Universal Deformation Rings and Fusion

David Meyer

University of Iowa

Maurice Auslander Distinguished Lectures and International Conference

Let Γ be a finite group, V an absolutely irreducible $\mathbb{F}_p\Gamma$ -module. By Mazur's work, V has a well-defined universal deformation ring $R(\Gamma, V)$ which is universal with respect to all lifts of V over complete local commutative Noetherian rings with residue field \mathbb{F}_p .

Theorem

By Mazur, if $\dim_{\mathbb{F}_{\rho}}(\mathrm{H}^{1}(\Gamma, \operatorname{Hom}_{\mathbb{F}_{\rho}}(V, V))) = r$ and $\dim_{\mathbb{F}_{\rho}}(\mathrm{H}^{2}(\Gamma, \operatorname{Hom}_{\mathbb{F}_{\rho}}(V, V))) = s$, then:

- $R(\Gamma, V) \cong \mathbb{Z}_p[\![t_1, t_2, ...t_r]\!]/I$ where r is minimal and
- *I* is an ideal whose minimal numbers of generators is bounded above by s.

General Setting

- p a prime
- G a finite p'-group
- Γ an extension of G by $N := \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$
- Assume that \mathbb{F}_p is a splitting field of G.

We have a short exact sequence

$$0 \to \mathbb{Z}/p\mathbb{Z} imes \mathbb{Z}/p\mathbb{Z} \to \Gamma \to G \cong \Gamma/N \to 1$$

- ■ ℤ/pℤ × ℤ/pℤ is a 2-dimensional 𝔽_p representation of G denoted by φ.
- **2** Let V be a 2-dimensional irreducible $\mathbb{F}_p G$ -module inflated to Γ .

Question

What is the relationship between the fusion of $N = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ in Γ and $\mathrm{H}^{2}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V))$, resp. $\mathrm{R}(\Gamma, V)$?

Cohomology

Let $\tilde{\phi}$ denote the contragredient of ϕ and let $W_{\tilde{\phi}}$ (resp. $W_{\det(\tilde{\phi})}$) denote the $\mathbb{F}_{\rho}\Gamma$ -module associated to $\tilde{\phi}$ (resp. $\det \circ (\tilde{\phi})$).

Theorem

Using the above notation, $\mathrm{H}^{2}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)) \cong [(W_{\tilde{\phi}} \otimes V^{*} \otimes V) \oplus (W_{\mathrm{deto}(\tilde{\phi})} \otimes V^{*} \otimes V)]^{\Gamma/N}.$

This result provides a way of using character theory to compute the first and second cohomology group of Γ with coefficients in $\operatorname{Hom}_{\mathbb{F}_p}(V, V)$. To prove the theorem we need the following result.

Lemma

Using the above notation, for all $i \geq 1$, $H^i(N, V^* \otimes V) \cong V^* \otimes V \otimes H^i(N, \mathbb{F}_p)$ as $\mathbb{F}_p\Gamma/N$ -modules, and $\mathrm{H}^i(\Gamma, V^* \otimes V) \cong \mathrm{H}^0(\Gamma/N, \mathrm{H}^i(N, V^* \otimes V)) \cong [\mathrm{H}^i(N, V^* \otimes V)]^{\mathcal{G}}$. Proof of the Theorem. By the lemma, $\mathrm{H}^{2}(N, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)) \cong \mathrm{Hom}_{\mathbb{F}_{p}}(V, V) \otimes \mathrm{H}^{2}(N, \mathbb{Z}/p\mathbb{Z})$ as $\mathbb{F}_{p}\Gamma/N$ -modules.

Consider the Kummer sequence $1 \to \mu_p \xrightarrow{\iota} \mathbb{C}^* \xrightarrow{p} \mathbb{C}^* \to 1$, where $\mathbb{C}^* \xrightarrow{p} \mathbb{C}^*$ denotes the map given by $z \xrightarrow{p} z^p$. We consider this sequence as a sequence of $\mathbb{Z}N$ -modules with trivial N-action.

Applying the functor $\operatorname{Hom}_{\mathbb{Z} \ \Gamma/N}(\mathbb{Z}, -)$ we obtain the long exact sequence $\dots \xrightarrow{\delta} \operatorname{H}^{1}(N, \mu_{p}) \xrightarrow{\iota_{*}} \operatorname{H}^{1}(N, \mathbb{C}^{*}) \xrightarrow{p_{*}} \operatorname{H}^{1}(N, \mathbb{C}^{*}) \xrightarrow{\delta} \operatorname{H}^{2}(N, \mu_{p}) \xrightarrow{\iota_{*}}$

 $\mathrm{H}^{2}(N,\mathbb{C}^{*}) \xrightarrow{\rho_{*}} \mathrm{H}^{2}(N,\mathbb{C}^{*}) \xrightarrow{\delta} \mathrm{H}^{3}(N,\mu_{p}) \xrightarrow{\iota_{*}} \ldots$

Since N is elementary abelian, $\operatorname{H}^{i}(N, \mathbb{C}^{*}) \xrightarrow{p_{*}} \operatorname{H}^{i}(N, \mathbb{C}^{*})$ is trivial. Thus, we get the short exact sequence of $\mathbb{F}_{p}\Gamma/N$ -modules

$$0 \to \mathrm{H}^{1}(N, \mathbb{C}^{*}) \xrightarrow{\delta} \mathrm{H}^{2}(N, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\iota_{*}} \mathrm{H}^{2}(N, \mathbb{C}^{*}) \to 0.$$

Applying the functor $\operatorname{Hom}_{\mathbb{F}_p}(V,V)\otimes -$, and taking fixed points, we obtain

$$\begin{split} &\mathrm{H}^{2}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)) \cong \\ & [\mathrm{H}^{1}(N, \mathbb{C}^{*}) \otimes \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)]^{\Gamma/N} \oplus [\mathrm{H}^{2}(N, \mathbb{C}^{*}) \otimes \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)]^{\Gamma/N}. \end{split}$$

Therefore, our result follows once we show that $\mathrm{H}^1(N, \mathbb{C}^*) \cong W_{\tilde{\phi}}$ and $\mathrm{H}^2(N, \mathbb{C}^*) \cong W_{\det{\tilde{\phi}}}$ as $\mathbb{F}_{\rho}\Gamma/N$ - modules.

Since *N* is an elementary abelian *p*-group which acts trivially on \mathbb{C}^* , $\mathrm{H}^1(N, \mathbb{C}^*) = \mathrm{Hom}(N, \mathbb{C}^*) \cong \mathrm{Hom}_{\mathbb{F}_p}(N, \mathbb{F}_p)$ as \mathbb{F}_pG -modules, which implies $\mathrm{H}^1(N, \mathbb{C}^*) \cong W_{\tilde{\phi}}$. It remains to determine the Γ/N -module structure of $\mathrm{H}^2(N, \mathbb{C}^*)$. Our result follows after a quick computation, using that $\mathrm{H}^2(N, \mathbb{C}^*) = N \wedge N$. \Box

So we have shown

Theorem

 $\mathrm{H}^{2}(\Gamma, \mathrm{Hom}_{\mathbb{F}^{p}}(V, V)) \cong [(W_{\tilde{\phi}} \otimes V^{*} \otimes V) \oplus (W_{\mathrm{deto}(\tilde{\phi})} \otimes V^{*} \otimes V)]^{\Gamma/N}.$

Additionally, we have

Corollary

Under the same hypotheses

(a)
$$\mathrm{H}^{1}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V)) = (W_{\tilde{\phi}} \otimes V^{*} \otimes V)^{\Gamma/N}$$

- (b) $\mathrm{H}^{1}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V))$ is a summand of $\mathrm{H}^{2}(\Gamma, \mathrm{Hom}_{\mathbb{F}_{p}}(V, V))$
- (c) $\dim_{\mathbb{F}_p}(\mathrm{H}^1(\Gamma, \mathrm{Hom}_{\mathbb{F}_p}(V, V))) \leq \dim_{\mathbb{F}_p}(\mathrm{H}^2(\Gamma, \mathrm{Hom}_{\mathbb{F}_p}(V, V)))$

Let N, Γ, G, ϕ be as above.

- For every irreducible F_ρG-module V, let dⁱ_V = dim_{F_ρ}(Hⁱ(Γ, Hom_{F_ρ}(V, V)) for i=1,2. Note that this number depends on φ.
- **2** We say an irreducible $\mathbb{F}_{\rho}G$ -module V_0 is **cohomologically maximal** for ϕ if $d_{V_0}^2$ is maximal among all d_V^2 . Similarly, we say an irreducible representation ρ of G over \mathbb{F}_{ρ} is **cohomologically maximal** for ϕ if ρ corresponds to a $\mathbb{F}_{\rho}G$ -module with this property.
- We call the orbits of the action φ of G on N the fusion orbits of φ. For all m ≥ 1, let F_{φ,m} be the number of fusion orbits of φ with cardinality m. Then, the sequence {F_{φ,m}}_{m≥1} is called the fusion of φ.

Main Result

We now consider the case where G is dihedral of order 2n.

Let $\operatorname{Rep}_2(G)$ be a complete set of representatives of isomorphism classes of all 2-dimensional representations of G over \mathbb{F}_p and let $\operatorname{Irr}_2(G) \subset \operatorname{Rep}_2(G)$ be the subset of isomorphism classes of irreducible 2-dimensional representations.

For ρ in $\operatorname{Irr}_2(G)$, let V_{ρ} be an irreducible \mathbb{F}_pG -module with representation ρ .

Main Theorem

Assuming the above notation, there exists a subset Ω of $\operatorname{Irr}_2(G)$, and a map of sets $T : \operatorname{Irr}_2(G) \to \operatorname{Rep}_2(G)$ such that the following is true.

(a) If *n* is odd, then $\Omega = Irr_2(G)$ and T is a bijection. If *n* is even, $\Omega = Irr_2(G) \cap T(Irr_2(G))$ and for all ψ in Ω , $|T^{-1}(\psi)| = 2$.

(b) If $\phi \in \Omega$, then the fusion of ϕ is uniquely determined by the set $\{ker(\rho) \mid \rho \in Irr_2(G) \text{ is cohomologically maximal for } \phi\} = \{ker(\rho) \mid \rho \in Irr_2(G) \text{ with } R(\Gamma, V_{\rho}) \ncong \mathbb{Z}_{\rho}\}.$

Main Result

So for ϕ in Ω , the fusion can be detected by the set $\{ker(\rho) \mid \rho \in Irr_2(G) \text{ is cohomologically maximal for } \phi\} = \{ker(\rho) \mid \rho \in Irr_2(G) \text{ with } R(\Gamma, V_{\rho}) \ncong \mathbb{Z}_p\}.$

Moreover, we have the following.

Proposition

Let $G = D_{2n}$.

- If n is odd, φ₁, φ₂ ∈ Ω. Then φ₁ and φ₂ have the same fusion if and only if T⁻¹(φ₁) and T⁻¹(φ₂) have the same kernel.
- If n is even, φ₁, φ₂ ∈ Ω. Then φ₁ and φ₂ have the same fusion if and only if {kernel of ψ: ψ ∈T⁻¹(φ₁)}={kernel of ψ: ψ ∈T⁻¹(φ₂)}.
- If φ is in Ω, then V = V_ψ is cohomologically maximal for φ if and only if T(ψ) = φ.

For $G = D_{2n}$, all 2-dim. irreducible representations are of the form:

$$r \xrightarrow{\theta_i} \begin{pmatrix} \omega^i & 0\\ 0 & \omega^{-i} \end{pmatrix}$$
, $s \xrightarrow{\theta_i} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$, For $i = 1 < \frac{n}{2}$, ω a primitve

nth root of unity in \mathbb{F}_p^* , $p \equiv 1 \mod(n)$.

Note: $\theta_i = \text{Ind}_{\langle r \rangle}^G(\chi_i)$, where χ_i is the one-dimensional representation of $\langle r \rangle$ with $\chi_i(r) = \omega^i$.

We define the map $T : Irr_2(G)$ to $Rep_2(G)$ by $T(\theta_i) = T(Ind_{\langle r \rangle}^G(\chi_i)) = Ind_{\langle r \rangle}^G(\chi_{2i})$.

Proposition

Let $G = D_{2n}$. Let Ω be as before.

If n is odd, then T : Irr₂(G) → Irr₂(G) = Ω, T a bijection, and for any φ irreducible, there exists a unique ψ = T⁻¹(φ) irreducible with d²_{Vψ} = 2. For all other V, d²_V = 1. So V_ψ is cohomologically maximal for φ.

For *n* even, then T : Irr₂(G) → Rep₁(G), and for any φ in Ω, there exist exactly two V_ψ irreducible with d²_{Vψ} = 2. For all other V, d²_V = 1. Thus, there are precisely two ψ that are cohomologically maximal for φ. These exceptional representations are exactly the elements of T⁻¹({φ}).

Using a result of Bleher, Chinburg, de Smit we can show the following.

Proposition

Let $G = D_{2n}$. Let $R = R(\Gamma, V)$, let ϕ be in Ω . Then, for V in $Irr_2(G)$, the universal deformation ring

 $\mathsf{R} = \begin{cases} \mathbb{Z}_{p} & \text{if V is not cohomologically maximal for } \phi \\ \mathbb{Z}_{p}[[t]]/(t^{2}, tp) & \text{if V is cohomologically maximal for } \phi \end{cases}$

Additionally, $R(\Gamma, V) = \mathbb{Z}_p[[t]]/(t^2, tp)$ if and only if d_V^2 is equal to two.

V is cohomologically maximal for ϕ if and only if $d_V^1 = 1$ and $d_V^2 = 2$. Otherwise, $d_V^1 = 0$ and $d_V^2 = 1$.

Fusion for Dihedral Groups

We compute the fusion for $N = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ in Γ .

$$\Gamma/N = D_{2n}, \ p \equiv 1 \pmod{n}, \ \phi = \theta_i.$$

Fusion

Elements of N are fused if and only if they are in the same ϕ orbit.

The cardinality of the orbits are as follows:

$$|Orbit((x,y))| = \begin{cases} 1, & \text{if } (x,y) = 0\\ n/\gcd(i,n), & \text{if } (x,y) \in \mathbb{F}_p^* \times \mathbb{F}_p^*, y/x \in \langle \omega^i \rangle\\ 2n/\gcd(i,n), & \text{otherwise} \end{cases}$$

Thus, fusion is determined by gcd(i, n).

Thank You!