u+ pa − (na−1 + 1−m)pa−1)

εa )εa ,



• For a general (a,m) other than (2, 1), (3, 1), . . . , (F, 1)

Y
(a)
m (u− pa)Y (a)

m (u+ pa) =
∏

(b,k)∼(a,m)

(1 + Y
(b)
k (u)εb )εb ,

• For (a,m) = (2, 1) (i.e. the blue vertex)

Y
(2)
1 (u− p2)Y (2)

1 (u+ p2) = (1 + Y
(2)
2 (u)−1)−1(1 + Y

(1)
1 (u))

×
n1−2∏
m=1

(1 + Y
(1)
m (u− 1−m)−1)−1

×
n1−2∏
m=1

(1 + Y
(1)
m (u+ 1 +m)−1)−1.

• For (a,m) = (a, 1) with a = 3, . . . , F (i.e. the red vertices)

Y
(a)
1 (u− pa)Y (a)

1 (u+ pa)

= (1 + Y
(a)
2 (u)εa )εa (1 + Y

(a−2)
na−2−2δa3

(u)εa )εa

×
na−1∏
m=1

(1 + Y
(a−1)
m (u− pa + (na−1 + 1−m)pa−1)

εa )εa

×
na−1∏
m=1

(1 + Y
(a−1)
m (u+ pa − (na−1 + 1−m)pa−1)

εa )εa ,



• For a general (a,m) other than (2, 1), (3, 1), . . . , (F, 1)

Y
(a)
m (u− pa)Y (a)

m (u+ pa) =
∏

(b,k)∼(a,m)

(1 + Y
(b)
k (u)εb )εb ,

• For (a,m) = (2, 1) (i.e. the blue vertex)

Y
(2)
1 (u− p2)Y (2)

1 (u+ p2) = (1 + Y
(2)
2 (u)−1)−1(1 + Y

(1)
1 (u))

×
n1−2∏
m=1

(1 + Y
(1)
m (u− 1−m)−1)−1

×
n1−2∏
m=1

(1 + Y
(1)
m (u+ 1 +m)−1)−1.

• For (a,m) = (a, 1) with a = 3, . . . , F (i.e. the red vertices)

Y
(a)
1 (u− pa)Y (a)

1 (u+ pa)

= (1 + Y
(a)
2 (u)εa )εa (1 + Y

(a−2)
na−2−2δa3

(u)εa )εa

×
na−1∏
m=1

(1 + Y
(a−1)
m (u− pa + (na−1 + 1−m)pa−1)

εa )εa

×
na−1∏
m=1

(1 + Y
(a−1)
m (u+ pa − (na−1 + 1−m)pa−1)

εa )εa ,



Tateo’s conjecture (for RSG Y -systems)

Conjecture
The reduced Sine-Gordon Y -system associated to XRSG(n1, . . . , nF ) is periodic with
period 2rF . That is

Y
(a)
m (u+ 2rF ) = Y

(a)
m (u)

for any (a,m) ∈ XRSG(n1, . . . , nF ) and any u ∈ Z.

Moreover if L denotes the Rogers dilogarithm then

6

π2

∑
(a,m,u)∈I+
0≤u<2rF

L

(
1

1 + Y
(a)
m (u)

)
= rF

( ∑
a:even

na + 2

)
− 6r

(2)
F

Theorem [Nakanishi,-]
Tateo’s conjecture holds
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Example: XRSG(6, 4, 3)

Z(0)

0

17

34

5155
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89

Z(−1)

• •
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m 1 2 3 4 1 2 3 4 1 2 3



Example: XRSG(6, 4, 3)

Z(0)

0

17

34
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72
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Z(−1)

This triangulation represents a seed in a
cluster algebra A of type A103.

(It is a 106-gon)

• •

a
1︷ ︸︸ ︷ 2︷ ︸︸ ︷ 3︷ ︸︸ ︷
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Example: XRSG(6, 4, 3)
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The conjectured periodicity of this
Y -system is 212; indeed

ξ3 =
1

3 + 1
4+ 1

6

=
81

25

and
r3 = 81 + 25 = 106

• •
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Example: XRSG(6, 4, 3)
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By reflecting (mutating) twice along
different axes we rotated the picture by 17
steps.

But 17 and 106 are coprime so we need to
reflect 212 times to go back to the original
triangulation.
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Example: XRSG(6, 4, 3)
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We need to perform some identifications
to associate the variables in our Y -system
to coefficients in the cluster algebra A.

The triangulation contains precisely
4 + 4 + 3 “different” arcs.
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p1 = 1 copy of the first generation.
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Example: XRSG(6, 4, 3)

Z(0)

Z(−1) 0
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p2 = 6 copies of the second
generation.
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Example: XRSG(6, 4, 3)
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p3 = 25 copies of the third
generation.

• • • •
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