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Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Initial Data

To get started defining the quantum cluster algebra we need the
combinatorial data of a compatible pair (B̃,Λ).

B̃ - m × n (m ≥ n) exchange matrix

B - skew-symmetrizable principal n × n submatrix

D - diagonal skew-symmetrizing matrix, i.e. DB is skew-symmetric

Λ - m ×m commutation matrix

Compatibility Condition:

B̃tΛ =
(

D 0
)

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 2 / 21



Two Perspectives on Mutations

Quantum Cluster Algebras

Quantum Torus

For a parameter q, the commutation matrix Λ determines the
quasi-commutation of an m-dimensional quantum torus TΛ,q which will
contain the quantum cluster algebra Aq(B̃,Λ).

Quantum Torus:

TΛ,q = Z[q±
1
2 ]〈X±1

1 , . . . ,X±1
m : XiXj = qλij XjXi 〉

The quantum torus has a unique anti-involution (reverses the order of
products) called the bar-involution which fixes the generators (Xi = Xi )
and sends q to q−1.

Bar Invariant Monomials (X a = X a):

Let α1, . . . , αm be the standard basis vectors of Zm. For a =
m∑
i=1

aiαi ∈ Zm

we define bar-invariant monomials X a = q
− 1

2

∑
i<j

aiajλij
X a1

1 · · ·X am
m .
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Two Perspectives on Mutations

Quantum Cluster Algebras

Quantum Seeds and the Mutation Tree

Write X = {X1, . . . ,Xm} for the set of generators of the quantum torus
TΛ,q and call the collection X the initial cluster.

Initial Quantum Seed:

Σ0 = (X, B̃,Λ)

Let Tn denote the rooted n-regular tree with root vertex t0. We will label
the n edges of Tn emanating from each vertex by the set {1, . . . , n}.
We will actually have many quantum seeds Σt , one for each vertex t of
Tn, subject to the following conditions:

The initial quantum seed is associated to the root: Σt0 = Σ0.

If there exists an edge of Tn labeled by k between vertices t and t ′,
then the quantum seeds Σt and Σt′ are related by the mutation in
direction k.
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Two Perspectives on Mutations

Quantum Cluster Algebras

Quantum Seed Mutations

To define the mutation of quantum seeds we need a little more notation.

Write bk for the kth column of B̃ thought of as an element of Zm. Let
bk

+ =
∑

bik>0

bikαi and bk
− = bk

+ − bk .

Internal Mutations:

For 1 ≤ k ≤ n, define the mutation µkΣ = (µkX, µk B̃, µkΛ) of a seed in
direction k as follows:

µkX = X \ {Xk} ∪ {X ′k} where X ′k = X bk
+−αk + X bk

−−αk ,

µk B̃ = Ek B̃Fk (Fomin-Zelevinsky),

µkΛ = EkΛE t
k (Berenstein-Zelevinsky).

Note: cluster variables obtained through iterated mutations will, a priori,
be elements of the skew-field of fractions F of TΛ,q.
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Two Perspectives on Mutations

Quantum Cluster Algebras

Definition

We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra Aq(B̃,Λ) to be the Z[q±
1
2 ]-subalgebra

of F generated by all cluster variables from all seeds Σt where t runs over
the vertices of the mutation tree Tn.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)

For any seed Σt = (Xt , B̃t ,Λt), the quantum cluster algebra Aq(B̃,Λ) is a
subalgebra of the quantum torus TΛt ,q.

Laurent Problem:

Understand the initial cluster Laurent expansion of each cluster variable.

Our Goal: Solve this problem when the principal submatrix B is acyclic.
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Two Perspectives on Mutations

Quantum Cluster Algebras

Two Views of Mutation

The internal mutation µk in the definition of the quantum cluster algebra
should be viewed as a recursive process inside the fixed skew-field F .

There is another way to look at mutations, we view the mutation as a
change of the initial cluster. We will call this type of mutation an external
mutation.

To be more precise suppose t and t ′ are connected by an edge in Tn

labeled by k. By the quantum Laurent phenomenon the quantum cluster
algebra Aq(B̃,Λ) is contained in both TΛt ,q ⊂ Ft and TΛt′ ,q ⊂ Ft′ .

Write X a
t and X a

t′ for the bar-invariant monomials in TΛt ,q and TΛt′ ,q

respectively.
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Two Perspectives on Mutations

Quantum Cluster Algebras

Two Views of Mutation

The external mutation µ̃k takes the form of a bi-rational isomorphism of
skew-fields with µ̃k(Aq(B̃,Λ)) = Aq(B̃,Λ):

External Mutations:

µ̃k : Ft Ft′ : µ̃k

Xk X
bk
t′+
−αk

t′ + X
bk
t′−
−αk

t′

X
bk
t +−αk

t + X
bk
t −−αk

t X ′k .

With regards to the Laurent problem these two mutations have close
connections to the representation theory of valued quivers (species).
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Two Perspectives on Mutations

Solution to Laurent Problem (acyclic case)

Valued Quivers

Our solution to the Laurent problem will involve combinatorial objects
called valued quivers.

Valued Quivers:

Q = (Q0,Q1, s, t) - acyclic quiver with vertices Q0 = {1, . . . , n},
arrows Q1, and source and target maps s, t : Q1 → Q0.

d : Q0 → Z>0 - valuations on the vertices, d(i) = di .

Call the pair (Q,d) an acyclic valued quiver.

From a skew-symmetrizable n × n matrix B we can construct a valued
quiver (Q,d) as follows:

Q has vertices {1, . . . , n} with valuations
di = i th diagonal entry of the symmetrizing matrix D,

whenever bij > 0, Q has gcd(bij ,−bji ) arrows i → j .
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Two Perspectives on Mutations

Solution to Laurent Problem (acyclic case)

Valued Quiver Representations

To define representations of a valued quiver we need to introduce some
more notation.

F - finite field with q elements

F̄ - an algebraic closure of F
Fk - degree k extension of F in F̄
Note: Fk ∩ F` = Fgcd(k,`)

Valued Quiver Representations:

A representation V = ({Vi}i∈Q0 , {ϕa}a∈Q1) of (Q,d) consists of an
Fdi -vector space Vi for each vertex i and an Fgcd(ds(a),dt(a))-linear map
ϕa : Vs(a) → Vt(a) for each arrow a.

repF(Q,d) - hereditary, Abelian category of finite dimensional
representations of (Q,d) (equivalent to modules over a species)
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Two Perspectives on Mutations

Solution to Laurent Problem (acyclic case)

Quantum Cluster Character Setup

To introduce the quantum cluster character we need more notation:

K(Q,d) - Grothendieck group of repF(Q,d)

αi - isomorphism class of the vertex-simple Si

Q acyclic =⇒ K(Q,d) =
⊕

i∈Q0
Zαi

Euler-Ringel Form:

Suppose V ,W ∈ repF(Q,d). We will need the Euler-Ringel form given by
〈V ,W 〉 = dimFHom(V ,W )− dimFExt1(V ,W ).

Note: the Euler-Ringel form only depends on the classes of V and W in
K(Q,d).

Abbreviate α∨i := 1
di
αi . For e ∈ K(Q,d) define vectors ∗e, e∗ ∈ Zn by

∗e =
∑n

i=1〈α∨i , e〉αi , e∗ =
∑n

i=1〈e, α∨i 〉αi .
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Two Perspectives on Mutations

Solution to Laurent Problem (acyclic case)

Quantum Cluster Characters

Let V ∈ repF(Q,d) and write v ∈ K(Q,d) for the dimension vector of V .

Quantum Cluster Character:

We define the quantum cluster character V 7→ XV ∈ TΛ,q by

XV =
∑

e∈K(Q,d)

q−
1
2
〈e,v−e〉|Gre(V )|X−e∗−∗(v−e)

where Gre(V ) denotes the Grassmannian of subrepresentations of V with
isomorphism class e.

Theorem (R.)

The quantum cluster character V 7→ XV defines a bijection from
indecomposable rigid representations V of (Q,d) to non-initial quantum
cluster variables of the quantum cluster algebra Aq(B̃,Λ) ⊂ TΛ,q.
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Two Perspectives on Mutations

External Mutations

Reflection Functors and Quantum Cluster Characters

repF(Q,d)〈k〉 - full subcategory of repF(Q,d) of objects without
indecomposable summands isomorphic to the simple Sk

µkQ - quiver obtained from Q by reversing all arrows incident on
vertex k

Σ±k : repF(Q,d)〈k〉 → repF(µkQ,d)〈k〉 - Dlab-Ringel reflection
functors at a sink or source vertex k (we usually drop the ± from the
notation)

originally defined in terms of modules over an associated F-species

Theorem (R.)

For V ∈ repF(Q,d)〈k〉 the external mutation at a sink or source vertex k
can be computed via the reflection functor Σk by

µ̃k(XV ) = XΣkV .
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Two Perspectives on Mutations

External Mutations

Reflection Functors and Quantum Cluster Characters

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by
mutating in direction k is given by the quantum cluster character XSk .

A cluster (X′, B̃ ′,Λ′) is called almost acyclic if there exists a vertex k so
that (µkX′, µk B̃ ′, µkΛ′) is acyclic.

Corollary

Any cluster variable of Aq(B̃,Λ) in an almost acyclic cluster is given by
XV for some representation V which can be obtained via reflection
functors from a simple representation.

Open Question: What about non-sink/non-source mutations?
...Ask Daniel Labardini-Fragoso...there appear to be obstructions...
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Two Perspectives on Mutations

Internal Mutations

Local Tilting Representations

Let V ∈ repF(Q,d).

V is rigid if Ext1(V ,V ) = 0.

V is basic if each indecomposable summand appears with multiplicity
one.

The support of V is the set supp(V ) = {i ∈ Q0 : Vi 6= 0}.
V is sincere if supp(V ) = Q0.

Local Tilting Representations:

We will call a representation T ∈ repF(Q,d) local tilting if T is basic,
rigid, and the number of indecomposable summands is equal to the
number of vertices in its support.

Important: the zero representation is local tilting.
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Two Perspectives on Mutations

Internal Mutations

Mutations of Local Tilting Representations

Main Idea (Hubery): local tilting representations are in bijection with seeds

To make this precise we will need to recall two classical theorems on tilting
in hereditary categories:

Theorem (Happel, Ringel)

Suppose T is basic and rigid. Then T is a tilting representation if and
only if T has as many non-isomorphic indecomposable summands as the
number of simple representations.

This allows us to restrict a local tilting representation T to the full
subquiver of (Q,d) on the vertices supp(T ) where it becomes a tilting
representation.
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Two Perspectives on Mutations

Internal Mutations

Mutations of Local Tilting Representations

T ∈ repF(Q,d) is called almost complete tilting if it contains one less than
the required number of indecomposable summands.

Theorem (Happel, Unger)

Let T be an almost complete tilting representation. If T is sincere, then
there exist exactly two non-isomorphic complements to T , otherwise there
is a unique complement.

We can combine this with the previous theorem to get a mutation
operation for local tilting representations which will parallel the mutations
in a quantum cluster algebra.
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Two Perspectives on Mutations

Internal Mutations

Mutations of Local Tilting Representations

Mutation of Local Tilting Representations:

Define the mutation µk(T ) = T ′ in direction k as follows:

1 If vertex k /∈ supp(T ), then there exists a unique complement T ′k so
that T ′ = T ′k ⊕ T is a local tilting representation containing k in its
support.

2 If vertex k ∈ supp(T ), then write T = T/Tk .
1 If T is a local tilting representation, i.e. k /∈ supp(T ), let T ′ = T .
2 Otherwise supp(T ) = supp(T ) and there exists a unique compliment

T ′
k 6∼= Tk so that T ′ = T ′

k ⊕ T is a local tilting representation.

It follows from results of [BMRRT] that every local tilting representation
can be obtained from the zero representation by a sequence of mutations.
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Two Perspectives on Mutations

Internal Mutations

Relationship to Quantum Cluster Algebras

We assign a quantum seed ΣT = (XT , B̃T ,ΛT ) to each local tilting
representation T as follows:

XT = (X ′1, . . . ,X
′
m) is given by

X ′k =

{
Xk if k /∈ supp(T );

XTk
if k ∈ supp(T );

The kth column of the exchange matrix B̃T is defined homologically
in terms of T and T ∗k (Hubery);

ΛT records the quasi-commutation of XT (explicitly given by formulas
involving the Euler-Ringel form and Λ).
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Two Perspectives on Mutations

Internal Mutations

Relationship to Quantum Cluster Algebras

Theorem (R.)

Suppose µk(T ) = T ′. Then ΣT and ΣT ′ are related by
Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma

The quantum seed associated to the zero representation is exactly the
initial quantum seed (X, B̃,Λ).

Corollary (R.)

The quantum cluster character V 7→ XV defines a bijection from
indecomposable rigid representations of (Q,d) to non-initial quantum
cluster variables of the quantum cluster algebra Aq(B̃,Λ).

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 20 / 21



Two Perspectives on Mutations

Internal Mutations

Relationship to Quantum Cluster Algebras

Theorem (R.)

Suppose µk(T ) = T ′. Then ΣT and ΣT ′ are related by
Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma

The quantum seed associated to the zero representation is exactly the
initial quantum seed (X, B̃,Λ).

Corollary (R.)

The quantum cluster character V 7→ XV defines a bijection from
indecomposable rigid representations of (Q,d) to non-initial quantum
cluster variables of the quantum cluster algebra Aq(B̃,Λ).

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 20 / 21



Two Perspectives on Mutations

Internal Mutations

Relationship to Quantum Cluster Algebras

Theorem (R.)

Suppose µk(T ) = T ′. Then ΣT and ΣT ′ are related by
Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma

The quantum seed associated to the zero representation is exactly the
initial quantum seed (X, B̃,Λ).

Corollary (R.)

The quantum cluster character V 7→ XV defines a bijection from
indecomposable rigid representations of (Q,d) to non-initial quantum
cluster variables of the quantum cluster algebra Aq(B̃,Λ).

Dylan Rupel (NEU) Two Perspectives on Mutations April 20, 2013 20 / 21



Two Perspectives on Mutations

End

Thank you!
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