Quasi-Cartan companions of cluster-tilted quivers

Ahmet Seven
Middle East Technical University, Ankara, Turkey

April 2013
B : square matrix
B is skew-symmetrizable if
$D A$ is skew-symmetric for some diagonal matrix D with positive diagonal entries.

- Mutation of B at an index k is the matrix $\mu_{k}(B)=B^{\prime}$:

$$
\begin{gathered}
B^{\prime}= \begin{cases}B_{i, j}^{\prime}=-B_{i, j} & \text { if } i=k \text { or } j=k ; \\
B_{i, j}^{\prime}=B_{i, j}+\operatorname{sgn}\left(B_{i, k}\right)\left[B_{i, k} B_{k, j}\right]_{+} & \text {otherwise }\end{cases} \\
\text { (where } \left.[x]_{+}=\max \{x, 0\} \text { and } \operatorname{sgn}(x)=x /|x|, \operatorname{sgn}(0)=0\right)
\end{gathered}
$$

- Mutation class of $B=$ all matrices that can be obtained from B by a sequence of mutations
B : skew-symmetrizable $n \times n$ matrix
Diagram of B is the directed graph such that
- vertices: $1, \ldots, n$
$-i \longrightarrow j$ if and only if $B_{j, i}>0$
- the edge is assigned the weight $\left|B_{i, j} B_{j, i}\right|$
- (if the weight is 1 then we omit it in the picture)

Quiver notation:
Diagram of a skew-symmetric matrix $=$ Quiver

- $B_{j, i}>0$ many arrows from i to j

quiver notation

diagram notation
A : square matrix
A is symmetrizable if
$D A$ is symmetric for some diagonal matrix D with positive diagonal entries.
- A is called positive if C is positive definite
- A is called semipositive if C is positive semidefinite
- A is called indefinite if else.
B : skew-symmetrizable
A quasi-Cartan companion of B is a symmetrizable matrix A :
- $A_{i, i}=2$
- $A_{i, j}= \pm B_{i, j}$ for all $i \neq j$.

a quasi-Cartan companion of B
B : skew-symmetrizable
- B is called finite (cluster) type if for any B^{\prime} which is mutation-equivalent to B, we have $\left|B_{i, j}^{\prime} B_{j, i}^{\prime}\right| \leq 3$ for all i, j.
Theorem (Barot-Geiss-Zelevinsky)
B is of finite type if and only if B has a quasi-Cartan companion A which is positive

Proof: "extend" mutation of B to a quasi-Cartan companion A

$$
\mu_{k}(A)=A^{\prime}= \begin{cases}A_{k, k}^{\prime}=2 & \text { if } i \neq k \\ A_{i, k}^{\prime}=\operatorname{sgn}\left(B_{i, k}\right) A_{i, k} & \text { if } j \neq k \\ A_{k, j}^{\prime}=-\operatorname{sgn}\left(B_{k, j}\right) A_{k, j} & \text { else }\end{cases}
$$

- For B which is of infinite type, A^{\prime} may not be a quasi-Cartan companion of $\mu_{k}(B)$
B : skew-symmetrizable
Definition: A companion of B is called admissible if
- each oriented cycle has an odd number of edges assigned +
- each non-oriented cycle has an even number of edges assigned $+$

admissible companion

Theorem (S.) Any two admissible companions of B can be obtained from each other by a sequence of simultaneous sign changes in rows and columns.

However, an admissible companion may not exist!

- if $\Gamma(B)$ is acyclic, then B has an admissible companion: a generalized Cartan matrix $\left(A_{i, i}=2, A_{i, j}=-\left|B_{i, j}\right|\right)$
B_{0} : skew-symmetric matrix such that $\Gamma\left(B_{0}\right)$ is acyclic A_{0} : the generalized Cartan matrix associated to B_{0}

Theorem (S.) If B is mutation-equivalent to B_{0}, then B has an admissible quasi-Cartan companion A.

- A is obtained from A_{0} by a sequence of mutations

In particular,

- if A is an admissible quasi-Cartan companion of B, then $\mu_{k}(A)$ is an admissible quasi-Cartan companion of $\mu_{k}(B)$

Proof: establish a particular companion, "c-vector companion"
\mathbb{T}_{n} : n-regular tree t_{0} : initial vertex
$B_{0}=B_{t_{0}}: n \times n$ skew-symmetrizable matrix (initial exchange matrix)
$\mathbf{c}_{0}=\mathbf{c}_{t_{0}}$: standard basis of \mathbb{Z}^{n}
To each t in \mathbb{T}_{n} assign $\left(\mathbf{c}_{t}, B_{t}\right)=(\mathbf{c}, B)$, a " Y-seed", such that $\left(\mathbf{c}^{\prime}, B^{\prime}\right):=\mu_{k}(\mathbf{c}, B)$:

- $B^{\prime}=\mu_{k}(B)$
- The tuple $\mathbf{c}^{\prime}=\left(\mathbf{c}_{1}^{\prime}, \ldots, \mathbf{c}_{n}^{\prime}\right)$ is given by

$$
\mathbf{c}_{i}^{\prime}= \begin{cases}-\mathbf{c}_{i} & \text { if } i=k \tag{1}\\ \mathbf{c}_{i}+\left[\operatorname{sgn}\left(\mathbf{c}_{k}\right) B_{k, i}\right]_{+} \mathbf{c}_{k} & \text { if } i \neq k\end{cases}
$$

Each $\mathbf{c}_{\boldsymbol{i}}$ is sign-coherent: $\mathbf{c}_{i}>0$ or $\mathbf{c}_{i}>0$
(Derksen-Weyman-Zelevinsky, Demonet)
B : skew-symmetrizable $n \times n$ matrix such that $\Gamma(B)$ is acyclic
A : the associated generalized Cartan matrix
$\alpha_{1}, \ldots, \alpha_{n}$: simple roots
$Q=\operatorname{span}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \cong \mathbb{Z}^{n}$: root lattice
$s_{i}=s_{\alpha_{i}}: Q \rightarrow Q:$ reflection

- $s_{i}\left(\alpha_{j}\right)=\alpha_{j}-A_{i, j} \alpha_{i}$
real roots: vectors obtained from the simple roots by a sequence of reflections

Theorem (Speyer, Thomas)
Each c-vector is the coordinate vector of a real root in the basis of simple roots.
B_{0} : skew-symmetric matrix such that $\Gamma\left(B_{0}\right)$ is acyclic
A_{0} : the associated generalized Cartan matrix
$\left(\mathbf{c}_{0}, B_{0}\right)$: initial Y-seed
(\mathbf{c}, B) : arbitrary Y-seed

Theorem (S.)

$A=\left(\mathbf{c}_{i}^{T} A_{0} \mathbf{c}_{j}\right)$ is a quasi-Cartan companion of B
Furthermore:

- If $\operatorname{sgn}\left(B_{j, i}\right)=\operatorname{sgn}\left(\mathbf{c}_{j}\right)$, then $A_{j, i}=\mathbf{c}_{j}^{T} A_{0} \mathbf{c}_{i}=-\operatorname{sgn}\left(\mathbf{c}_{j}\right) B_{j, i}$.
- If $\operatorname{sgn}\left(B_{j, i}\right)=-\operatorname{sgn}\left(\mathbf{c}_{j}\right)$, then $A_{j, i}=\mathbf{c}_{j}^{T} A_{0} \mathbf{c}_{i}=\operatorname{sgn}\left(\mathbf{c}_{i}\right) B_{j, i}$.

In particular; if $\operatorname{sgn}\left(\mathbf{c}_{j}\right)=-\operatorname{sgn}\left(\mathbf{c}_{i}\right)$, then $B_{j, i}=\operatorname{sgn}\left(\mathbf{c}_{i}\right) \mathbf{c}_{j}^{T} A_{0} \mathbf{c}_{i}$.

More properties of the "c-vector companion" A:

- Every directed path of the diagram $\Gamma(B)$ has at most one edge $\{i, j\}$ such that $A_{i, j}>0$.
- Every oriented cycle of the diagram $\Gamma(B)$ has exactly one edge $\{i, j\}$ such that $A_{i, j}>0$.
- Every non-oriented cycle of the diagram $\Gamma(B)$ has an even number of edges $\{i, j\}$ such that $A_{i, j}>0$.
B : skew-symmetric matrix

Definition

A set C of edges in $\Gamma(B)$ is called an "admissible cut" if

- every oriented cycle contains exactly one edge in C
(for quivers with potentials, also introduced by Herschend, lyama; for cluster tilting, introduced by Buan, Reiten, S.)
- every non-oriented cycle contains exactly an even number of edges in C.

If $\Gamma(B)$ is mutation-equivalent to an acyclic diagram, then it has an admissible cut of edges: those $\{i, j\}$ such that $A_{i, j}>0$.

Equivalently:
if the diagram of a skew-symmetric matrix does not have an admissible cut of edges, then it is not mutation-equivalent to any acyclic diagram.

