Standard Auslander-Reiten components of a Krull-Schmidt category

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)

Maurice Auslander International Conference

Woods Hole, MA, USA April 18 - 23, 2013

• A : finite dimensional k-algebra with $\bar{k} = k$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

▲□→ ▲ □→ ▲ □→

3

A : finite dimensional k-algebra with k
= k.
mod A : category of fin dim left A-modules.

回 と く ヨ と く ヨ と

- A : finite dimensional k-algebra with $\bar{k} = k$.
- mod A : category of fin dim left A-modules.
- Want to describe maps in mod A between indecomposables.

伺 と く き と く き と

- A : finite dimensional k-algebra with $\bar{k} = k$.
- mod A : category of fin dim left A-modules.
- Want to describe maps in mod A between indecomposables.
- One introduces Auslander-Reiten quiver $arGamma_{\mathrm{mod}A}$.

直 とう きょう うちょう

- A : finite dimensional k-algebra with $\bar{k} = k$.
- mod A : category of fin dim left A-modules.
- Want to describe maps in mod A between indecomposables.
- One introduces Auslander-Reiten quiver $arGamma_{\mathrm{mod}\mathcal{A}}$.
- In general, $\Gamma_{\mathrm{mod}A}$ describes maps not in $\mathrm{rad}^\infty(\mathrm{mod}A)$.

・吊り イヨト イヨト ニヨ

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

回 と くほ と くほ とう

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

- \varGamma : component of $\varGamma_{\mathrm{mod}A}$.
- $\operatorname{add}(\Gamma)$: additive category of modules in Γ .
- $k(\Gamma)$: mesh category of Γ over k.

同 と く ヨ と く ヨ と

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

(4月) イヨト イヨト

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case 1) (R, BG) A is rep-finite with char $k \neq 2$.

・ロン ・回と ・ヨン・

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

- 1) (R, BG) A is rep-finite with $chark \neq 2$.
- 2) (Ringel) A is tame concealed or tubular.

・ロン ・回と ・ヨン ・ヨン

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

Example

- Γ is standard in case
 - 1) (R, BG) A is rep-finite with $chark \neq 2$.
 - 2) (Ringel) A is tame concealed or tubular.
 - 3) (Ringel) Γ is preprojective or preinjective.

소리가 소문가 소문가 소문가

Description of standard components in a module category

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

通 とう ほうとう ほうど

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

1) If Γ is standard, then all but finitely many τ -orbits in Γ are periodic.

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

1) If Γ is standard, then all but finitely many τ -orbits in Γ are periodic.

2) If Γ is regular and standard, then Γ is stable tube or $\Gamma \cong \mathbb{Z}\Delta$, where Δ a finite acyclic quiver.

Let \mathcal{A} additive category with $f: X \to Y$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

・日・ ・ ヨ・ ・ ヨ・

3

Let \mathcal{A} additive category with $f: X \to Y$.

向下 イヨト イヨト

Let \mathcal{A} additive category with $f: X \to Y$.

Definition

- f is source morphism provided
 - f is not section,

向下 イヨト イヨト

Let \mathcal{A} additive category with $f: X \to Y$.

Definition *f* is *source morphism* provided *f* is not section,

• any non-section $g: X \rightarrow M$ factors through f,

伺 と く き と く き と

Let \mathcal{A} additive category with $f: X \to Y$.

Definition

• f is source morphism provided

- f is not section,
- any non-section $g: X \to M$ factors through f,
- if $h: Y \to Y$ with f = hf, then h automorphism.

伺 と く き と く き と

Let \mathcal{A} additive category with $f: X \to Y$.

Definition

• f is source morphism provided

- f is not section,
- any non-section $g: X \to M$ factors through f,
- if $h: Y \to Y$ with f = hf, then h automorphism.

• In dual situation, f is sink morphism.

伺下 イヨト イヨト

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided

向下 イヨト イヨト

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided • $Y \neq 0$,

・ 同 ト ・ ヨ ト ・ ヨ ト

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided • $Y \neq 0$,

• f is source morphism, and pseudo-kernel of g,

・ 同 ト ・ ヨ ト ・ ヨ ト …

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided • $Y \neq 0$,

- f is source morphism, and pseudo-kernel of g,
- g is sink morphism, and pseudo-cokernel of f.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided • $Y \neq 0$,

- f is source morphism, and pseudo-kernel of g,
- g is sink morphism, and pseudo-cokernel of f.

REMARK. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.

- 사례가 사용가 사용가 구용

Let \mathcal{A} be Hom-finite Krull-Schmidt *k*-category.

回 と く ヨ と く ヨ と

向下 イヨト イヨト

Definition

AR-quiver $\Gamma_{\!\scriptscriptstyle\mathcal{A}}$ of \mathcal{A} is translation quiver as follows:

Definition

AR-quiver Γ_{A} of A is translation quiver as follows: • *vertices*: the non-isomorphic indecomposables in A.

伺 とう ヨン うちょう

Definition

AR-quiver Γ_{A} of A is translation quiver as follows:

- *vertices*: the non-isomorphic indecomposables in \mathcal{A} .
- arrows: given X, Y, the number of arrows $X \to Y$ is $d_{X,Y}$.

・吊り ・ヨト ・ヨト ・ヨ

Definition

AR-quiver Γ_{A} of A is translation quiver as follows:

- *vertices*: the non-isomorphic indecomposables in \mathcal{A} .
- arrows: given X, Y, the number of arrows $X \to Y$ is $d_{X,Y}$.
- *translation*: if $X \longrightarrow Y \longrightarrow Z$ almost split, then $\tau Z = X$.

Question

• How to decide a component of Γ_A is standard?

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

2

Question

- How to decide a component of Γ_A is standard?
- Are there new types of standard components?
- We consider these problems for components with a section.

伺 と く き と く き と
(日) (モン・モン・

Definition

A connected full subquiver Δ of Γ is *section* if

向下 イヨト イヨト

Definition

- A connected full subquiver Δ of Γ is *section* if
- Δ contains no oriented cycle,

向下 イヨト イヨト

Definition

- A connected full subquiver Δ of Γ is *section* if
- Δ contains no oriented cycle,
- Δ meets each au-orbit in arGamma exactly once,

Definition

- A connected full subquiver Δ of Γ is *section* if
- Δ contains no oriented cycle,
- Δ meets each au-orbit in arGamma exactly once,
- Δ is convex in Γ .

Example

Consider a *finite wing* as follows:

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Example

イロン イボン イヨン イヨン 三日

同 と く ヨ と く ヨ と

2

Construction of translation quivers with sections

Let Δ be acyclic quiver.

ヨット イヨット イヨッ

Let \varDelta be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Let \varDelta be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Let \varDelta be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

$$\mathbb{N}\Delta = <(x,i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta.$$

< 回 > < 回 > < 回 >

Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

•
$$\mathbb{N}\Delta = <(x,i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta.$$

•
$$\mathbb{N}^{-}\Delta = \langle (x, -i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta.$$

▲圖▶ ▲ 国▶ ▲ 国▶

The translation quiver $\mathbb{Z}\mathbb{A}_\infty$ is as follows:

If \mathbb{A}^+_∞ denotes a right infinite path

 $\circ \longrightarrow \circ \longrightarrow \cdots \longrightarrow \circ \longrightarrow \cdots,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

If \mathbb{A}_∞^- denotes a left infinite path

 $\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow 0,$

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

If \mathbb{A}_∞^- denotes a left infinite path

 $\cdots \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \to \circ,$

then $\mathbb{N}^-\mathbb{A}^-_\infty$ is as follows:

→ □ → → 目 → → 目 → のへで

・同 ・ ・ ヨ ・ ・ ヨ ・ ・

Let Γ be component of Γ_A with a section Δ .

Proposition

• Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Γ be component of $\Gamma_{\mathcal{A}}$ with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let Γ be component of Γ_A with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Notation

•
$$\Delta^+ = < \tau^{-n}X \mid n > 0, X \in \Delta > \subseteq \Gamma.$$

(本間) (本語) (本語)

Let Γ be component of $\Gamma_{\mathcal{A}}$ with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Notation

•
$$\Delta^+ = \langle \tau^{-n}X \mid n > 0, X \in \Delta \rangle \subseteq \Gamma.$$

• $\Delta^- = \langle \tau^nX \mid n > 0, X \in \Delta \rangle \subseteq \Gamma.$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let Γ be component of Γ_A .

・回 ・ ・ ヨ ・ ・ ヨ ・

• Let Γ be component of Γ_A .

• Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let Γ be component of Γ_A .
- Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.
- Γ is τ -periodic if every $X \in \Gamma$ is τ -periodic.

伺 と く き と く き と

• Let Γ be component of Γ_A .

- Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.
- Γ is τ -periodic if every $X \in \Gamma$ is τ -periodic.

Theorem

If Γ is stable, then Γ is τ -periodic or $\Gamma \cong \mathbb{Z}\Delta$ with Δ acyclic quiver.

回 と く ヨ と く ヨ と

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow • $\operatorname{add}(\Delta) \cong k\Delta$,

Theorem

If Δ⁺ no left-∞ path and Δ⁻ no right-∞ path, then Γ is standard ⇔
add(Δ) ≅ kΔ,
Hom_A(Δ⁺, Δ ∪ Δ⁻) = 0,

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path,

then Γ is standard \Leftrightarrow

• $\operatorname{add}(\Delta) \cong k\Delta$,

•
$$\operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta \cup \Delta^-) = 0,$$

• Hom_{\mathcal{A}} $(\Delta, \Delta^{-}) = 0.$

伺い イヨト イヨト

Let \mathcal{A} be abelian or triangulated.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

・日・ ・ ヨ・ ・ ヨ・

Let \mathcal{A} be abelian or triangulated.

Let Γ be component of Γ_A .

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Let \mathcal{A} be abelian or triangulated. Let Γ be component of $\Gamma_{\mathcal{A}}$. Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in \mathcal{A} .

Let \mathcal{A} be abelian or triangulated. Let Γ be component of $\Gamma_{\mathcal{A}}$. Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in \mathcal{A} .

Then Γ is standard $\Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta^-) = 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト …
• An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.

▲□ → ▲ □ → ▲ □ → …

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if Hom_{\mathcal{A}}(X, Y) = 0 and Hom_{\mathcal{A}}(Y, X) = 0.

向下 イヨト イヨト

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if Hom_{\mathcal{A}}(X, Y) = 0 and Hom_{\mathcal{A}}(Y, X) = 0.

Theorem

Let Γ be component of Γ_A .

向下 イヨト イヨト

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if Hom_{\mathcal{A}}(X, Y) = 0 and Hom_{\mathcal{A}}(Y, X) = 0.

Theorem

Let Γ be component of $\Gamma_{\mathcal{A}}$. If Γ is wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^{+}$, $\mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$, then

・ 同 ト ・ ヨ ト ・ ヨ ト …

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if Hom_{\mathcal{A}}(X, Y) = 0 and Hom_{\mathcal{A}}(Y, X) = 0.

Theorem

Let Γ be component of Γ_A .

If Γ is wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^+$, $\mathbb{N}^-\mathbb{A}_{\infty}^-$, then

 Γ is standard \Leftrightarrow the quasi-simple objects are orthogonal bricks.

(1日) (1日) (日)

locally finite, and

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

(本部)) (本語)) (本語)) (語)

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

P_x : indec projective representation of Q at x.

・吊り ・ヨト ・ヨト ・ヨ

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

P_x : indec projective representation of Q at x.

 I_x : indec. injective representation of Q at x.

伺下 イヨト イヨト

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).
- P_x : indec projective representation of Q at x. I_x : indec. injective representation of Q at x. $\operatorname{proj}(Q)$: additive category of the P_x , $x \in Q_0$.

・吊り ・ヨン ・ヨン ・ヨ

A representation M of Q is *finitely presented* if

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

向下 イヨト イヨト

A representation M of Q is *finitely presented* if

 \exists projective resolution

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

A representation M of Q is *finitely presented* if

 \exists projective resolution

$$0
ightarrow P_1
ightarrow P_0
ightarrow M
ightarrow 0,$$

where $P_0, P_1 \in \operatorname{proj}(Q)$.

伺 と く き と く き と

$\operatorname{rep}^+(Q)$: finitely presented representations of Q.

伺い イヨト イヨト ニヨ

$\operatorname{rep}^+(Q)$: finitely presented representations of Q.

Proposition

 $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.

(4月) (4日) (4日) 日

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

• preprojective if Γ contains some of the P_{χ} .

▲□ ▶ ▲ □ ▶ ▲ □ ▶

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if Γ contains some of the P_x .
- preinjective if Γ contains some of the I_x .

・ 同 ト ・ ヨ ト ・ ヨ ト …

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if Γ contains some of the P_{χ} .
- preinjective if Γ contains some of the I_x .
- regular if Γ contains none of the P_x , I_x .

▲□→ ▲ 国 → ▲ 国 → ……

Preprojective component and preinjective components

Theorem

Let Q connected, strongly locally finite.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

向下 イヨト イヨト

Let Q connected, strongly locally finite.

• The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.

伺 ト イヨト イヨト

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of Γ_{rep⁺(Q)} are all standard, and embed in N[−]Q^{op}.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of Γ_{rep⁺(Q)} are all standard, and embed in N[−]Q^{op}.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

・吊り ・ヨト ・ヨト ・ヨ

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of Γ_{rep⁺(Q)} are all standard, and embed in N[−]Q^{op}.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

 $\exists !$ preprojective component \mathcal{P} of which $\boldsymbol{\Delta}$ is section.

(4月) (4日) (4日) 日

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of Γ_{rep⁺(Q)} are all standard, and embed in N[−]Q^{op}.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

- $\exists !$ preprojective component \mathcal{P} of which Δ is section.
- $\Delta^- = \emptyset$ and Δ^+ no left- ∞ path.

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of Γ_{rep⁺(Q)} are all standard, and embed in N[−]Q^{op}.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

 $\exists !$ preprojective component \mathcal{P} of which Δ is section.

$${\it \Delta}^-= \emptyset$$
 and ${\it \Delta}^+$ no left- ∞ path.

$$\operatorname{add}(\varDelta)\cong kQ^{\operatorname{op}}$$
 and $\operatorname{Hom}(\varDelta^+,\varDelta)=0.$

- 本部 とくき とくき とうき

Let Q connected, infinite, strongly locally finite.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

▲□→ ▲注→ ▲注→

Let Q connected, infinite, strongly locally finite.

The regular components of Γ_{rep⁺(Q)} are wings or ZA_∞, NA⁺_∞, N⁻A⁻_∞.

- イボト イヨト - ヨ

Let Q connected, infinite, strongly locally finite.

- The regular components of Γ_{rep⁺(Q)} are wings or ZA_∞, NA⁺_∞, N⁻A⁻_∞.
- The regular components are all standard
 ⇔ Q of infinite Dynkin types A_∞, A_∞[∞], D_∞.

- 本部 とくき とくき とうき

Let Q be infinite Dynkin quiver.

・ロト ・回ト ・ヨト ・ヨト

æ

Let Q be infinite Dynkin quiver.

Γ_{rep⁺(Q)} has at most four components, at most two regular, all standard.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Q be infinite Dynkin quiver.

- Γ_{rep⁺(Q)} has at most four components, at most two regular, all standard.
- Wings, ZA_∞, NA⁺_∞, N[−]A[−]_∞ all appear in this setting.

- 本部 とくき とくき とうき

• Let Q be connected, strongly locally finite.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let Q be connected, strongly locally finite.
D^b(rep⁺(Q)) is Hom-finite, Krull-Schmidt.

伺い イヨト イヨト ニヨ

- Let Q be connected, strongly locally finite.
- $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.
- $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q , containing

伺い イヨト イヨト 三日

- Let Q be connected, strongly locally finite.
- $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.
- $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q , containing
 - the preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$.

伺い イヨト イヨト 三日
- Let Q be connected, strongly locally finite.
- $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.
- $\Gamma_{D^{b}(\operatorname{rep}^{+}(Q))}$ has a connecting component C_{Q} , containing
 - the preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$.
 - shift by -1 of all preinjective components of $\Gamma_{\mathrm{rep}^+(Q)}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Standard components in $D^b(rep^+(Q))$

Theorem

Let Q be connected, strongly locally finite.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt cat

・ 同・ ・ ヨ・ ・ ヨ・

Standard components in $D^b(rep^+(Q))$

Theorem

Let Q be connected, strongly locally finite.

• C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Standard components in $D^b(rep^+(Q))$

Theorem

Let Q be connected, strongly locally finite.

- C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- Q no infinite path $\Rightarrow C_Q \cong \mathbb{Z}Q^{\mathrm{op}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let Q be connected, strongly locally finite.

- C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- Q no infinite path $\Rightarrow C_Q \cong \mathbb{Z}Q^{\mathrm{op}}$.
- Q of infinite Dynkin type $\Rightarrow \Gamma_{D^b(rep^+(Q))}$ has at most 3 components up to shift, all standard.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be finite dimensional k-algebra.

個 と く ヨ と く ヨ と …

Let A be finite dimensional k-algebra. Let Γ be component of $\Gamma_{\text{mod}A}$.

伺 とう ヨン うちょう

Let A be finite dimensional k-algebra. Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

• If Γ has a section Δ , then it is standard $\Leftrightarrow \operatorname{Hom}_A(X, \tau Y) = 0$ for $X, Y \in \Delta$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let A be finite dimensional k-algebra. Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

- If Γ has a section Δ , then it is standard $\Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(X, \tau Y) = 0$ for $X, Y \in \Delta$.
- Γ is standard with a section ⇔ Γ is a connecting component of AR-quiver of a tilted factor algebra of A.

・ 同 ト ・ ヨ ト ・ ヨ ト