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The General Idea of Support Varieties

M  V(M)

Associate to an R-module M and algebraic set in some
affine (or projective) space whose properties reflect
homological characteristics of M.

Throughout, R ring, k = k̄ , M, N f.g. R-modules.
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The Typical Situation

Let A = ⊕i≥0Ai be a commutative graded ring with Ai = 0 for i
odd. Suppose for every M there is a homomorphism of graded
algebras

ηM : A→ Ext∗R(M,M)

such that for every N and ξ ∈ Ext∗R(M,N) we have

ξ · ηM(a) = ηN(a) · ξ for every a ∈ A

Then A is called a ring of central cohomology operators.
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Support and Varieties

The cohomological support of (M,N) is

SuppA(M,N) = {p ∈ Spec A | Ext∗R(M,N)p 6= 0}

When A finitely generated over A2 with A0 = k , then the
support variety of (M,N) is

VA(M,N) = (SuppA(M,N) ∩MaxSpec A) ∪ {A≥1}

and VA(M) = VA(M, k).
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This construction fits all known classical cases where support
varieties are defined:

Group algebras kG for finite groups; A is then even part of
the cohomology ring.
Finite dimensional algebras; A is the even part of the
Hochschild cohomology ring.
Complete intersections; A is a subring of the cohomology
ring, generated by central elements of degree 2.
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Special case: complete Intersections

Now assume that Q is a local (meaning also Noetherian) ring
with maximal ideal n and residue field k , R = Q/(f ) where
f = f1, . . . , fc is a regular sequence in n2.

In this case we have

A = R[χ1, . . . , χc]

as the ring of cohomology operators , defined from the

Eisenbud operators 1980. (degχi = 2, 1 ≤ i ≤ c)

Example

For Q = k [[x , y ]], R = Q/(x2, y2), and M = k , the Eisenbud
operators are defined by ...
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A theorem of Gulliksen 1974 tells us when Ext∗R(M,N) is a
finitely generated graded module over R[χ1, . . . , χc]

Theorem
If Ext∗Q(M,N) is finitely generated over R, then Ext∗R(M,N) is a
finitely generated graded module over R[χ1, . . . , χc].
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Fact: the action of A on Ext∗R(M, k) factors through the algebra
Ā = A⊗R k = k [χ1, . . . , χc], so we have the support variety
VĀ(M). In other words

V Ā(M) = {(b1, . . . ,bc) ∈ kc |φ(b1, . . . ,bc) = 0 for all
φ ∈ AnnĀ Ext∗R(M, k)}

a closed set (cone) in kc when Ext∗R(M, k) is f.g. — e.g. Q is a
regular local ring.

Recall: ifM is finitely generated and graded over k [χ1, . . . , χc],
then bi = dimkMi grows polynomially.
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Support varieties give a nice classification of R-modules:

M ∼ N iff V Ā(M) = V Ā(N)

A courser classification is given by the complexity, i.e., the
dimension of V Ā(M):

M ∼ N iff dimV Ā(M) = dimV Ā(N)

One has
V Ā(M,N) = V Ā(M) ∩ V Ā(N)

For 0→ M1 → M2 → M3 → 0 one has

V Ā(Mr ) ⊆ V Ā(Ms) ∪ V Ā(Mt )

for {r , s, t} = {1,2,3}.
V Ā(M) = V Ā(ΩM)
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M ∼ N iff dimV Ā(M) = dimV Ā(N)
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Notes:
V Ā(M) was originally defined only for single module by
Avramov in 1989.

TorR
i (M,N) = 0 for i � 0 =⇒ V(M) ∩ V(N) = {0}— J

1997 (1995).
Fargo 1995 Avramov-Buchweitz 2000 (1998)
The realizability question: Which cones in kc are support
varieties?

Answer: all . Solved by Avramov and Jorgensen in 2000.
Further realizability ... of modules! Avramov and Jorgensen
201n.
See also Bergh 2007, and Avramov-Iyengar 2007.

V Ā(M) ∩ V Ā(N) = {0} ⇔ Ext�0
R (M,N) = 0⇔

TorR
�0(M,N) = 0⇔ Ext�0

R (N,M) = 0
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Yet there are two shortcomings of the standard definition:

It is cumbersome.
It does not easily explain the relationship between support
varieties of intermediate complete intersections
Q → R′ → R.

The solution is suggested by a theorem of Avramov and
Buchweitz (2000).
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Definition
Let R = Q/(f ) with Q regular, and V = (f )/ n(f ). Then

VR(M) = {f + n(f ) ∈ V | pdQ/(f ) M =∞}

is the support variety of M .

Theorem
VR(M) is well-defined.
VR(M) is an algebraic set (cone) in V .

V Ā(M) agrees with VR(M) ... a theorem of Avramov and
Buchweitz 2000.
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Intermediate Complete Intersections

Let W be a subspace of V = (f )/ n(f ). Choose a basis
g1 + n(f ), . . . ,gd + n(f ) of W . Then RW = Q/(g1, . . . ,gd ) is an
intermediate complete intersection

Q → RW → R

and we have

Theorem

VRW (M) = VR(M) ∩W .

Proof.

f + n(g) ∈ VRW (M)⇔ pdQ/(f ) M =∞⇔ f + n(f ) ∈ VR(M) ∩W
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Example

For c = 3, assume that VR(M) = Z(χ2
1 + χ2

2 − χ2
3).

W = 〈f1, f3〉 then VRW (M) two transverse lines.
W = 〈f2〉 then VRW (M) = {0}.
W = 〈f1 + f3〉 then VRW (M) = W .
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Theorem
Let W ⊆ V. Let M1 be an RW -module and M2 be an
RW⊥-module (both MCM). Then

VRW (M1) = VR(M1 ⊗Q M2) ∩W

and
VRW⊥

(M2) = VR(M1 ⊗Q M2) ∩W⊥

Proof uses the fact that VR(M ⊗R N) = VR(M) whenever
pdR N <∞ and TorR

i (M,N) = 0 for i > 0.
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Gives an easy proof of

Theorem
Every cone in kc is realized by an R-module of finite length.
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Theorem
Suppose that VR(M) is irreducible and VR(M) ∩W is reducible.
Then the RW -syzygies of M split.

Uses a theorem of Bergh 2007: if M is MCM, then VR(M) is
irreducible if M is indecomposable.
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THANK YOU!
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