On support varieties over complete intersections

David A. Jorgensen ${ }^{1}$ (new stuff at the end is joint with Petter Bergh ${ }^{2}$)
${ }^{1}$ University of Texas at Arlington
${ }^{2}$ NTNU, Norway
Maurice Auslander Distinguished Lectures and International Conference, 2013 Woods Hole, MA

The General Idea of Support Varieties

$$
M \rightsquigarrow \mathcal{V}(M)
$$

- Associate to an R-module M and algebraic set in some affine (or projective) space whose properties reflect homological characteristics of M.

The General Idea of Support Varieties

$$
M \rightsquigarrow \mathcal{V}(M)
$$

- Associate to an R-module M and algebraic set in some affine (or projective) space whose properties reflect homological characteristics of M.
- Throughout, R ring, $k=\bar{k}, M, N$ f.g. R-modules.

The Typical Situation

Let $A=\oplus_{i \geq 0} A^{i}$ be a commutative graded ring with $A^{i}=0$ for i odd. Suppose for every M there is a homomorphism of graded algebras

$$
\eta_{M}: A \rightarrow \operatorname{Ext}_{R}^{*}(M, M)
$$

such that for every N and $\xi \in \mathrm{Ext}_{R}^{*}(M, N)$ we have

$$
\xi \cdot \eta_{M}(a)=\eta_{N}(a) \cdot \xi \quad \text { for every } \quad a \in A
$$

The Typical Situation

Let $A=\oplus_{i \geq 0} A^{i}$ be a commutative graded ring with $A^{i}=0$ for i odd. Suppose for every M there is a homomorphism of graded algebras

$$
\eta_{M}: A \rightarrow \operatorname{Ext}_{R}^{*}(M, M)
$$

such that for every N and $\xi \in \operatorname{Ext}_{R}^{*}(M, N)$ we have

$$
\xi \cdot \eta_{M}(a)=\eta_{N}(a) \cdot \xi \quad \text { for every } \quad a \in A
$$

Then A is called a ring of central cohomology operators.

Support and Varieties

The cohomological support of (M, N) is

$$
\operatorname{Supp}_{A}(M, N)=\left\{p \in \operatorname{Spec} A \mid \operatorname{Ext}_{R}^{*}(M, N)_{p} \neq 0\right\}
$$

Support and Varieties

The cohomological support of (M, N) is

$$
\operatorname{Supp}_{A}(M, N)=\left\{p \in \operatorname{Spec} A \mid \operatorname{Ext}_{R}^{*}(M, N)_{p} \neq 0\right\}
$$

When A finitely generated over A^{2} with $A^{0}=k$, then the support variety of (M, N) is

$$
\mathcal{V}_{A}(M, N)=\left(\operatorname{Supp}_{A}(M, N) \cap \operatorname{MaxSpec} A\right) \cup\left\{A^{\geq 1}\right\}
$$

and $\mathcal{V}_{A}(M)=\mathcal{V}_{A}(M, k)$.

This construction fits all known classical cases where support varieties are defined:

This construction fits all known classical cases where support varieties are defined:

- Group algebras $k G$ for finite groups; A is then even part of the cohomology ring.

This construction fits all known classical cases where support varieties are defined:

- Group algebras $k G$ for finite groups; A is then even part of the cohomology ring.
- Finite dimensional algebras; A is the even part of the Hochschild cohomology ring.

This construction fits all known classical cases where support varieties are defined:

- Group algebras $k G$ for finite groups; A is then even part of the cohomology ring.
- Finite dimensional algebras; A is the even part of the Hochschild cohomology ring.
- Complete intersections; A is a subring of the cohomology ring, generated by central elements of degree 2.

Special case: complete Intersections

Now assume that Q is a local (meaning also Noetherian) ring with maximal ideal \mathfrak{n} and residue field $k, R=Q /(\boldsymbol{f})$ where $\boldsymbol{f}=f_{1}, \ldots, f_{c}$ is a regular sequence in \mathfrak{n}^{2}.

Special case: complete Intersections

Now assume that Q is a local (meaning also Noetherian) ring with maximal ideal \mathfrak{n} and residue field $k, R=Q /(\boldsymbol{f})$ where $\boldsymbol{f}=f_{1}, \ldots, f_{c}$ is a regular sequence in \mathfrak{n}^{2}.

In this case we have

$$
A=R\left[\chi_{1}, \ldots, \chi_{c}\right]
$$

as the ring of cohomology operators, defined from the
Eisenbud operators 1980. (deg $\chi_{i}=2,1 \leq i \leq c$)

Example

For $Q=k[[x, y]], R=Q /\left(x^{2}, y^{2}\right)$, and $M=k$, the Eisenbud operators are defined by ...

A theorem of Gulliksen 1974 tells us when $\operatorname{Ext}_{R}^{*}(M, N)$ is a finitely generated graded module over $R\left[\chi_{1}, \ldots, \chi_{c}\right]$

Theorem

If $\mathrm{Ext}_{Q}^{*}(M, N)$ is finitely generated over R, then $\operatorname{Ext}_{R}^{*}(M, N)$ is a finitely generated graded module over $R\left[\chi_{1}, \ldots, \chi_{c}\right]$.

Fact: the action of A on $\operatorname{Ext}_{R}^{*}(M, k)$ factors through the algebra $\bar{A}=A \otimes_{R} k=k\left[\chi_{1}, \ldots, \chi_{c}\right]$, so we have the support variety $V_{\bar{A}}(M)$. In other words

$$
\begin{array}{r}
\mathcal{V}_{\bar{A}}(M)=\left\{\left(b_{1}, \ldots, b_{c}\right) \in k^{c} \mid\right. \\
\mid \phi\left(b_{1}, \ldots, b_{c}\right)=0 \text { for all } \\
\left.\phi \in \operatorname{Ann}_{\bar{A}} \operatorname{Ext}_{R}^{*}(M, k)\right\}
\end{array}
$$

a closed set (cone) in k^{c} when $\operatorname{Ext}_{R}^{*}(M, k)$ is f.g. - e.g. Q is a regular local ring.

Fact: the action of A on $\operatorname{Ext}_{R}^{*}(M, k)$ factors through the algebra $\bar{A}=A \otimes_{R} k=k\left[\chi_{1}, \ldots, \chi_{c}\right]$, so we have the support variety $V_{\bar{A}}(M)$. In other words

$$
\begin{array}{r}
\mathcal{V}_{\bar{A}}(M)=\left\{\left(b_{1}, \ldots, b_{c}\right) \in k^{c} \mid\right. \\
\mid \phi\left(b_{1}, \ldots, b_{c}\right)=0 \text { for all } \\
\left.\phi \in \operatorname{Ann}_{\bar{A}} \operatorname{Ext}_{R}^{*}(M, k)\right\}
\end{array}
$$

a closed set (cone) in k^{c} when $\operatorname{Ext}_{R}^{*}(M, k)$ is f.g. - e.g. Q is a regular local ring.

Recall: if \mathcal{M} is finitely generated and graded over $k\left[\chi_{1}, \ldots, \chi_{c}\right]$, then $b_{i}=\operatorname{dim}_{k} \mathcal{M}_{i}$ grows polynomially.

Support varieties give a nice classification of R-modules:
$M \sim N$ iff $\mathcal{V}_{\bar{A}}(M)=\mathcal{V}_{\bar{A}}(N)$

Support varieties give a nice classification of R-modules:
$M \sim N$ iff $\mathcal{V}_{\bar{A}}(M)=\mathcal{V}_{\bar{A}}(N)$
A courser classification is given by the complexity, i.e., the dimension of $\mathcal{V}_{\bar{A}}(M)$:
$M \sim N \operatorname{iff} \operatorname{dim} \mathcal{V}_{\bar{A}}(M)=\operatorname{dim} \mathcal{V}_{\bar{A}}(N)$

Support varieties give a nice classification of R-modules: $M \sim N$ iff $\mathcal{V}_{\bar{A}}(M)=\mathcal{V}_{\bar{A}}(N)$

A courser classification is given by the complexity, i.e., the dimension of $\mathcal{V}_{\bar{A}}(M)$:
$M \sim N \operatorname{iff} \operatorname{dim} \mathcal{V}_{\bar{A}}(M)=\operatorname{dim} \mathcal{V}_{\bar{A}}(N)$
One has

- $\mathcal{V}_{\bar{A}}(M, N)=\mathcal{V}_{\bar{A}}(M) \cap \mathcal{V}_{\bar{A}}(N)$
- For $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ one has

$$
\mathcal{V}_{\bar{A}}\left(M_{r}\right) \subseteq \mathcal{V}_{\bar{A}}\left(M_{s}\right) \cup \mathcal{V}_{\bar{A}}\left(M_{t}\right)
$$

for $\{r, s, t\}=\{1,2,3\}$.

- $\mathcal{V}_{\bar{A}}(M)=\mathcal{V}_{\bar{A}}(\Omega M)$

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)
- The realizability question: Which cones in k^{c} are support varieties?

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)
- The realizability question: Which cones in k^{c} are support varieties?
- Answer: all . Solved by Avramov and Jorgensen in 2000.

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)
- The realizability question: Which cones in k^{c} are support varieties?
- Answer: all. Solved by Avramov and Jorgensen in 2000.
- Further realizability ... of modules! Avramov and Jorgensen 201n.

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)
- The realizability question: Which cones in k^{c} are support varieties?
- Answer: all. Solved by Avramov and Jorgensen in 2000.
- Further realizability ... of modules! Avramov and Jorgensen 201n.
- See also Bergh 2007, and Avramov-lyengar 2007.

Notes:

- $\mathcal{V}_{\bar{A}}(M)$ was originally defined only for single module by Avramov in 1989.
- $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i \gg 0 \Longrightarrow \mathcal{V}(M) \cap \mathcal{V}(N)=\{0\}-J$ 1997 (1995).
- Fargo $1995 \rightsquigarrow$ Avramov-Buchweitz 2000 (1998)
- The realizability question: Which cones in k^{c} are support varieties?
- Answer: all. Solved by Avramov and Jorgensen in 2000.
- Further realizability ... of modules! Avramov and Jorgensen 201n.
- See also Bergh 2007, and Avramov-lyengar 2007.
- $\mathcal{V}_{\bar{A}}(M) \cap \mathcal{V}_{\bar{A}}(N)=\{0\} \Leftrightarrow \operatorname{Ext}_{R}^{\gg}(M, N)=0 \Leftrightarrow$ $\operatorname{Tor}_{\gg 0}^{R}(M, N)=0 \Leftrightarrow \operatorname{Ext}_{R}^{\gg}(N, M)=0$

Yet there are two shortcomings of the standard definition:

Yet there are two shortcomings of the standard definition:

- It is cumbersome.

Yet there are two shortcomings of the standard definition:

- It is cumbersome.
- It does not easily explain the relationship between support varieties of intermediate complete intersections
$Q \rightarrow R^{\prime} \rightarrow R$.

Yet there are two shortcomings of the standard definition:

- It is cumbersome.
- It does not easily explain the relationship between support varieties of intermediate complete intersections $Q \rightarrow R^{\prime} \rightarrow R$.

The solution is suggested by a theorem of Avramov and Buchweitz (2000).

Definition

Let $R=Q /(\boldsymbol{f})$ with Q regular, and $V=(\boldsymbol{f}) / \mathfrak{n}(\boldsymbol{f})$. Then

$$
\mathcal{V}_{R}(M)=\left\{f+\mathfrak{n}(\boldsymbol{f}) \in V \mid \operatorname{pd}_{Q /(f)} M=\infty\right\}
$$

is the support variety of M.

Definition

Let $R=Q /(\boldsymbol{f})$ with Q regular, and $V=(\boldsymbol{f}) / \mathfrak{n}(\boldsymbol{f})$. Then

$$
\mathcal{V}_{R}(M)=\left\{f+\mathfrak{n}(\boldsymbol{f}) \in V \mid \operatorname{pd}_{Q /(f)} M=\infty\right\}
$$

is the support variety of M.

Theorem

- $\mathcal{V}_{R}(M)$ is well-defined.
- $\mathcal{V}_{R}(M)$ is an algebraic set (cone) in V.
$\mathcal{V}_{\bar{A}}(M)$ agrees with $\mathcal{V}_{R}(M) \ldots$ a theorem of Avramov and Buchweitz 2000.

Intermediate Complete Intersections

Let W be a subspace of $V=(\boldsymbol{f}) / \mathfrak{n}(\boldsymbol{f})$. Choose a basis $g_{1}+\mathfrak{n}(\boldsymbol{f}), \ldots, g_{d}+\mathfrak{n}(\boldsymbol{f})$ of W. Then $R_{W}=Q /\left(g_{1}, \ldots, g_{d}\right)$ is an intermediate complete intersection

$$
Q \rightarrow R_{W} \rightarrow R
$$

and we have

Intermediate Complete Intersections

Let W be a subspace of $V=(\boldsymbol{f}) / \mathfrak{n}(\boldsymbol{f})$. Choose a basis $g_{1}+\mathfrak{n}(\boldsymbol{f}), \ldots, g_{d}+\mathfrak{n}(\boldsymbol{f})$ of W. Then $R_{W}=Q /\left(g_{1}, \ldots, g_{d}\right)$ is an intermediate complete intersection

$$
Q \rightarrow R_{W} \rightarrow R
$$

and we have

Theorem

$$
\mathcal{V}_{R_{W}}(M)=\mathcal{V}_{R}(M) \cap W
$$

Intermediate Complete Intersections

Let W be a subspace of $V=(\boldsymbol{f}) / \mathfrak{n}(\boldsymbol{f})$. Choose a basis $g_{1}+\mathfrak{n}(\boldsymbol{f}), \ldots, g_{d}+\mathfrak{n}(\boldsymbol{f})$ of W. Then $R_{W}=Q /\left(g_{1}, \ldots, g_{d}\right)$ is an intermediate complete intersection

$$
Q \rightarrow R_{W} \rightarrow R
$$

and we have

Theorem

$$
\mathcal{V}_{R_{W}}(M)=\mathcal{V}_{R}(M) \cap W
$$

Proof.

$$
f+\mathfrak{n}(\boldsymbol{g}) \in \mathcal{V}_{R_{W}}(M) \Leftrightarrow \operatorname{pd}_{Q /(f)} M=\infty \Leftrightarrow f+\mathfrak{n}(\boldsymbol{f}) \in \mathcal{V}_{R}(M) \cap W
$$

Example

For $c=3$, assume that $\mathcal{V}_{R}(M)=Z\left(\chi_{1}^{2}+\chi_{2}^{2}-\chi_{3}^{2}\right)$.

- $W=\left\langle f_{1}, f_{3}\right\rangle$ then $\mathcal{V}_{R_{W}}(M)$ two transverse lines.
- $W=\left\langle f_{2}\right\rangle$ then $\mathcal{V}_{R_{W}}(M)=\{0\}$.
- $W=\left\langle f_{1}+f_{3}\right\rangle$ then $\mathcal{V}_{R_{W}}(M)=W$.

Theorem

Let $W \subseteq V$. Let M_{1} be an R_{W}-module and M_{2} be an $R_{W \perp-m o d u l e}$ (both MCM). Then

$$
\mathcal{V}_{R_{W}}\left(M_{1}\right)=\mathcal{V}_{R}\left(M_{1} \otimes_{Q} M_{2}\right) \cap W
$$

and

$$
V_{R_{W \perp}}\left(M_{2}\right)=\mathcal{V}_{R}\left(M_{1} \otimes_{Q} M_{2}\right) \cap W^{\perp}
$$

Theorem

Let $W \subseteq V$. Let M_{1} be an R_{W}-module and M_{2} be an $R_{W^{\perp}}$-module (both MCM). Then

$$
\mathcal{V}_{R_{W}}\left(M_{1}\right)=\mathcal{V}_{R}\left(M_{1} \otimes_{Q} M_{2}\right) \cap W
$$

and

$$
V_{R_{W \perp}}\left(M_{2}\right)=\mathcal{V}_{R}\left(M_{1} \otimes_{Q} M_{2}\right) \cap W^{\perp}
$$

Proof uses the fact that $\mathcal{V}_{R}\left(M \otimes_{R} N\right)=\mathcal{V}_{R}(M)$ whenever $\operatorname{pd}_{R} N<\infty$ and $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i>0$.

Gives an easy proof of

Theorem

Every cone in k^{c} is realized by an R-module of finite length.

Theorem

Suppose that $\mathcal{V}_{R}(M)$ is irreducible and $\mathcal{V}_{R}(M) \cap W$ is reducible. Then the R_{W}-syzygies of M split.

Uses a theorem of Bergh 2007: if M is MCM , then $\mathcal{V}_{R}(M)$ is irreducible if M is indecomposable.

THANK YOU!

