Two Perspectives on Cluster Mutations

Dylan Rupel
Northeastern University

April 20, 2013

Maurice Auslander Distinguished Lectures and International Conference 2013

Woods Hole, MA

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

To get started defining the quantum cluster algebra we need the combinatorial data of a compatible pair (\tilde{B}, Λ).

- $\tilde{B}-m \times n(m \geq n)$ exchange matrix
- B - skew-symmetrizable principal $n \times n$ submatrix
- D - diagonal skew-symmetrizing matrix, i.e. $D B$ is skew-symmetric
- $\Lambda-m \times m$ commutation matrix

Compatibility Condition:

$$
\tilde{B}^{t} \Lambda=\left(\begin{array}{ll}
D & 0
\end{array}\right)
$$

For a parameter q, the commutation matrix Λ determines the quasi-commutation of an m-dimensional quantum torus $\mathcal{T}_{\Lambda, q}$ which will contain the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$.

Quantum Torus:

The quantum torus has a unique anti-involution (reverses the order of products) called the bar-involution which fixes the generators $\left(X_{i}=X_{i}\right)$ and sends q to q^{-1}

Bar Invariant Monomials $\left(\overline{X^{a}}=X^{a}\right)$

For a parameter q, the commutation matrix Λ determines the quasi-commutation of an m-dimensional quantum torus $\mathcal{T}_{\Lambda, q}$ which will contain the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$.

Quantum Torus:

$$
\mathcal{T}_{\Lambda, q}=\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]\left\langle X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}: X_{i} X_{j}=q^{\lambda_{i j}} X_{j} X_{i}\right\rangle
$$

The quantum torus has a unique anti-involution (reverses the order of products) called the bar-involution which fixes the generators $\left(X_{i}=X_{i}\right)$ and sends q to q^{-1}

Bar Invariant Monomials $\left(\overline{X^{a}}=X^{a}\right)$

Let $\alpha_{1}, \ldots, \alpha_{m}$ be the standard basis vectors of \mathbb{Z}^{m}. For $\mathbf{a}=\sum_{i=1}^{m} a_{i} \alpha_{i} \in \mathbb{Z}^{m}$

For a parameter q, the commutation matrix Λ determines the quasi-commutation of an m-dimensional quantum torus $\mathcal{T}_{\Lambda, q}$ which will contain the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$.

Quantum Torus:

$$
\mathcal{T}_{\Lambda, q}=\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]\left\langle X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}: X_{i} X_{j}=q^{\lambda_{i j}} X_{j} X_{i}\right\rangle
$$

The quantum torus has a unique anti-involution (reverses the order of products) called the bar-involution which fixes the generators $\left(\overline{X_{i}}=X_{i}\right)$ and sends q to q^{-1}.

Bar Invariant Monomials $\left(\overline{X^{a}}=X^{a}\right)$:

Let $\alpha_{1}, \ldots, \alpha_{m}$ be the standard basis vectors of \mathbb{Z}^{m}. For $\mathbf{a}=\sum_{i=1}^{m} a_{i} \alpha_{i} \in \mathbb{Z}^{m}$

For a parameter q, the commutation matrix Λ determines the quasi-commutation of an m-dimensional quantum torus $\mathcal{T}_{\Lambda, q}$ which will contain the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$.

Quantum Torus:

$$
\mathcal{T}_{\Lambda, q}=\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]\left\langle X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}: X_{i} X_{j}=q^{\lambda_{i j}} X_{j} X_{i}\right\rangle
$$

The quantum torus has a unique anti-involution (reverses the order of products) called the bar-involution which fixes the generators $\left(\overline{X_{i}}=X_{i}\right)$ and sends q to q^{-1}.

Bar Invariant Monomials $\left(\overline{X^{a}}=X^{a}\right)$:

Let $\alpha_{1}, \ldots, \alpha_{m}$ be the standard basis vectors of \mathbb{Z}^{m}. For $\mathbf{a}=\sum_{i=1}^{m} a_{i} \alpha_{i} \in \mathbb{Z}^{m}$ we define bar-invariant monomials $X^{\mathbf{a}}=q^{-\frac{1}{2} \sum_{i<j} a_{i} a_{j} \lambda_{i j}} X_{1}^{a_{1}} \cdots X_{m}^{a_{m}}$.

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$ We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$.
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k.

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$
We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$.
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k.

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$.

We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$.

We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$.

We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$.
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k

Write $\mathbf{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the set of generators of the quantum torus $\mathcal{T}_{\Lambda, q}$ and call the collection \mathbf{X} the initial cluster.

Initial Quantum Seed:

$$
\Sigma_{0}=(\mathbf{X}, \tilde{B}, \Lambda)
$$

Let \mathbb{T}_{n} denote the rooted n-regular tree with root vertex t_{0}. We will label the n edges of \mathbb{T}_{n} emanating from each vertex by the set $\{1, \ldots, n\}$.

We will actually have many quantum seeds Σ_{t}, one for each vertex t of \mathbb{T}_{n}, subject to the following conditions:

- The initial quantum seed is associated to the root: $\Sigma_{t_{0}}=\Sigma_{0}$.
- If there exists an edge of \mathbb{T}_{n} labeled by k between vertices t and t^{\prime}, then the quantum seeds Σ_{t} and $\Sigma_{t^{\prime}}$ are related by the mutation in direction k.

To define the mutation of quantum seeds we need a little more notation.

```
Write \mp@subsup{b}{}{k}}\mathrm{ for the }\mp@subsup{k}{}{th}\mathrm{ column of }\tilde{B}\mathrm{ thought of as an element of }\mp@subsup{\mathbb{Z}}{}{m}\mathrm{ . Let
\mp@subsup{\mathbf{b}}{+}{k}=\mp@subsup{\sum}{\mp@subsup{b}{ik}{}>0}{}\mp@subsup{b}{ik}{}\mp@subsup{\alpha}{i}{}\mathrm{ and }\mp@subsup{\mathbf{b}}{-}{k}=\mp@subsup{\mathbf{b}}{+}{k}-\mp@subsup{\mathbf{b}}{}{k}
```


Internal Mutations:

For $1 \leq k \leq n$, define the mutation $\mu_{k} \Sigma=\left(\mu_{k} \mathbf{X}, \mu_{k} \tilde{B}, \mu_{k} \Lambda\right)$ of a seed in direction k as follows:

- $\mu_{k} \mathbf{X}=\mathbf{X} \backslash\left\{X_{k}\right\} \cup\left\{X_{k}^{\prime}\right\}$ where $X_{k}^{\prime}=X^{\mathbf{b}_{+}^{k}-\alpha_{k}}+X^{\mathbf{b}_{-}^{k}-\alpha_{k}}$,
- $\mu_{k} \tilde{B}=E_{k} \tilde{B} F_{k}$ (Fomin-Zelevinsky),
- $\mu_{k} \Lambda=E_{k} \wedge E_{k}^{t}$ (Berenstein-Zelevinsky).

Note: cluster variables obtained through iterated mutations will, a priori, be elements of the skew-field of fractions \mathcal{F} of $\mathcal{T}_{\Lambda, q}$.

To define the mutation of quantum seeds we need a little more notation. Write \mathbf{b}^{k} for the $k^{t h}$ column of \tilde{B} thought of as an element of \mathbb{Z}^{m}. Let $\mathbf{b}_{+}^{k}=\sum_{b_{i k}>0} b_{i k} \alpha_{i}$ and $\mathbf{b}_{-}^{k}=\mathbf{b}_{+}^{k}-\mathbf{b}^{k}$.

Internal Mutations:

For $1 \leq k \leq n$, define the mutation $\mu_{k} \Sigma=\left(\mu_{k} X, \mu_{k} \tilde{B}, \mu_{k} \Lambda\right)$ of a seed in direction k as follows:

- $\mu_{k} \mathbf{X}=\mathbf{X} \backslash\left\{X_{k}\right\} \cup\left\{X_{k}^{\prime}\right\}$ where $X_{k}^{\prime}=X^{\mathbf{b}_{+}^{k}-\alpha_{k}}+X^{\mathbf{b}_{-}^{k}-\alpha_{k}}$,
- $\mu_{k} \tilde{B}=E_{k} \tilde{B} F_{k}$ (Fomin-Zelevinsky),
- $\mu_{k} \wedge=E_{k} \wedge E_{k}^{t}$ (Berenstein-Zelevinsky).

Note: cluster variables obtained through iterated mutations will, a priori, be elements of the skew-field of fractions \mathcal{F} of $\mathcal{T}_{\Lambda, q}$

To define the mutation of quantum seeds we need a little more notation. Write \mathbf{b}^{k} for the $k^{t h}$ column of \tilde{B} thought of as an element of \mathbb{Z}^{m}. Let $\mathbf{b}_{+}^{k}=\sum_{b_{i k}>0} b_{i k} \alpha_{i}$ and $\mathbf{b}_{-}^{k}=\mathbf{b}_{+}^{k}-\mathbf{b}^{k}$.

Internal Mutations:

For $1 \leq k \leq n$, define the mutation $\mu_{k} \Sigma=\left(\mu_{k} \mathbf{X}, \mu_{k} \tilde{B}, \mu_{k} \Lambda\right)$ of a seed in direction k as follows:

- $\mu_{k} \mathbf{X}=\mathbf{X} \backslash\left\{X_{k}\right\} \cup\left\{X_{k}^{\prime}\right\}$ where $X_{k}^{\prime}=X^{\mathbf{b}_{+}^{k}-\alpha_{k}}+X^{\mathbf{b}_{-}^{k}-\alpha_{k}}$,
- $\mu_{k} \tilde{B}=E_{k} \tilde{B} F_{k}$ (Fomin-Zelevinsky),
- $\mu_{k} \Lambda=E_{k} \wedge E_{k}^{t}$ (Berenstein-Zelevinsky).

Note: cluster variables obtained through iterated mutations will, a priori, be elements of the skew-field of fractions \mathcal{F} of $\mathcal{T}_{\Lambda, q}$.

To define the mutation of quantum seeds we need a little more notation. Write \mathbf{b}^{k} for the $k^{t h}$ column of \tilde{B} thought of as an element of \mathbb{Z}^{m}. Let $\mathbf{b}_{+}^{k}=\sum_{b_{i k}>0} b_{i k} \alpha_{i}$ and $\mathbf{b}_{-}^{k}=\mathbf{b}_{+}^{k}-\mathbf{b}^{k}$.

Internal Mutations:

For $1 \leq k \leq n$, define the mutation $\mu_{k} \Sigma=\left(\mu_{k} \mathbf{X}, \mu_{k} \tilde{B}, \mu_{k} \Lambda\right)$ of a seed in direction k as follows:

- $\mu_{k} \mathbf{X}=\mathbf{X} \backslash\left\{X_{k}\right\} \cup\left\{X_{k}^{\prime}\right\}$ where $X_{k}^{\prime}=X^{\mathbf{b}_{+}^{k}-\alpha_{k}}+X^{\mathbf{b}_{-}^{k}-\alpha_{k}}$,
- $\mu_{k} \tilde{B}=E_{k} \tilde{B} F_{k}$ (Fomin-Zelevinsky),
- $\mu_{k} \wedge=E_{k} \wedge E_{k}^{t}$ (Berenstein-Zelevinsky).

Note: cluster variables obtained through iterated mutations will, a priori, be elements of the skew-field of fractions \mathcal{F} of $\mathcal{T}_{\Lambda, q}$.

We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ to be the $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-subalgebra of \mathcal{F} generated by all cluster variables from all seeds Σ_{t} where t runs over the vertices of the mutation tree \mathbb{T}_{n}.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)

For any seed $\Sigma_{t}=\left(\mathbf{X}_{t}, \tilde{B}_{t}, \Lambda_{t}\right)$, the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is a subalgebra of the quantum torus $\mathcal{T}_{\Lambda_{t}, q}$.

Laurent Problem:

Understand the initial cluster Laurent expansion of each cluster variable.
Our Goal: Solve this problem when the principal submatrix $\underset{\mathcal{B}_{\underline{\underline{B}}}^{B}}{ }$ is a a actlic.

We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ to be the $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-subalgebra of \mathcal{F} generated by all cluster variables from all seeds Σ_{t} where t runs over the vertices of the mutation tree \mathbb{T}_{n}.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)
 For any seed $\Sigma_{t}=\left(\mathbf{X}_{t}, \tilde{B}_{t}, \Lambda_{t}\right)$, the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is a subalgebra of the quantum torus $\mathcal{T}_{\Lambda_{t}, q}$

Laurent Problem:
Understand the initial cluster Laurent expansion of each cluster variable.
Our Goal: Solve this problem when the principal submatrix B is act actic.

We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ to be the $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-subalgebra of \mathcal{F} generated by all cluster variables from all seeds Σ_{t} where t runs over the vertices of the mutation tree \mathbb{T}_{n}.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)

For any seed $\Sigma_{t}=\left(\mathbf{X}_{t}, \tilde{B}_{t}, \Lambda_{t}\right)$, the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is a subalgebra of the quantum torus $\mathcal{T}_{\Lambda_{t}, q}$.

Laurent Problem:

Understand the initial cluster Laurent expansion of each cluster variable.

[^0]We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ to be the $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-subalgebra of \mathcal{F} generated by all cluster variables from all seeds Σ_{t} where t runs over the vertices of the mutation tree \mathbb{T}_{n}.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)

For any seed $\Sigma_{t}=\left(\mathbf{X}_{t}, \tilde{B}_{t}, \Lambda_{t}\right)$, the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is a subalgebra of the quantum torus $\mathcal{T}_{\Lambda_{t}, q}$.

Laurent Problem:

Understand the initial cluster Laurent expansion of each cluster variable.
Our Goal: Solve this problem when the principal submatrix B is acyclic.

We are finally ready to define the quantum cluster algebra.

Quantum Cluster Algebra:

Define the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ to be the $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-subalgebra of \mathcal{F} generated by all cluster variables from all seeds Σ_{t} where t runs over the vertices of the mutation tree \mathbb{T}_{n}.

Theorem (Quantum Laurent Phenomenon: Berenstein, Zelevinsky)

For any seed $\Sigma_{t}=\left(\mathbf{X}_{t}, \tilde{B}_{t}, \Lambda_{t}\right)$, the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is a subalgebra of the quantum torus $\mathcal{T}_{\Lambda_{t}, q}$.

Laurent Problem:

Understand the initial cluster Laurent expansion of each cluster variable.
Our Goal: Solve this problem when the principal submatrix B is acyclic.

The internal mutation μ_{k} in the definition of the quantum cluster algebra should be viewed as a recursive process inside the fixed skew-field \mathcal{F}.

```
There is another way to look at mutations, we view the mutation as a change of the initial cluster. We will call this type of mutation an external mutation.
```

To be more precise suppose t and t^{\prime} are connected by an edge in \mathbb{T}_{n} labeled by k. By the quantum Laurent phenomenon the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is contained in both $\mathcal{T}_{\Lambda_{t}, q} \subset \mathcal{F}_{t}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}} \subset \mathcal{F}_{t^{\prime}}$

Write X_{t}^{a} and $X_{t^{\prime}}^{\text {a }}$ for the bar-invariant monomials in $\mathcal{T}_{\Lambda_{t}, q}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}}$ respectively.

The internal mutation μ_{k} in the definition of the quantum cluster algebra should be viewed as a recursive process inside the fixed skew-field \mathcal{F}.

There is another way to look at mutations, we view the mutation as a change of the initial cluster. We will call this type of mutation an external mutation.

> To be more precise suppose t and t^{\prime} are connected by an edge in \mathbb{T}_{n} labeled by k. By the quantum Laurent phenomenon the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is contained in both $\mathcal{T}_{\Lambda_{t}, q} \subset \mathcal{F}_{t}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}} \subset \mathcal{F}_{t^{\prime}}$

Write X_{t}^{a} and $X_{t^{\prime}}^{\text {a }}$ for the bar-invariant monomials in $\mathcal{T}_{\Lambda_{t}, q}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}}$ respectively.

The internal mutation μ_{k} in the definition of the quantum cluster algebra should be viewed as a recursive process inside the fixed skew-field \mathcal{F}.

There is another way to look at mutations, we view the mutation as a change of the initial cluster. We will call this type of mutation an external mutation.

To be more precise suppose t and t^{\prime} are connected by an edge in \mathbb{T}_{n} labeled by k. By the quantum Laurent phenomenon the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is contained in both $\mathcal{T}_{\Lambda_{t}, q} \subset \mathcal{F}_{t}$ and $\mathcal{T}_{\Lambda_{t^{\prime}}, q} \subset \mathcal{F}_{t^{\prime}}$.

Write $X_{t}^{\text {a }}$ and $X_{t^{\prime}}^{\text {a }}$ for the bar-invariant monomials in $\mathcal{T}_{\Lambda_{t}, q}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}}$ respectively.

The internal mutation μ_{k} in the definition of the quantum cluster algebra should be viewed as a recursive process inside the fixed skew-field \mathcal{F}.

There is another way to look at mutations, we view the mutation as a change of the initial cluster. We will call this type of mutation an external mutation.

To be more precise suppose t and t^{\prime} are connected by an edge in \mathbb{T}_{n} labeled by k. By the quantum Laurent phenomenon the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ is contained in both $\mathcal{T}_{\Lambda_{t}, q} \subset \mathcal{F}_{t}$ and $\mathcal{\Lambda}_{\Lambda_{t^{\prime}}, q} \subset \mathcal{F}_{t^{\prime}}$.

Write X_{t}^{a} and $X_{t^{\prime}}^{\text {a }}$ for the bar-invariant monomials in $\mathcal{T}_{\Lambda_{t}, q}$ and $\mathcal{T}_{\Lambda_{t^{\prime}, q}}$ respectively.

The external mutation $\tilde{\mu}_{k}$ takes the form of a bi-rational isomorphism of skew-fields with $\tilde{\mu}_{k}\left(\mathcal{A}_{q}(\tilde{B}, \Lambda)\right)=\mathcal{A}_{q}(\tilde{B}, \Lambda)$:

External Mutations:

> With regards to the Laurent problem these two mutations have close connections to the representation theory of valued quivers (species).

The external mutation $\tilde{\mu}_{k}$ takes the form of a bi-rational isomorphism of skew-fields with $\tilde{\mu}_{k}\left(\mathcal{A}_{q}(\tilde{B}, \Lambda)\right)=\mathcal{A}_{q}(\tilde{B}, \Lambda)$:

External Mutations:

$$
\begin{gathered}
\tilde{\mu}_{k}: \mathcal{F}_{t} \longleftrightarrow \mathcal{F}_{t^{\prime}}: \tilde{\mu}_{k} \\
X_{k} \longmapsto X_{t^{\prime}}^{\mathbf{b}_{t^{\prime}+}^{k}-\alpha_{k}}+X_{t^{\prime}}^{\mathbf{b}_{t^{\prime}-}^{k}-\alpha_{k}} \\
X_{t}^{\mathbf{b}_{t+}^{k}-\alpha_{k}}+X_{t}^{\mathbf{b}_{t-}^{k}-\alpha_{k}} \longleftrightarrow X_{k}^{\prime} .
\end{gathered}
$$

With regards to the Laurent problem these two mutations have close connections to the representation theory of valued quivers (species).

The external mutation $\tilde{\mu}_{k}$ takes the form of a bi-rational isomorphism of skew-fields with $\tilde{\mu}_{k}\left(\mathcal{A}_{q}(\tilde{B}, \Lambda)\right)=\mathcal{A}_{q}(\tilde{B}, \Lambda)$:

External Mutations:

$$
\begin{gathered}
\tilde{\mu}_{k}: \mathcal{F}_{t} \longleftrightarrow \mathcal{F}_{t^{\prime}}: \tilde{\mu}_{k} \\
X_{k} \longmapsto X_{t^{\prime}}^{\mathbf{b}_{t^{\prime}+}^{k}-\alpha_{k}}+X_{t^{\prime}}^{\mathbf{b}_{t^{\prime}-}^{k}-\alpha_{k}} \\
X_{t}^{\mathbf{b}_{t+}^{k}-\alpha_{k}}+X_{t}^{\mathbf{b}_{t-}^{k}-\alpha_{k}} \longleftrightarrow X_{k}^{\prime} .
\end{gathered}
$$

With regards to the Laurent problem these two mutations have close connections to the representation theory of valued quivers (species).

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

```
From a skew-symmetrizable n }\timesn\mathrm{ matrix }B\mathrm{ we can construct a valued
quiver ( }Q,\mathbf{d})\mathrm{ as follows:
- \(Q\) has vertices \(\{1, \ldots, n\}\) with valuations \(d_{i}=i^{t h}\) diagonal entry of the symmetrizing matrix \(D\),
- whenever \(b_{i j}>0, Q\) has \(\operatorname{gcd}\left(b_{i j},-b_{j i}\right)\) arrows \(i \rightarrow j\).
```

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- $\mathrm{d}: Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathrm{d}(i)=d_{i}$
- Call the pair (Q, d) an acyclic valued quiver.

From a skew-symmetrizable $n \times n$ matrix B we can construct a valued quiver (Q, \mathbf{d}) as follows:

- Q has vertices $\{1, \ldots, n\}$ with valuations
$d_{i}=i^{t h}$ diagonal entry of the symmetrizing matrix D,
- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow j$.

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- d : $Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathbf{d}(i)=d_{i}$.
- Call the pair (Q, d) an acyclic valued quiver.

From a skew-symmetrizable $n \times n$ matrix B we can construct a valued quiver (Q, \mathbf{d}) as follows:

- Q has vertices $\{1, \ldots, n\}$ with valuations
$d_{i}=i^{t h}$ diagonal entry of the symmetrizing matrix D,
- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow j$.

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- d : $Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathbf{d}(i)=d_{i}$.
- Call the pair (Q, \mathbf{d}) an acyclic valued quiver.

```
From a skew-symmetrizable }n\timesn\mathrm{ matrix }B\mathrm{ we can construct a valued quiver \((Q, \mathbf{d})\) as follows:
- \(Q\) has vertices \(\{1, \ldots, n\}\) with valuations
\(d_{i}=i^{t h}\) diagonal entry of the symmetrizing matrix \(D\),
```

- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow j$

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- d : $Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathbf{d}(i)=d_{i}$.
- Call the pair (Q, \mathbf{d}) an acyclic valued quiver.

From a skew-symmetrizable $n \times n$ matrix B we can construct a valued quiver (Q, \mathbf{d}) as follows:

- Q has vertices $\{1, \ldots, n\}$ with valuations
$d_{i}=i^{t h}$ diagonal entry of the symmetrizing matrix D,
- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow i$

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- d : $Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathbf{d}(i)=d_{i}$.
- Call the pair (Q, \mathbf{d}) an acyclic valued quiver.

From a skew-symmetrizable $n \times n$ matrix B we can construct a valued quiver (Q, d) as follows:

- Q has vertices $\{1, \ldots, n\}$ with valuations

$$
d_{i}=i^{t h} \text { diagonal entry of the symmetrizing matrix } D
$$

- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow j$.

Our solution to the Laurent problem will involve combinatorial objects called valued quivers.

Valued Quivers:

- $Q=\left(Q_{0}, Q_{1}, s, t\right)$ - acyclic quiver with vertices $Q_{0}=\{1, \ldots, n\}$, arrows Q_{1}, and source and target maps $s, t: Q_{1} \rightarrow Q_{0}$.
- d : $Q_{0} \rightarrow \mathbb{Z}_{>0}$ - valuations on the vertices, $\mathbf{d}(i)=d_{i}$.
- Call the pair (Q, \mathbf{d}) an acyclic valued quiver.

From a skew-symmetrizable $n \times n$ matrix B we can construct a valued quiver (Q, d) as follows:

- Q has vertices $\{1, \ldots, n\}$ with valuations $d_{i}=i^{t h}$ diagonal entry of the symmetrizing matrix D,
- whenever $b_{i j}>0, Q$ has $\operatorname{gcd}\left(b_{i j},-b_{j i}\right)$ arrows $i \rightarrow j$.

LSolution to Laurent Problem (acyclic case)

- Valued Quiver Representations

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, d) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right)}$-linear map $\varphi_{a}: V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ - hereditary, Abelian category of finite dimensional representations of (Q, \mathbf{d}) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, d) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\left.\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right.}\right)^{\text {linear map }}$ $\varphi_{a}: V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, d)$ - hereditary, Abelian category of finite dimensional representations of (Q, \mathbf{d}) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, d) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right)}$ - linear map $V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ - hereditary, Abelian category of finite dimensional representations of (Q, \mathbf{d}) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, d) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right.}$ - linear map $V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, d)$ - hereditary, Abelian category of finite dimensional representations of (Q, \mathbf{d}) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, \mathbf{d}) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right)}$-linear map $V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ - hereditary, Abelian category of finite dimensional representations of (Q, d) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, \mathbf{d}) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right)}$ - linear map $\varphi_{a}: V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, d)$ - hereditary, Abelian category of finite dimensional

representations of (Q, d) (equivalent to modules over a species)

To define representations of a valued quiver we need to introduce some more notation.

- \mathbb{F} - finite field with q elements
- $\overline{\mathbb{F}}$ - an algebraic closure of \mathbb{F}
- \mathbb{F}_{k} - degree k extension of \mathbb{F} in $\overline{\mathbb{F}}$
- Note: $\mathbb{F}_{k} \cap \mathbb{F}_{\ell}=\mathbb{F}_{\operatorname{gcd}(k, \ell)}$

Valued Quiver Representations:

A representation $V=\left(\left\{V_{i}\right\}_{i \in Q_{0}},\left\{\varphi_{a}\right\}_{a \in Q_{1}}\right)$ of (Q, \mathbf{d}) consists of an $\mathbb{F}_{d_{i}}$-vector space V_{i} for each vertex i and an $\mathbb{F}_{\operatorname{gcd}\left(d_{s(a)}, d_{t(a)}\right)}$-linear map $\varphi_{a}: V_{s(a)} \rightarrow V_{t(a)}$ for each arrow a.

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ - hereditary, Abelian category of finite dimensional representations of (Q, \mathbf{d}) (equivalent to modules over a species)
$\left\llcorner_{\text {Solution to }}\right.$ Laurent Problem (acyclic case)
-Quantum Cluster Character Setup
To introduce the quantum cluster character we need more notation:
- $\mathcal{K}(Q, d)$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, d)$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{W}}(Q, d)$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}{ }^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$.

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathbf{e} \in \mathcal{K}(Q, \mathbf{d})$ define vectors ${ }^{*} \mathbf{e}, \mathbf{e}^{*} \in \mathbb{Z}^{n}$ by ${ }^{*} \mathbf{e}=\sum_{i=1}^{n}\left\langle\alpha_{i}^{\vee}, \mathbf{e}\right\rangle \alpha_{i}, \mathbf{e}^{*}=\sum_{i=1}^{n}\left\langle\mathbf{e}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.

To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{F}}(Q, d)$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}{ }^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathrm{~d})$.

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathbf{e} \in \mathcal{K}(Q, \mathbf{d})$ define vectors ${ }^{*} \mathbf{e}, \mathbf{e}^{*} \in \mathbb{Z}^{n}$ by ${ }^{*} \mathbf{e}=\sum_{i=1}^{n}\left\langle\alpha_{i}^{\vee}, \mathbf{e}\right\rangle \alpha_{i}, \mathbf{e}^{*}=\sum_{i=1}^{n}\left\langle\mathbf{e}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.

To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, d)=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{T}}(Q, d)$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$.

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathbf{e} \in \mathcal{K}(Q, \mathrm{~d})$ define vectors ${ }^{*} \mathrm{e}, \mathrm{e}^{*} \in \mathbb{Z}^{n}$ by ${ }^{*} \mathbf{e}=\sum_{i=1}^{n}\left\langle\alpha_{i}^{\vee}, \mathbf{e}\right\rangle \alpha_{i}, \mathbf{e}^{*}=\sum_{i=1}^{n}\left\langle\mathbf{e}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.

To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{T}}(Q, d)$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathbf{e} \in \mathcal{K}(Q, \mathrm{~d})$ define vectors ${ }^{*} \mathrm{e}, \mathrm{e}^{*} \in \mathbb{Z}^{n}$ by ${ }^{*} \mathbf{e}=\sum_{i=1}^{n}\left\langle\alpha_{i}^{\vee}, \mathbf{e}\right\rangle \alpha_{i}, \mathbf{e}^{*}=\sum_{i=1}^{n}\left\langle\mathbf{e}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.

-Solution to Laurent Problem (acyclic case)

-Quantum Cluster Character Setup
To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$.

Abbreviate $\alpha_{i}^{V}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathrm{e} \in \mathcal{K}(Q, \mathrm{~d})$ define vectors * $\mathrm{e}, \mathrm{e}^{*} \in \mathbb{Z}^{n}$ by

To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$.

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathrm{e} \in \mathcal{K}(Q, \mathrm{~d})$ define vectors ${ }^{*} \mathrm{e}, \mathrm{e}^{*} \in \mathbb{Z}^{n}$ by

To introduce the quantum cluster character we need more notation:

- $\mathcal{K}(Q, \mathbf{d})$ - Grothendieck group of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$
- α_{i} - isomorphism class of the vertex-simple S_{i}
- Q acyclic $\Longrightarrow \mathcal{K}(Q, \mathbf{d})=\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$

Euler-Ringel Form:

Suppose $V, W \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$. We will need the Euler-Ringel form given by $\langle V, W\rangle=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}(V, W)-\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}^{1}(V, W)$.

Note: the Euler-Ringel form only depends on the classes of V and W in $\mathcal{K}(Q, \mathbf{d})$.

Abbreviate $\alpha_{i}^{\vee}:=\frac{1}{d_{i}} \alpha_{i}$. For $\mathbf{e} \in \mathcal{K}(Q, \mathbf{d})$ define vectors ${ }^{*} \mathbf{e}, \mathbf{e}^{*} \in \mathbb{Z}^{n}$ by ${ }^{*} \mathbf{e}=\sum_{i=1}^{n}\left\langle\alpha_{i}^{\vee}, \mathbf{e}\right\rangle \alpha_{i}, \mathbf{e}^{*}=\sum_{i=1}^{n}\left\langle\mathbf{e}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ and write $\mathbf{v} \in \mathcal{K}(Q, \mathbf{d})$ for the dimension vector of V.

Quantum Cluster Character:

We define the quantum cluster character $V \mapsto X_{V} \in \mathcal{T}_{\Lambda, q}$ by

where $\mathrm{Gr}_{\mathrm{e}}(V)$ denotes the $\operatorname{Grassmannian~of~subrepresentations~of~} V$ with isomorphism class e.

Theorem (R.)

The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations V of (Q, \mathbf{d}) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda) \subset \mathcal{T}_{\Lambda, q}$.

LSolution to Laurent Problem (acyclic case)

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ and write $\mathbf{v} \in \mathcal{K}(Q, \mathbf{d})$ for the dimension vector of V.

Quantum Cluster Character:

We define the quantum cluster character $V \mapsto X_{V} \in \mathcal{T}_{\Lambda, q}$ by

$$
X_{V}=\sum_{\mathbf{e} \in \mathcal{K}(Q, \mathbf{d})} q^{-\frac{1}{2}\langle\mathbf{e}, \mathbf{v}-\mathbf{e}\rangle}\left|G r_{\mathbf{e}}(V)\right| X^{-\mathbf{e}^{*-*}(\mathbf{v}-\mathbf{e})}
$$

where $G r_{\mathbf{e}}(V)$ denotes the Grassmannian of subrepresentations of V with isomorphism class \mathbf{e}.

Theorem (R.)
 The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations V of (Q, d) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda) \subset \mathcal{T}_{\Lambda, q}$

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ and write $\mathbf{v} \in \mathcal{K}(Q, \mathbf{d})$ for the dimension vector of V.

Quantum Cluster Character:

We define the quantum cluster character $V \mapsto X_{V} \in \mathcal{T}_{\Lambda, q}$ by

$$
X_{V}=\sum_{\mathbf{e} \in \mathcal{K}(Q, \mathbf{d})} q^{-\frac{1}{2}\langle\mathbf{e}, \mathbf{v}-\mathbf{e}\rangle}\left|G r_{\mathbf{e}}(V)\right| X^{-\mathbf{e}^{*}-*(\mathbf{v}-\mathbf{e})}
$$

where $G r_{\mathbf{e}}(V)$ denotes the Grassmannian of subrepresentations of V with isomorphism class \mathbf{e}.

Theorem (R.)

The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations V of (Q, \mathbf{d}) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda) \subset \mathcal{T}_{\Lambda, q}$.

- $\operatorname{rep}_{\mathbb{F}}(Q, d)\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, d)$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, \mathbf{d}\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)

Theorem (R.)

For $V \in \operatorname{rep} p_{\mathbb{F}}(Q, d)\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

$$
\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} v}
$$

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, d)\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, d\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)

Theorem (R.)

For $V \in \operatorname{rep}(Q, d)\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

$$
\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} v}
$$

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, d)\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, \mathrm{~d}\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)

Theorem (R.)

For $V \in \operatorname{rep}(Q, d)\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

$$
\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} v} .
$$

- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, \mathbf{d}\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)
- originally defined in terms of modules over an associated \mathbb{F}-species

Theorem
 For $V \in \operatorname{rep}(Q, d)\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

 $\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} V}$.- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, \mathbf{d}\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)
- originally defined in terms of modules over an associated \mathbb{F}-species

Theorem
 For $V \in \operatorname{rep}(Q, d)\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

 $\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} V}$.- $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle$ - full subcategory of $\operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ of objects without indecomposable summands isomorphic to the simple S_{k}
- $\mu_{k} Q$ - quiver obtained from Q by reversing all arrows incident on vertex k
- $\Sigma_{k}^{ \pm}: \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})\langle k\rangle \rightarrow \operatorname{rep}_{\mathbb{F}}\left(\mu_{k} Q, \mathbf{d}\right)\langle k\rangle$ - Dlab-Ringel reflection functors at a sink or source vertex k (we usually drop the ${ }^{ \pm}$from the notation)
- originally defined in terms of modules over an associated \mathbb{F}-species

Theorem (R.)

For $V \in \operatorname{rep} \mathbb{F}(Q, \mathbf{d})\langle k\rangle$ the external mutation at a sink or source vertex k can be computed via the reflection functor Σ_{k} by

$$
\tilde{\mu}_{k}\left(X_{V}\right)=X_{\Sigma_{k} v}
$$

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by mutating in direction k is given by the quantum cluster character $X_{S_{k}}$.

A cluster $\left(\mathbf{X}^{\prime}, \tilde{B}^{\prime}, \Lambda^{\prime}\right)$ is called almost acyclic if there exists a vertex k so that $\left(\mu_{k} \mathbf{X}^{\prime}, \mu_{k} \tilde{B}^{\prime}, \mu_{k} \Lambda^{\prime}\right)$ is acyclic.

Corollary

Any cluster variable of $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ in an almost acyclic cluster is given by X_{V} for some representation V which can be obtained via reflection functors from a simple representation.

Open Question: What about non-sink/non-source mutations?

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by mutating in direction k is given by the quantum cluster character $X_{S_{k}}$.

A cluster $\left(\mathbf{X}^{\prime}, \tilde{B}^{\prime}, \Lambda^{\prime}\right)$ is called almost acyclic if there exists a vertex k so that $\left(\mu_{k} \mathbf{X}^{\prime}, \mu_{k} \tilde{B}^{\prime}, \mu_{k} \Lambda^{\prime}\right)$ is acyclic.

Corollary

Any cluster variable of $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ in an almost acyclic cluster is given by X_{V} for some representation V which can be obtained via reflection functors from a simple representation.

Open Question: What about non-sink/non-source mutations?

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by mutating in direction k is given by the quantum cluster character $X_{S_{k}}$.

A cluster $\left(\mathbf{X}^{\prime}, \tilde{B}^{\prime}, \Lambda^{\prime}\right)$ is called almost acyclic if there exists a vertex k so that $\left(\mu_{k} \mathbf{X}^{\prime}, \mu_{k} \tilde{B}^{\prime}, \mu_{k} \Lambda^{\prime}\right)$ is acyclic.

Corollary

Any cluster variable of $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ in an almost acyclic cluster is given by X_{V} for some representation V which can be obtained via reflection functors from a simple representation.

Open Question: What about non-sink/non-source mutations?

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by mutating in direction k is given by the quantum cluster character $X_{S_{k}}$.

A cluster $\left(\mathbf{X}^{\prime}, \tilde{B}^{\prime}, \Lambda^{\prime}\right)$ is called almost acyclic if there exists a vertex k so that $\left(\mu_{k} \mathbf{X}^{\prime}, \mu_{k} \tilde{B}^{\prime}, \mu_{k} \Lambda^{\prime}\right)$ is acyclic.

Corollary

Any cluster variable of $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ in an almost acyclic cluster is given by X_{V} for some representation V which can be obtained via reflection functors from a simple representation.

Open Question: What about non-sink/non-source mutations?

Lemma

For any vertex k, the cluster variable obtained from the initial cluster by mutating in direction k is given by the quantum cluster character $X_{S_{k}}$.

A cluster $\left(\mathbf{X}^{\prime}, \tilde{B}_{\tilde{B}}^{\prime}, \Lambda^{\prime}\right)$ is called almost acyclic if there exists a vertex k so that $\left(\mu_{k} \mathbf{X}^{\prime}, \mu_{k} \tilde{B}^{\prime}, \mu_{k} \Lambda^{\prime}\right)$ is acyclic.

Corollary

Any cluster variable of $\mathcal{A}_{q}(\tilde{B}, \Lambda)$ in an almost acyclic cluster is given by X_{V} for some representation V which can be obtained via reflection functors from a simple representation.

Open Question: What about non-sink/non-source mutations? ...Ask Daniel Labardini-Fragoso...there appear to be obstructions...

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}_{\mathbb{F}}(Q, d)$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}_{\mathbb{F}}(Q, d)$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}(Q, d)$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}(Q, d)$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}_{\mathbb{F}}(Q, d)$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Let $V \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$.

- V is rigid if $E x t^{1}(V, V)=0$.
- V is basic if each indecomposable summand appears with multiplicity one.
- The support of V is the set $\operatorname{supp}(V)=\left\{i \in Q_{0}: V_{i} \neq 0\right\}$.
- V is sincere if $\operatorname{supp}(V)=Q_{0}$.

Local Tilting Representations:

We will call a representation $T \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ local tilting if T is basic, rigid, and the number of indecomposable summands is equal to the number of vertices in its support.

Important: the zero representation is local tilting.

Main Idea (Hubery): local tilting representations are in bijection with seeds

To make this precise we will need to recall two classical theorems on tilting in hereditary categories:

Theorem (Happel, Ringel)

Suppose T is basic and rigid. Then T is a tilting representation if and only if T has as many non-isomorphic indecomposable summands as the number of simple representations.

This allows us to restrict a local tilting representation T to the full subquiver of (Q, \mathbf{d}) on the vertices $\operatorname{supp}(T)$ where it becomes a tilting representation.

Main Idea (Hubery): local tilting representations are in bijection with seeds

To make this precise we will need to recall two classical theorems on tilting in hereditary categories:

Theorem (Happel, Ringel)
 Suppose T is basic and rigid. Then T is a tilting representation if and only if T has as many non-isomorphic indecomposable summands as the number of simple representations.

> This allows us to restrict a local tilting representation T to the full subquiver of (Q, d) on the vertices $\operatorname{supp}(T)$ where it becomes a tilting representation.

Main Idea (Hubery): local tilting representations are in bijection with seeds

To make this precise we will need to recall two classical theorems on tilting in hereditary categories:

Theorem (Happel, Ringel)

Suppose T is basic and rigid. Then T is a tilting representation if and only if T has as many non-isomorphic indecomposable summands as the number of simple representations.

> This allows us to restrict a local tilting representation T to the full subquiver of (Q, \mathbf{d}) on the vertices $\operatorname{supp}(T)$ where it becomes a tilting representation.

Main Idea (Hubery): local tilting representations are in bijection with seeds

To make this precise we will need to recall two classical theorems on tilting in hereditary categories:

Theorem (Happel, Ringel)

Suppose T is basic and rigid. Then T is a tilting representation if and only if T has as many non-isomorphic indecomposable summands as the number of simple representations.

This allows us to restrict a local tilting representation T to the full subquiver of (Q, \mathbf{d}) on the vertices $\operatorname{supp}(T)$ where it becomes a tilting representation.
$T \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ is called almost complete tilting if it contains one less than the required number of indecomposable summands.

Theorem (Happel, Unger)
 Let T be an almost complete tilting representation. If T is sincere, then there exist exactly two non-isomorphic complements to T, otherwise there is a unique complement.

We can combine this with the previous theorem to get a mutation operation for local tilting representations which will parallel the mutations in a quantum cluster algebra.
$T \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ is called almost complete tilting if it contains one less than the required number of indecomposable summands.

Theorem (Happel, Unger)

Let T be an almost complete tilting representation. If T is sincere, then there exist exactly two non-isomorphic complements to T, otherwise there is a unique complement.

We can combine this with the previous theorem to get a mutation operation for local tilting representations which will parallel the mutations in a quantum cluster algebra.
$T \in \operatorname{rep}_{\mathbb{F}}(Q, \mathbf{d})$ is called almost complete tilting if it contains one less than the required number of indecomposable summands.

Theorem (Happel, Unger)

Let T be an almost complete tilting representation. If T is sincere, then there exist exactly two non-isomorphic complements to T, otherwise there is a unique complement.

We can combine this with the previous theorem to get a mutation operation for local tilting representations which will parallel the mutations in a quantum cluster algebra.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $T=T / T_{k}$

It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $\bar{T}=T / T_{k}$

It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $\bar{T}=T / T_{k}$.
(3) If \bar{T} is a local tilting representation, i.e. $k \notin \operatorname{supp}(\bar{T})$, let $T^{\prime}=\bar{T}$
(3) Otherwise $\operatorname{supp}(\bar{T})=\operatorname{supp}(T)$ and there exists a unique compliment $T_{k}^{\prime} \not \neq T_{k}$ so that $T^{\prime}=T_{k}^{\prime} \oplus \bar{T}$ is a local tilting representation.

It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $\bar{T}=T / T_{k}$.
(1) If \bar{T} is a local tilting representation, i.e. $k \notin \operatorname{supp}(\bar{T})$, let $T^{\prime}=\bar{T}$.
(2) Otherwise supp $(\bar{T})=\operatorname{supp}(T)$ and there exists a unique compliment $T_{k}^{\prime} \not \not T_{k}$ so that $T^{\prime}=T_{k}^{\prime} \oplus \bar{T}$ is a local tilting representation.

It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $\bar{T}=T / T_{k}$.
(1) If \bar{T} is a local tilting representation, i.e. $k \notin \operatorname{supp}(\bar{T})$, let $T^{\prime}=\bar{T}$.
(2) Otherwise $\operatorname{supp}(\bar{T})=\operatorname{supp}(T)$ and there exists a unique compliment $T_{k}^{\prime} \not \not T_{k}$ so that $T^{\prime}=T_{k}^{\prime} \oplus \bar{T}$ is a local tilting representation.

> It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

Mutation of Local Tilting Representations:

Define the mutation $\mu_{k}(T)=T^{\prime}$ in direction k as follows:
(1) If vertex $k \notin \operatorname{supp}(T)$, then there exists a unique complement T_{k}^{\prime} so that $T^{\prime}=T_{k}^{\prime} \oplus T$ is a local tilting representation containing k in its support.
(2) If vertex $k \in \operatorname{supp}(T)$, then write $\bar{T}=T / T_{k}$.
(1) If \bar{T} is a local tilting representation, i.e. $k \notin \operatorname{supp}(\bar{T})$, let $T^{\prime}=\bar{T}$.
(2) Otherwise $\operatorname{supp}(\bar{T})=\operatorname{supp}(T)$ and there exists a unique compliment $T_{k}^{\prime} \not \equiv T_{k}$ so that $T^{\prime}=T_{k}^{\prime} \oplus \bar{T}$ is a local tilting representation.

It follows from results of [BMRRT] that every local tilting representation can be obtained from the zero representation by a sequence of mutations.

We assign a quantum seed $\Sigma_{T}=\left(\mathbf{X}_{T}, \tilde{B}_{T}, \Lambda_{T}\right)$ to each local tilting representation T as follows:

- $\mathbf{X}_{T}=\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)$ is given by

$$
X_{k}^{\prime}= \begin{cases}X_{k} & \text { if } k \notin \operatorname{supp}(T) ; \\ X_{T_{k}} & \text { if } k \in \operatorname{supp}(T) ;\end{cases}
$$

- The $k^{\text {th }}$ column of the exchange matrix \tilde{B}_{T} is defined homologically in terms of T and T_{k}^{*} (Hubery);
- Λ_{T} records the quasi-commutation of \mathbf{X}_{T} (explicitly given by formulas involving the Euler-Ringel form and Λ).

We assign a quantum seed $\Sigma_{T}=\left(\mathbf{X}_{T}, \tilde{B}_{T}, \Lambda_{T}\right)$ to each local tilting representation T as follows:

- $\mathbf{X}_{T}=\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)$ is given by

$$
X_{k}^{\prime}= \begin{cases}X_{k} & \text { if } k \notin \operatorname{supp}(T) \\ X_{T_{k}} & \text { if } k \in \operatorname{supp}(T)\end{cases}
$$

- The $k^{\text {th }}$ column of the exchange matrix \tilde{B}_{T} is defined homologically in terms of T and T_{k}^{*} (Hubery);
- Λ_{T} records the quasi-commutation of \mathbf{X}_{T} (explicitly given by formulas involving the Euler-Ringel form and Λ).

We assign a quantum seed $\Sigma_{T}=\left(\mathbf{X}_{T}, \tilde{B}_{T}, \Lambda_{T}\right)$ to each local tilting representation T as follows:

- $\mathbf{X}_{T}=\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)$ is given by

$$
X_{k}^{\prime}= \begin{cases}X_{k} & \text { if } k \notin \operatorname{supp}(T) \\ X_{T_{k}} & \text { if } k \in \operatorname{supp}(T)\end{cases}
$$

- The $k^{\text {th }}$ column of the exchange matrix \tilde{B}_{T} is defined homologically in terms of T and T_{k}^{*} (Hubery);
- Λ_{T} records the quasi-commutation of \mathbf{X}_{T} (explicitly given by formulas involving the Euler-Ringel form and Λ).

We assign a quantum seed $\Sigma_{T}=\left(\mathbf{X}_{T}, \tilde{B}_{T}, \Lambda_{T}\right)$ to each local tilting representation T as follows:

- $\mathbf{X}_{T}=\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)$ is given by

$$
X_{k}^{\prime}= \begin{cases}X_{k} & \text { if } k \notin \operatorname{supp}(T) \\ X_{T_{k}} & \text { if } k \in \operatorname{supp}(T)\end{cases}
$$

- The $k^{\text {th }}$ column of the exchange matrix \tilde{B}_{T} is defined homologically in terms of T and T_{k}^{*} (Hubery);
- Λ_{T} records the quasi-commutation of \mathbf{X}_{T} (explicitly given by formulas involving the Euler-Ringel form and Λ).

Two Perspectives on Mutations
L Internal Mutations
-Relationship to Quantum Cluster Algebras

Theorem (R.)

Suppose $\mu_{k}(T)=T^{\prime}$. Then Σ_{T} and $\Sigma_{T^{\prime}}$ are related by Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma
 The quantum seed associated to the zero representation is exactly the initial quantum seed ($\mathrm{X}, \tilde{B}, \wedge$)

Corollary (R.)
 The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations of (Q, d) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \wedge)$

Theorem (R.)

Suppose $\mu_{k}(T)=T^{\prime}$. Then Σ_{T} and $\Sigma_{T^{\prime}}$ are related by Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma

The quantum seed associated to the zero representation is exactly the initial quantum seed $(\mathbf{X}, \tilde{B}, \wedge)$.

Corollary (R.)

The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations of ($Q, \mathrm{~d}$) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$

Theorem (R.)

Suppose $\mu_{k}(T)=T^{\prime}$. Then Σ_{T} and $\Sigma_{T^{\prime}}$ are related by Berenstein-Zelevinsky quantum seed mutation in direction k.

Lemma

The quantum seed associated to the zero representation is exactly the initial quantum seed $(\mathbf{X}, \tilde{B}, \wedge)$.

Corollary (R.)

The quantum cluster character $V \mapsto X_{V}$ defines a bijection from indecomposable rigid representations of (Q, \mathbf{d}) to non-initial quantum cluster variables of the quantum cluster algebra $\mathcal{A}_{q}(\tilde{B}, \Lambda)$.

Thank you!

[^0]: Our Goal: Solve this problem when the principal submatrix B is acyclic. $\underset{\underline{\underline{\underline{E}}}}{ }$ のac

