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Invariants under S,
Permutations of x4, -+, X,.

(Painter: Christian Albrecht Jensen) (Wikepedia)



Gauss’ Theorem

The subring of invariants under S, is a polynomial ring
K[xq, - ’Xn]Sn =k[o1,-+ o)

where o are the n elementary symmetric functions for
¢ =1,...,n, or the n power sums:
P[:X{+...+Xi[+...+xr[:'

Question: When is k[xy., - - -, x,] a polynomial ring?
(G afinite group of graded automorphisms.)



Shephard-Todd-Chevalley
Theorem

Let k be a field of characteristic zero.

Theorem (1954). The ring of invariants k[x;, - - -, x,]¢ under a
finite group G is a polynomial ring if and only if G is generated
by reflections.

A linear map g on V is called a reflection of V if all but one of
the eigenvalues of g are 1, i.e. dim V9 =dim V — 1.

Example: Transposition permutation matrices are reflections,
and S, is generated by reflections.



When is k[x1, X, . . ., X,] @

e A polynomial ring? Shephard-Todd-Chevalley Theorem
(1954)

e A Gorenstein ring? Watanabe’s Theorem (1974),
Stanley’s Theorem (1978) (Haa(t™") = +t™H6(t)).

Example. Let g = [ 0

_01 ] acton k|x, y|

kla, b, 1412
k[va]g:k<X27Xy9y2>EM H +t

(b2 — ac)’ (1) (1-12)2

e A complete intersection? Nakajima (1984), Gordeev
(1986)



Noncommutative Generalizations

Replace k[x1,--- , x,| by a connected graded noetherian
Artin-Schelter regular algebra A. Let k = C.

G a group of graded automorphisms of A.
Not all linear maps act on A.

Question: Under what conditions on G is A€ Artin-Schelter
regular, or AS-Gorenstein, or a “complete intersection”?

More generally, consider finite dimensional (semisimple) Hopf
algebras H acting on A.



Artin-Schelter
Gorenstein/Regular

Noetherian connected graded algebra A is Artin-Schelter
Gorenstein if:

¢ A has graded injective dimension n < oo on the left and on
the right,

o Ext),(k,A) = Extho(k,A) = 0forall i # n, and
o Ext}(k,A) = Ext}o,(k,A) = k() for some ¢.
If in addition,
¢ A has finite (graded) global dimension, and
¢ A has finite Gelfand-Kirillov dimension,
then A is called Artin-Schelter regular of dimension n.

An Artin-Schelter regular graded domain A is called a quantum
polynomial ring of dimension nif Ha(t) = (1 —t)™".



Graded automorphisms of
CQ[X$ y]

If g # £1 there are only diagonal automorphisms:
a0
9=l 0 b |
When g = =1 there also are automorphisms of the form:

0 a|.
b 0|

yxX = qxy
g(yx) = g(axy)
axby = gbyax

g:

abxy = g°abxy
¢ =1.



Noncommutative Gauss’ Theorem?

Example: S, = (g), for g = [ (1) g) } actson A = C_q[x, y|
and A%z is generated by
Pi=x+yand P, =x%+y°

(x> +y? = (x +y)>and g- xy = yx = —xy so no generators in
degree 2). The generators are NOT algebraically independent.

A%2 is NOT AS-regular (but it is a hyperplane in an AS-regular

algebra).

The transposition (1,2) is NOT a “reflection”.



Definition of “reflection”: Want AG AS-regular
All but one eigenvalue of gis 1 ~»

The trace function of g acting on A of dimension n has a pole
ofordern—1att =1, where

1
Tra(g, 1) Z trace(g|Ax )tk = N0 for g(1) # 0.

Conjecture: AC is AS-regular if and only if G is generated by
“reflections”.



Examples G =< g>on A = C_q[x,y] (yx = =xy):

e, O G
= N T 5 — T N O A A - .
(@g 0 1 ] r(g,t) D) S-regular.
(b) g = 01 Tr(g,t) = 1 AG not AS-regular
9=11 o | M&V=97% guiar:
(c)g = [0 -1 Tr(g,t) = 1 ACG AS-regular
A% = C[xy, x2 + y2].
For A = Cg,[x1,- -+, xn] the groups generated by “reflections”

are exactly the groups whose fixed rings are AS-regular rings.



What are the reflection groups?

For guantum polynomial rings they must be generated by
classical reflections and “mystic” reflections.

Example: The “binary dihedral groups” of order 4¢ generated

by
(A 0N (01
9= 11)29%2 {4 o

for A a primitive 2¢th root of unity, acts on A = C_+[x, y].

AG — C[Xy, XZf + y2€]‘



Molien’s Theorem:
Using trace functions

1

Jgrgensen-Zhang: Hja(t) = el Z Tra(g, 1)
€] et

—1

0

o1 = X2 erz, oo = Xy and ACG ~ C[O‘1,0’2].

Example (c) A =C_¢[x,y]and g = [ ?

1 2 1 1

d0-102 a1 a1+ (-7

Hua(t) =



Algebra of Covariants

Theorem (Chevalley-Serre). If G acts on A = C[xq, ..., x,] with
0; a set of n homogeneous algebraically independent
G-invariants of C[xq, ..., x|, and if | = (64, ...,6,), then A/I, as
a G-module, is isomorphic to t copies of the regular
representation of G, where

17 deg(6)
=11

(when G is generated by reflections then t = 1).




Theorem. Let A be AS-regular of GKdim A = n with Hilbert
series 1/((1 —t)"p(t)). If there are n homogeneous G-invariant
elements 6; with 8; normal in A and 6; regular on
AJ{Oy,...,0i_1), thenfor | = (04,...,0,) as a G-module, A/l is
a isomorphic to t copies of the regular representation, where

(when G is generated by reflections then t = 1).



Example 1. Binary dihedral groups on A = C_4[x, y] with
AG — C[Xy, X2€ + y2[]'

C_1[x, y]/(xy, x3¢ + y?%) is one copy of regular representation
of G.

Example 2. S, actingon A = C_[xq, ..., x,] with ; the ith
symmetric function in the {x?} — e.g. n=2

C_1[x, y]/{x® + y?,x?y?) is (2 - 4)/2 = 4 copies of the regular
representation of S..



Invariants under
Hopf Algebra Actions

Let (H, A, €, S) be a Hopf algebra and A be a Hopf-module
algebra so

h-(ab)= Y (hi-a)(h-b) and h-1s =e(h)ia

forallhe H,and all a,b € A.
The invariants of H on A are

AH.=tacA|h-a=e(h)aforall he H).

When H = k[G] and A(g) = g® g then g - (ab) = g(a)g(b).



Etingof and Walton (2013): Let H be a finite dimensional
semisimple Hopf algebra over a field of characteristic zero, and
let A be a commutative domain. If A is an H-module algebra
for an inner faithful action of H on A, then H is a group algebra.

Question: Under what conditions on H is A" an AS-regular
algebra?

When is H a “quantum reflection group”?



Kac/Masuoka’s 8-dimensional
semisimple Hopf algebra

Hg is generated by x, y, z with the following relations:

X2=y2=1, xy =yx, zx =yz,

AX)=x0x, Aly)=y®y,

]
Alz) = z(1e1+1ex+yel-yex)(ze2),

e(x)=e(y)=e(z) =1, S(x)=x7".8(y)=y"". 8(2) =z



Hs has a unique irreducible 2-dimensional representation on

Cu + Cv given by
. -1 0 . 1 0 . 0 1
0o 1) 0o -1)° 1 0/

Example 1: Let A = C(u, v)/(u? — v?).
AH = C[u?, (uv)? - (vu)?], a commutative polynomial ring.
H is “quantum reflection group” for A.

Example 2: Let A = C(u, v)/(vu — iuv). AH = C[uPv2, u? + v?],
a commutative polynomial ring.
H is “quantum reflection group” for A.



H not semisimple

The Sweedler algebra H(—1) generated by g and x

=1, x>=0, xg=—9gx

A(g)=9g®9 AKX)=gex+x®1,
€(g) =1.€(x) =0 S(g) =g, S(x) = -gx.
Then H(-1) acts on k[u, v| as
1 0
“(o %)

x+—>01
0 0)°

k[u, vIFCY = k[u, v3].



Questions:
When is A" regular?
Are the trace functions useful in understanding when H is a

“quantum reflection group”? What are the elements whose
traces determine if H is a “quantum reflection group”?



Gorenstein Invariant Subrings
Watanabe’s Theorem (1974):

If G is a finite subgroup of SL,(k) then k[xi, -, x,]% is
Gorenstein.

If A is AS-regular, when is A® AS-Gorenstein?

What is the generalization of determinant = 1?



Trace Functions and
Homological Determinant

When A is AS-regular of dimension n, then when the trace is
written as a Laurent series in t~°

Tra(g, t) = (=1)"(hdet g)~"t~¢ + higher terms
(Jing-Zhang)

Generalized Watanabe’s Theorem (Jergensen-Zhang): A€ is
AS-Gorenstein when all elements of G have homological
determinant 1.



If gisa2-cycleand A = C_q[xy ..., x,] then

1
1+ )1 —1)r2

TrA (g’ t) =

1
= (_1)nt_” + higher terms

so hdet g = 1, and for ALL groups G of n x n permutation
matrices, A® is AS-Gorenstein. Not true for commutative
polynomial ring — e.g.

Clx1, X2, X3, x4]<(1,2,3,4)>
is not Gorenstein, while
C_1[x1, X2, X3, X4]<(1,2,3,4)>

is AS-Gorenstein.



Binary Polyhedral Groups

Felix Klein (1884)

Classified the finite subgroups of SL(k), for k an algebraically
closed field of char 0, and calculated invariants k|u, v]€.



Actions of Binary Polyhedral
Groups on k[u, V]

G a finite subgroup of SL,(k)

k[u, v]% is a hypersurface ring

k[u, v]® = k[x,y, 2]/(f(x,y,2)),

a “Kleinian singularity”, of type A,D or E
(corresponding to the type of McKay quiver of
the irreducible representations of the group G).



The Homological Determinant of
a Hopf Action

Since Ext} (k, A) is 1-dimensional, the left H-action on
Ext} (k, A) defines an algebra map 7’ : H — k such that
h-e=n'(h)eforall heH.

The homological determinant hdet is equal to " o S, where S is
the antipode of H.

The homological determinant is trivial if hdet = .




Actions of Quantum
Binary Polyhedral Groups
on Quantum Planes

Find all H, a finite dimensional Hopf algebra acting on A, an
AS-regular algebra of dimension 2:
kyu, v] := k{u, v)/(vu - uv — 1?)
or  Kqlu,v] := k{u,v)/(vu - quv),
with trivial homological determinant, so that A is an H module

algebra, the action is inner faithful and preserves the grading.

Use the classification of finite Hopf quotients of the coordinate
Hopf algebra O4(SL2(k)) (Bichon-Natale, Mller, Stefan).



| AS reg alg A gldim 2

| f.d. Hopf algebra(s) H acting on A

klu, v] kI
k_1[u, v] kCnforn>2; kDop;
(kDZn)O;

D(F)° for I nonabelian

kqlu, v], qrootof 1,
Q*# 1

if U non-simple

if U simple, o(q) odd

if U simple, o(q) even,
and g* # 1

if U simple, g* = 1

kChforn>3; (Tgan);
1> (k)° - H° = ug(slz)° — 1;
1 — (k[)° = H° > upq(sh)® — 1;

1 — (k[)° = H® - upg(slp)° — 1
15 (kM)° - Ho - 2all)

kqlu, v], q not root 1

(e12—e2162))
kCp,n > 2

kylu, v]

kCs




Commutative
Complete Intersections

Theorem (Gulliksen) (1971):
Let A be a connected graded noetherian commutative algebra.
Then the following are equivalent.

@ A is isomorphic to k[x1, X2, ..., Xa]/(d4, ..., dn) for a
homogeneous regular sequence.

® The Ext-algebra Ext} (k, k) is noetherian.

® The Ext-algebra Ext}, (k, k) has finite GK-dimension.



Noncommutative
Complete Intersections

Let A be a connected graded finitely generated algebra.

© We say A is a classical complete intersection if there is a
connected graded noetherian AS regular algebra R and a
sequence of regular normal homogeneous elements
{Q4,---,Qp} of positive degree such that A is isomorphic
to R/(Q1,---,Qn).

® We say A is a complete intersection of noetherian type if
the Ext-algebra Ext) (k, k) is noetherian.

® We say A is a complete intersection of growth type if the
Ext-algebra Ext), (k, k) has finite Gelfand-Kirillov
dimension.

O We say A is a weak complete intersection if the
Ext-algebra Ext), (k, k) has subexponential growth.



Noncommutative case:

Classical C.I. C.l. of Noetherian Type

U U

C.1. of Growth Type = Weak C.I.



Noncommutative case:

Classical C.I. ¢— C.l. of Noetherian Type

U % 7 U

C.1. of Growth Type = Weak C.I.



AC a complete intersection:

Theorem: (Kac and Watanabe — Gordeev) (1982). If
C[x1....,x,]¢ is a complete intersection then G is generated
by bi-reflections (all but two eigenvalues are 1).

For an AS-regular algebra A a graded automorphism g is a
“bi-reflection” of A if

Tra(g, 1) Z trace(glAx )¢
k=0

1

(1-1)"2q(t)’
n=GKdim A, and g(1) # 0.



Example:
A€ a complete intersection

A = C_4[x,y, z] is regular of dimension 3, and

0 -1 0
g=|1 0 o0
0 0 -1

acts on it. The eigenvalues of g are —1,i,—i so g is not a
bi-reflection of A;. However,

Tra(g.t) = 1/((1 + t)2(1 = t)) = —1/t3+ higher degree terms
and g is a “bi-reflection” with hdet g = 1.

K[X,Y,Z, W]

A9 =
(W2 — (X2 1 4Y2)Z)’

a commutative complete intersection.



Invariants AG

Classical C.I. C.l. of Noetherian Type
U U
C.l. of Growth Type = Weak C.I.
U

Cyclotomic Gorenstein
Haa(t) = p(t)/a(t)

?? = generated by quasi-bireflections



Gauss’ Theorem

Invariants of C_1[x1, ..., x,] under the full Symmetric Group Sj:

Cq[x1,....x5)% and C_4[x4, ..., x,]* are classical complete
intersections.

Permutations in S, are “bi-reflections” if and only if they are
2-cycles or 3-cycles.

Theorem. Let A = k_1[x1,-- -, x,] and G be a finite subgroup of
permutations of {xq,--- , Xp}. If G is generated by

quasi-bireflections then A® is a classical complete intersection.

Question: Is the converse true?



Graded Down-up Algebras
A(a.,p).B # 0:

Theorem. Let A be a down-up algebra with 8 # 0
(v’x = ayxy + Bxy? and yx® = axyx + Bx%y)

and G be a finite subgroup of graded automorphisms of A.
Then the following are equivalent:

o ACis a growth type complete intersection.

e AG is cyclotomic Gorenstein and G is generated by
quasi-bireflections.

e AG is cyclotomic Gorenstein.

Question: Are these A€ also classical complete intersections?



Veronese Subrings
For a graded algebra A the rth Veronese A" is the subring
generated by all monomials of degree r.

If A is AS-Gorenstein of dimension n, then A" is
AS-Gorenstein if and only if r divides ¢ where
Ext) (k,A) = k(¢) (Jergensen-Zhang).

Let g = diag(4, - -- , ) for A a primitive rth root of unity;
G = (g) acts on A with A? = AG,

If the Hilbert series of A is (1 —t)™" then

Tra(g't) = ———.
ra(g'st) (- 2t)

For n > 3 the group G = (g) contains no “bi-reflections”, so
ACG = A" should not be a complete intersection.



Theorem:
Let A be noetherian connected graded algebra.

Suppose the Hilbert series of A is (1 —t)™". If
r >3 orn >3, then Han(t) is not cyclotomic.
Consequently, A" is not a complete
intersection of any type.



Auslander’s Theorem

Let G be a finite subgroup of GL,(k) that contains no
reflections, and let A = k|[x1, ..., x,|. Then the skew-group ring
A#G is isomorphic to End 46 (A) as rings.

Question: Does Auslander’s Theorem generalize to our
context?



