Invariant Theory of AS-Regular Algebras: Survey

Ellen Kirkman

V WAKE FOREST

Maurice Auslander Distinguished Lectures and International Conference

April 20, 2013

Collaborators

- Jacque Alev
- Kenneth Chan
- James Kuzmanovich
- Chelsea Walton
- James Zhang

Invariants under S_{n}
 Permutations of x_{1}, \cdots, x_{n}.

Gauss' Theorem

The subring of invariants under S_{n} is a polynomial ring

$$
k\left[x_{1}, \cdots, x_{n}\right]^{S_{n}}=k\left[\sigma_{1}, \cdots, \sigma_{n}\right]
$$

where σ_{ℓ} are the n elementary symmetric functions for $\ell=1, \ldots, n$, or the n power sums:

$$
P_{\ell}=x_{1}^{\ell}+\cdots+x_{i}^{\ell}+\cdots+x_{n}^{\ell}
$$

Question: When is $k\left[x_{1}, \cdots, x_{n}\right]^{G}$ a polynomial ring? (G a finite group of graded automorphisms.)

Shephard-Todd-Chevalley Theorem

Let k be a field of characteristic zero.
Theorem (1954). The ring of invariants $k\left[x_{1}, \cdots, x_{n}\right]^{G}$ under a finite group G is a polynomial ring if and only if G is generated by reflections.

A linear map g on V is called a reflection of V if all but one of the eigenvalues of g are 1, i.e. $\operatorname{dim} V^{g}=\operatorname{dim} V-1$.

Example: Transposition permutation matrices are reflections, and S_{n} is generated by reflections.

When is $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$:

- A polynomial ring? Shephard-Todd-Chevalley Theorem (1954)
- A Gorenstein ring? Watanabe's Theorem (1974), Stanley's Theorem (1978) ($\left.H_{A G}\left(t^{-1}\right)= \pm t^{m} H_{A^{G}}(t)\right)$.

Example. Let $g=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ act on $k[x, y]$

$$
k[x, y]^{g}=k\left\langle x^{2}, x y, y^{2}\right\rangle \cong \frac{k[a, b, c]}{\left\langle b^{2}-a c\right\rangle}, \quad H(t)=\frac{1+t^{2}}{\left(1-t^{2}\right)^{2}}
$$

- A complete intersection? Nakajima (1984), Gordeev (1986)

Noncommutative Generalizations

Replace $k\left[x_{1}, \cdots, x_{n}\right]$ by a connected graded noetherian Artin-Schelter regular algebra A. Let $k=\mathbb{C}$.
G a group of graded automorphisms of A. Not all linear maps act on A.

Question: Under what conditions on G is A^{G} Artin-Schelter regular, or AS-Gorenstein, or a "complete intersection"?

More generally, consider finite dimensional (semisimple) Hopf algebras H acting on A.

Artin-Schelter Gorenstein/Regular

Noetherian connected graded algebra A is Artin-Schelter Gorenstein if:

- A has graded injective dimension $n<\infty$ on the left and on the right,
- $\operatorname{Ext}_{A}^{i}(k, A)=\operatorname{Ext}_{A \text { op }}^{i}(k, A)=0$ for all $i \neq n$, and
- $\operatorname{Ext}_{A}^{n}(k, A) \cong \operatorname{Ext}_{A^{\text {op }}}^{n}(k, A) \cong k(\ell)$ for some ℓ.

If in addition,

- A has finite (graded) global dimension, and
- A has finite Gelfand-Kirillov dimension, then A is called Artin-Schelter regular of dimension n.

An Artin-Schelter regular graded domain A is called a quantum polynomial ring of dimension n if $H_{A}(t)=(1-t)^{-n}$.

Graded automorphisms of

$$
\mathbb{C}_{q}[x, y]
$$

If $q \neq \pm 1$ there are only diagonal automorphisms:

$$
g=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

When $q= \pm 1$ there also are automorphisms of the form:

$$
\begin{gathered}
g=\left[\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right]: \\
y x=q x y \\
g(y x)=g(q x y) \\
a x b y=q b y a x \\
a b x y=q^{2} a b x y \\
q^{2}=1
\end{gathered}
$$

Noncommutative Gauss' Theorem?

Example: $S_{2}=\langle g\rangle$, for $g=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, acts on $A=\mathbb{C}_{-1}[x, y]$ and $A^{S_{2}}$ is generated by

$$
P_{1}=x+y \text { and } P_{2}=x^{3}+y^{3}
$$

$\left(x^{2}+y^{2}=(x+y)^{2}\right.$ and $g \cdot x y=y x=-x y$ so no generators in degree 2). The generators are NOT algebraically independent. $A^{S_{2}}$ is NOT AS-regular (but it is a hyperplane in an AS-regular algebra).

The transposition $(1,2)$ is NOT a "reflection".

Definition of "reflection": Want A^{G} AS-regular

All but one eigenvalue of g is $1 \leadsto$
The trace function of g acting on A of dimension n has a pole of order $n-1$ at $t=1$, where

$$
\operatorname{Tr}_{A}(g, t)=\sum_{k=0}^{\infty} \operatorname{trace}\left(g \mid A_{k}\right) t^{k}=\frac{1}{(1-t)^{n-1} q(t)} \text { for } q(1) \neq 0
$$

Conjecture: A^{G} is AS-regular if and only if G is generated by "reflections".

$$
\text { Examples } G=<g>\text { on } A=\mathbb{C}_{-1}[x, y](y x=-x y) \text { : }
$$

(a) $g=\left[\begin{array}{cc}\epsilon_{n} & 0 \\ 0 & 1\end{array}\right], \operatorname{Tr}(g, t)=\frac{1}{(1-t)\left(1-\epsilon_{n} t\right)}, A^{G}$ AS-regular.
(b) $g=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \operatorname{Tr}(g, t)=\frac{1}{1+t^{2}}, A^{G}$ not AS-regular.
(c) $g=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], \operatorname{Tr}(g, t)=\frac{1}{(1-t)(1+t)}, A^{G}$ AS-regular.

$$
A^{G}=\mathbb{C}\left[x y, x^{2}+y^{2}\right] .
$$

For $A=\mathbb{C}_{q_{i j}}\left[x_{1}, \cdots, x_{n}\right]$ the groups generated by "reflections" are exactly the groups whose fixed rings are AS-regular rings.

What are the reflection groups?

For quantum polynomial rings they must be generated by classical reflections and "mystic" reflections.

Example: The "binary dihedral groups" of order 4ℓ generated by

$$
g_{1}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \text { and } g_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

for λ a primitive 2ℓ th root of unity, acts on $A=\mathbb{C}_{-1}[x, y]$.

$$
A^{G}=\mathbb{C}\left[x y, x^{2 \ell}+y^{2 \ell}\right] .
$$

Molien's Theorem: Using trace functions

$$
\text { Jørgensen-Zhang: } \quad H_{A G}(t)=\frac{1}{|G|} \sum_{g \in G} T_{A}(g, t)
$$

Example (c) $A=\mathbb{C}_{-1}[x, y]$ and $g=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ $\sigma_{1}=x^{2}+y^{2}, \sigma_{2}=x y$ and $A^{G} \cong \mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]$.

$$
H_{A^{G}}(t)=\frac{1}{4(1-t)^{2}}+\frac{2}{4\left(1-t^{2}\right)}+\frac{1}{4(1+t)^{2}}=\frac{1}{\left(1-t^{2}\right)^{2}} .
$$

Algebra of Covariants

Theorem (Chevalley-Serre). If G acts on $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with θ_{i} a set of n homogeneous algebraically independent G-invariants of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and if $I=\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$, then A / I, as a G-module, is isomorphic to t copies of the regular representation of G, where

$$
t=\prod_{i} \frac{\operatorname{deg}\left(\theta_{i}\right)}{|G|}
$$

(when G is generated by reflections then $t=1$).

Theorem. Let A be AS-regular of GKdim $A=n$ with Hilbert series $1 /\left((1-t)^{n} p(t)\right)$. If there are n homogeneous G-invariant elements θ_{i} with θ_{i} normal in A and θ_{i} regular on $A /\left\langle\theta_{1}, \ldots, \theta_{i-1}\right\rangle$, then for $I=\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$ as a G-module, A / I is a isomorphic to t copies of the regular representation, where

$$
t=\prod_{i} \frac{\operatorname{deg}\left(\theta_{i}\right)}{|G|(p(1))}
$$

(when G is generated by reflections then $t=1$).

Example 1. Binary dihedral groups on $A=\mathbb{C}_{-1}[x, y]$ with

$$
A^{G}=\mathbb{C}\left[x y, x^{2 \ell}+y^{2 \ell}\right] .
$$

$\mathbb{C}_{-1}[x, y] /\left(x y, x^{2 \ell}+y^{2 \ell}\right)$ is one copy of regular representation of G.

Example 2. S_{n} acting on $A=\mathbb{C}_{-1}\left[x_{1}, \ldots, x_{n}\right]$ with θ_{i} the ith symmetric function in the $\left\{x_{i}^{2}\right\}-$ e.g. $\mathrm{n}=2$
$\mathbb{C}_{-1}[x, y] /\left\langle x^{2}+y^{2}, x^{2} y^{2}\right\rangle$ is $(2 \cdot 4) / 2=4$ copies of the regular representation of S_{2}.

Invariants under Hopf Algebra Actions

Let (H, Δ, ϵ, S) be a Hopf algebra and A be a Hopf-module algebra so

$$
h \cdot(a b)=\sum\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right) \quad \text { and } \quad h \cdot 1_{A}=\epsilon(h) 1_{A}
$$

for all $h \in H$, and all $a, b \in A$.
The invariants of H on A are

$$
A^{H}:=\{a \in A \mid h \cdot a=\epsilon(h) a \text { for all } h \in H\} .
$$

When $H=k[G]$ and $\Delta(g)=g \otimes g$ then $g \cdot(a b)=g(a) g(b)$.

Etingof and Walton (2013): Let H be a finite dimensional semisimple Hopf algebra over a field of characteristic zero, and let A be a commutative domain. If A is an H-module algebra for an inner faithful action of H on A, then H is a group algebra.

Question: Under what conditions on H is A^{H} an AS-regular algebra?

When is H a "quantum reflection group"?

Kac/Masuoka's 8-dimensional semisimple Hopf algebra

H_{8} is generated by x, y, z with the following relations:

$$
\begin{gathered}
x^{2}=y^{2}=1, \quad x y=y x, \quad z x=y z \\
z y=x z, \quad z^{2}=\frac{1}{2}(1+x+y-x y) \\
\Delta(x)=x \otimes x, \quad \Delta(y)=y \otimes y \\
\Delta(z)=\frac{1}{2}(1 \otimes 1+1 \otimes x+y \otimes 1-y \otimes x)(z \otimes z) \\
\epsilon(x)=\epsilon(y)=\epsilon(z)=1, \quad S(x)=x^{-1}, S(y)=y^{-1}, S(z)=z
\end{gathered}
$$

H_{8} has a unique irreducible 2-dimensional representation on $\mathbb{C} u+\mathbb{C} v$ given by

$$
x \mapsto\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad y \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad z \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Example 1: Let $A=\mathbb{C}\langle u, v\rangle /\left\langle u^{2}-v^{2}\right\rangle$.
$A^{H}=\mathbb{C}\left[u^{2},(u v)^{2}-(v u)^{2}\right]$, a commutative polynomial ring.
H is "quantum reflection group" for A.
Example 2: Let $A=\mathbb{C}\langle u, v\rangle /\langle v u-i u v\rangle . A^{H}=\mathbb{C}\left[u^{2} v^{2}, u^{2}+v^{2}\right]$, a commutative polynomial ring.
H is "quantum reflection group" for A.

H not semisimple

The Sweedler algebra $H(-1)$ generated by g and x

$$
\begin{gathered}
g^{2}=1, \quad x^{2}=0, \quad x g=-g x \\
\Delta(g)=g \otimes g \quad \Delta(x)=g \otimes x+x \otimes 1 \\
\epsilon(g)=1, \epsilon(x)=0 \quad S(g)=g, S(x)=-g x
\end{gathered}
$$

Then $H(-1)$ acts on $k[u, v]$ as

$$
x \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad g \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
k[u, v]^{H(-1)}=k\left[u, v^{2}\right] .
$$

Questions:
When is A^{H} regular?
Are the trace functions useful in understanding when H is a "quantum reflection group"? What are the elements whose traces determine if H is a "quantum reflection group"?

Gorenstein Invariant Subrings Watanabe's Theorem (1974):

If G is a finite subgroup of $S L_{n}(k)$ then $k\left[x_{1}, \cdots, x_{n}\right]^{G}$ is Gorenstein.

If A is AS-regular, when is $A^{G} A S$-Gorenstein?

What is the generalization of determinant $=1$?

Trace Functions and Homological Determinant

When A is AS-regular of dimension n, then when the trace is written as a Laurent series in t^{-1}

$$
\operatorname{Tr}_{A}(g, t)=(-1)^{n}(\operatorname{hdet} g)^{-1} t^{-\ell}+\text { higher terms }
$$

(Jing-Zhang)
Generalized Watanabe's Theorem (Jørgensen-Zhang): A^{G} is AS-Gorenstein when all elements of G have homological determinant 1.

If g is a 2 -cycle and $A=\mathbb{C}_{-1}\left[x_{1} \ldots, x_{n}\right]$ then

$$
\begin{aligned}
& \operatorname{Tr}_{A}(g, t)=\frac{1}{\left(1+t^{2}\right)(1-t)^{n-2}} \\
& \quad=(-1)^{n} \frac{1}{t^{n}}+\text { higher terms }
\end{aligned}
$$

so hdet $g=1$, and for ALL groups G of $n \times n$ permutation matrices, A^{G} is AS-Gorenstein. Not true for commutative polynomial ring - e.g.

$$
\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\langle(1,2,3,4)\rangle}
$$

is not Gorenstein, while

$$
\mathbb{C}_{-1}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\langle(1,2,3,4)\rangle}
$$

is AS-Gorenstein.

Binary Polyhedral Groups

Felix Klein (1884)

Classified the finite subgroups of $S L_{2}(k)$, for k an algebraically closed field of char 0 , and calculated invariants $k[u, v]^{G}$.

Actions of Binary Polyhedral Groups on $k[u, v]$

G a finite subgroup of $S L_{2}(k)$

$k[u, v]^{G}$ is a hypersurface ring
$k[u, v]^{G} \cong k[x, y, z] /(f(x, y, z))$,
a "Kleinian singularity", of type A,D or E (corresponding to the type of McKay quiver of the irreducible representations of the group G).

The Homological Determinant of a Hopf Action

Since $\operatorname{Ext}_{A}^{n}(k, A)$ is 1 -dimensional, the left H-action on $\operatorname{Ext}_{A}^{n}(k, A)$ defines an algebra map $\eta^{\prime}: H \rightarrow k$ such that $h \cdot \mathbf{e}=\eta^{\prime}(h) \mathbf{e}$ for all $h \in H$.

The homological determinant hdet is equal to $\eta^{\prime} \circ S$, where S is the antipode of H.

The homological determinant is trivial if hdet $=\epsilon$.

Actions of Quantum Binary Polyhedral Groups on Quantum Planes

Find all H, a finite dimensional Hopf algebra acting on A, an AS-regular algebra of dimension 2 :

$$
\begin{aligned}
& k_{J}[u, v]:=k\langle u, v\rangle /\left(v u-u v-u^{2}\right) \\
& \text { or } \quad k_{q}[u, v]:=k\langle u, v\rangle /(v u-q u v),
\end{aligned}
$$

with trivial homological determinant, so that A is an H module algebra, the action is inner faithful and preserves the grading.

Use the classification of finite Hopf quotients of the coordinate Hopf algebra $O_{q}\left(S L_{2}(k)\right)$ (Bichon-Natale, Müller, Stefan).

AS reg alg A gldim 2	f.d. Hopf algebra(s) H acting on A
k[u,v]	$k \Gamma$
$k_{-1}[u, v]$	$k C_{n}$ for $n \geq 2 ; \quad k D_{2 n} ;$ $\left(k D_{2 n}\right)^{\circ}$; $\mathcal{D}(\tilde{\Gamma})^{\circ}$ for $\tilde{\Gamma}$ nonabelian
$k_{q}[u, v], q$ root of 1 , $q^{2} \neq 1$ if U non-simple if U simple, $o(q)$ odd if U simple, $o(q)$ even, and $q^{4} \neq 1$ if U simple, $q^{4}=1$	$\begin{aligned} & k C_{n} \text { for } n \geq 3 ; \quad\left(T_{q, \alpha, n}\right)^{\circ} ; \\ & 1 \rightarrow\left(k \tilde{)^{\circ}}\right)^{\circ} \rightarrow H^{\circ} \rightarrow \mathfrak{u}_{q}\left(\mathfrak{s I}_{2}\right)^{\circ} \rightarrow 1 ; \\ & 1 \rightarrow(k \Gamma)^{\circ} \rightarrow H^{\circ} \rightarrow \mathfrak{u}_{2, q}\left(\mathfrak{s l}_{2}\right)^{\circ} \rightarrow 1 ; \\ & 1 \rightarrow(k \Gamma)^{\circ} \rightarrow H^{\circ} \rightarrow \mathfrak{u}_{2, q}\left(\mathfrak{s l}_{2}\right)^{\circ} \rightarrow 1 \\ & 1 \rightarrow(k \Gamma)^{\circ} \rightarrow H^{\circ} \rightarrow \frac{\mathfrak{u}_{2, q}\left(\mathfrak{s l}_{2}\right)^{\circ}}{\left(e_{12}-e_{21} e_{11}^{2}\right)} \rightarrow 1 \end{aligned}$
$k_{q}[u, v], q$ not root 1	$k C_{n}, n \geq 2$
$k_{J}[u, v]$	kC_{2}

Commutative

Complete Intersections

Theorem (Gulliksen) (1971):
Let A be a connected graded noetherian commutative algebra. Then the following are equivalent.
(1) A is isomorphic to $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(d_{1}, \ldots, d_{m}\right)$ for a homogeneous regular sequence.
(2) The Ext-algebra $\operatorname{Ext}_{A}^{*}(k, k)$ is noetherian.
(3) The Ext-algebra $\operatorname{Ext}_{A}^{*}(k, k)$ has finite GK-dimension.

Noncommutative Complete Intersections

Let A be a connected graded finitely generated algebra.
(1) We say A is a classical complete intersection if there is a connected graded noetherian AS regular algebra R and a sequence of regular normal homogeneous elements $\left\{\Omega_{1}, \cdots, \Omega_{n}\right\}$ of positive degree such that A is isomorphic to $R /\left(\Omega_{1}, \cdots, \Omega_{n}\right)$.
(2) We say A is a complete intersection of noetherian type if the Ext-algebra $\mathrm{Ext}_{A}^{*}(k, k)$ is noetherian.
(3) We say A is a complete intersection of growth type if the Ext-algebra Ext ${ }_{A}^{*}(k, k)$ has finite Gelfand-Kirillov dimension.
(4) We say A is a weak complete intersection if the Ext-algebra Ext** (k, k) has subexponential growth.

Noncommutative case:

Classical C.I.

C.I. of Noetherian Type
\Downarrow
C.I. of Growth Type
\Longrightarrow
Weak C.I.

Noncommutative case:

Classical C.I.

$\Downarrow \|$
C.I. of Growth Type

C.I. of Noetherian Type

17

Weak C.I.

A^{G} a complete intersection:

Theorem: (Kac and Watanabe - Gordeev) (1982). If $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ is a complete intersection then G is generated by bi-reflections (all but two eigenvalues are 1).

For an AS-regular algebra A a graded automorphism g is a "bi-reflection" of A if

$$
\begin{gathered}
\operatorname{Tr}_{A}(g, t)=\sum_{k=0}^{\infty} \operatorname{trace}\left(g \mid A_{k}\right) t^{k} \\
=\frac{1}{(1-t)^{n-2} q(t)}
\end{gathered}
$$

$\mathrm{n}=\operatorname{GKdim} A$, and $q(1) \neq 0$.

Example:

A^{G} a complete intersection

$A=\mathbb{C}_{-1}[x, y, z]$ is regular of dimension 3 , and

$$
g=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

acts on it. The eigenvalues of g are $-1, i,-i$ so g is not a bi-reflection of A_{1}. However, $\operatorname{Tr}_{A}(g, t)=1 /\left((1+t)^{2}(1-t)\right)=-1 / t^{3}+$ higher degree terms and g is a "bi-reflection" with hdet $g=1$.

$$
A^{g} \cong \frac{k[X, Y, Z, W]}{\left\langle W^{2}-\left(X^{2}+4 Y^{2}\right) Z\right\rangle},
$$

a commutative complete intersection.

Invariants A^{G}

Classical C.I.
\Downarrow
C.I. of Growth Type
C.I. of Noetherian Type
\Downarrow

Weak C.I.
\Downarrow

Cyclotomic Gorenstein

$$
H_{A^{G}}(t)=p(t) / q(t)
$$

?? \Longrightarrow generated by quasi-bireflections

Gauss' Theorem

Invariants of $\mathbb{C}_{-1}\left[x_{1}, \ldots, x_{n}\right]$ under the full Symmetric Group S_{n} :
$\mathbb{C}_{-1}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ and $\mathbb{C}_{-1}\left[x_{1}, \ldots, x_{n}\right]^{A_{n}}$ are classical complete intersections.

Permutations in S_{n} are "bi-reflections" if and only if they are 2-cycles or 3-cycles.

Theorem. Let $A=k_{-1}\left[x_{1}, \cdots, x_{n}\right]$ and G be a finite subgroup of permutations of $\left\{x_{1}, \cdots, x_{n}\right\}$. If G is generated by quasi-bireflections then A^{G} is a classical complete intersection.

Question: Is the converse true?

Graded Down-up Algebras A $(\alpha, \beta), \beta \neq 0$:

Theorem. Let A be a down-up algebra with $\beta \neq 0$

$$
\left(y^{2} x=\alpha y x y+\beta x y^{2} \text { and } y x^{2}=\alpha x y x+\beta x^{2} y\right)
$$

and G be a finite subgroup of graded automorphisms of A. Then the following are equivalent:

- A^{G} is a growth type complete intersection.
- A^{G} is cyclotomic Gorenstein and G is generated by quasi-bireflections.
- A^{G} is cyclotomic Gorenstein.

Question: Are these A^{G} also classical complete intersections?

Veronese Subrings

For a graded algebra A the r th Veronese $A^{\langle r\rangle}$ is the subring generated by all monomials of degree r.

If A is AS-Gorenstein of dimension n, then $A^{\langle r\rangle}$ is AS-Gorenstein if and only if r divides ℓ where $\mathrm{Ext}_{A}^{n}(k, A)=k(\ell)(J ø r g e n s e n-Z h a n g)$.

Let $g=\operatorname{diag}(\lambda, \cdots, \lambda)$ for λ a primitive r th root of unity; $G=(g)$ acts on A with $A^{\langle r\rangle}=A^{G}$.

If the Hilbert series of A is $(1-t)^{-n}$ then

$$
\operatorname{Tr}_{A}\left(g^{i}, t\right)=\frac{1}{\left(1-\lambda^{i} t\right)^{n}}
$$

For $n \geq 3$ the group $G=(g)$ contains no "bi-reflections", so $A^{G}=A^{\langle r\rangle}$ should not be a complete intersection.

Theorem:
Let A be noetherian connected graded algebra.

Suppose the Hilbert series of A is $(1-t)^{-n}$. If $r \geq 3$ or $n \geq 3$, then $H_{A^{\langle r)}}(t)$ is not cyclotomic. Consequently, $A^{\langle r\rangle}$ is not a complete intersection of any type.

Auslander's Theorem

Let G be a finite subgroup of $G L_{n}(k)$ that contains no reflections, and let $A=k\left[x_{1}, \ldots, x_{n}\right]$. Then the skew-group ring $A \# G$ is isomorphic to $\operatorname{End}_{A^{G}}(A)$ as rings.

Question: Does Auslander's Theorem generalize to our context?

