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Quivers with Potential

Definition (Derksen-Weyman-Zelevinsky)

A quiver with potential (QP for short) is a pair (Q,W ) where Q is a
quiver with

no loops

no 2-cycles

and W is a potential on Q, i.e., an element of

HH0(kQ) = kQ/[kQ, kQ].

Equivalently, W is a linear combination of cycles of Q considered up to
cyclic equivalence.
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The Ginzburg Algebra

The Ginzburg algebra Γ(Q,W ) of a QP (Q,W ) is the dga constructed as

follows. As a graded algebra, Γ(Q,W ) = kQ̂ where Q̂ is the quiver:

1 Start with Q (in degree 0).

2 Add reversed arrows α∗ : j → i (degree −1) for each α : i → j in Q.

3 Add loops ti (degree −2) for each vertex i of Q.

Example

1
α // 2

β // 3  1
α
((

t1

��
2

β
((

α∗
hh

t2

��
3

β∗
hh

t3

��
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The Ginzburg Algebra
Equipped with a differential d determined by:

dα = 0 for α ∈ Q1

dα∗ = ∂αW for α ∈ Q1

where ∂α : HH0(kQ)→ kQ (the cyclic partial derivative) given by

∂α(w) =
∑

w=uαv

vu

dti = ei

(∑
α∈Q1

[α, α∗]
)
ei

([x , y ] = xy − yx).
Extend to all of Γ(Q,W ) by Leibniz law:

d(xy) = d(x)y + (−1)|x |xd(y).

Example

1
α
((

t1

��
2

β
((

α∗
hh

t2

��
3

β∗
hh

t3

��
dα = dβ = dα∗ = dβ∗ = 0
dt1 = αα∗, dt3 = −β∗β
dt2 = ββ∗ − α∗α
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The Ginzburg Algebra

If Q is acyclic (e.g. Q Dynkin) HH0(kQ) = 0; hence the only potential Q
admits is the trivial one W = 0. In this situation we write ΓQ = Γ(Q,0).

For Q acyclic kQ = H0ΓQ . But what about higher degrees?

Definition

Define the weight of a path γ in Q̂ to be the number of times γ traverses
a loop ti .

Gives a weight grading on ΓQ . Descends to a grading on H∗ΓQ . Denote
the weight w component of H∗ΓQ by H∗w ΓQ .
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The Preprojective Algebra

Recall the preprojective algebra of Q is the algebra ΠQ = kQ/(ρ) where

Q is the subquiver of Q̂ consisting of arrows of weight 0.

ρ =
∑

α∈Q1
[α, α∗].

Example

1
α // 2

β // 3  1
α
((
2

β
((

α∗
hh 3

β∗
hh

ΠQ contains kQ as a subalgebra. As a (right) kQ-module it splits into a
direct sum of preprojective indecomposable modules with each isoclass
represented exactly once.

ΠQ = H∗0 ΓQ ⊂ H∗ΓQ . This inclusion is proper in general.
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The Preprojective Algebra

For Q Dynkin, we have an (covariant) involution η of ΠQ :

1 Let η̄ be the involution of the underlying graph |Q| of Q

η̄ =

{
identity map |Q| = D2n,E7,E8

unique non-trivial involution |Q| = An,D2n+1,E6

2 This determines an involution of Q by requiring η(α) : η(i)→ η(j) for
α : i → j in Q.

3 Determines an involution of kQ preserving (ρ) and so gives an
involution η of ΠQ .

Example

1 RRRR 3 RRRR
2 · · · (2n + 1)

η

##
2 · · · (2n + 1)

3

llll
1

llll
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The Preprojective Algebra

The involution η is used to construct Db(kQ) from mod kQ:

Example

Q : 1→ 2→ 3

P1 = I3

""E
EE

EE
P3[1]

$$H
HHHH

Pη(1)[1]

P2

""F
FFFF

<<xxxxx
I2

  A
AA

AA

>>}}}}}
P2[1]

%%KK
KKK

K
Pη(2)[1]

P3

??����
S2

<<yyyyy
I1

::vvvvvv
P1[1] Pη(3)[1]
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The Homology of ΓQ

Theorem (H.)

Suppose Q is Dynkin. Then there is an algebra isomorphism

H∗ΓQ
∼= Πη

Q [u]

where Πη
Q [u] is the η-twisted polynomial algebra. Moreover, under this

isomorphism, polynomial degree corresponds to weight.

As a k-vector space Πη
Q [u] = ΠQ ⊗k k[u]; the multiplication is given by

(xup) · (yuq) = xηp(y)up+q

for x , y ∈ ΠQ .
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Remark on the Proof

The proof is given by showing both H∗ΓQ and Πη
Q [u] are isomorphic to⊕

n≥0

H∗Pdg(kQ)(kQ, τ−nkQ)

where Pdg(kQ) denotes the dg category of bounded projective complexes
of kQ-modules with morphisms of arbitrary degree, and τ denotes the
Auslander-Reiten translate.

The element u ∈ Πη
Q [u] comes from the evident map kQ → kQ[1].
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The Homology of Γ(Q)

Corollary (Folklore?)

There is an isomorphism

H∗ΓQ
∼=
⊕
n≥0

F nkQ

in Db(kQ) where F = τ−[1].

Knowing H∗ΓQ is nice, but we really want ΓQ . To recapture ΓQ we need
to know an A∞-structure on H∗ΓQ .
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A∞-Algebras

Definition

An A∞-algebra is a k-module V together with “multiplications”

µn : V⊗n → V , n ≥ 1

satisfying the relations∑
n=p+q+r
q≥1,p,r≥0

(−1)p+qrµp+1+r ◦
(
1⊗p ⊗ µq ⊗ 1⊗r

)
= 0.

n=1: µ1 ◦ µ1 = 0 i.e., (V , µ1) is a chain complex

n=2: µ2 ◦ (1⊗ µ1 + µ1 ⊗ 1) = µ1 ◦ µ2

i.e., µ2 : V ⊗ V → V is a chain map.

n=3: µ2 ◦ (µ2 ⊗ 1)− µ2 ◦ (1⊗ µ2) = µ1 ◦ µ3 + µ3 ◦ dV⊗3

i.e., µ2 is associative up to a homotopy µ3

n=4: . . .
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Examples

Any ordinary associative algebra (µn = 0 for n 6= 2); Conversely, for
an A∞-algebra V with µ1 = 0, (V , µ2) is an associative algebra.

Any differential graded algebra (µn = 0 for n ≥ 2)

Any chain complex homotopy equivalent to an A∞-algebra (not true
for dgas!)

Remark

Two dgas (A, dA, µA) and (B, dB , µB) are quasi-isomorphic (as dgas) if
and only if the A∞-algebras (A, dA, µA, 0, . . . ) and (B, dB , µB , 0, . . . ) are
quasi-isomorphic (as A∞-algebras).
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Kadeishvili’s Theorem

Theorem (Kadeishvili)

Let A be a dga. Then there is a unique A∞-algebra (H∗A, µ1, µ2, . . . ) so
that:

µ1 = 0

µ2 is the usual multiplication

the map j : HA→ A given by choosing representative cycles is a
quasi-isomorphism of A∞-algebras.

The A∞-algebra H∗A above is called the minimal model of A.
Kadeishvili’s Theorem says dgas are determined (up to quiso) by their
minimal models (up to A∞-quiso).
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The Minimal for ΓQ

Recall there is an isomorphism H∗ΓQ
∼= Πη

Q [u].

Theorem (H.)

Suppose Q Dynkin and let (H∗ΓQ , 0, µ2, µ3, . . . ) be the minimal model of
ΓQ .

1 The maps µn are u-equivariant.

2 The element u ∈ µ3

(
Π⊗3

Q

)
and so H∗ΓQ is generated as an

A∞-algebra by ΠQ .

3 The higher multiplications µn = 0 for n > 3.
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Remark on Proofs

Recall
H∗ΓQ

∼=
⊕
n≥0

H∗Pdg(kQ)(kQ, τ−nkQ)

and u maps to kQ → kQ[1] under this isomorphism.

The category Pdg(kQ) of projective complexes is a dg category so
H∗Pdg(kQ) is an A∞-category. Transfers to A∞-structure on⊕

H∗Pdg(kQ)(kQ, τ−nkQ).

Proofs given by studying A∞-structure on H∗Pdg(kQ).
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Thank You!
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