On the Homology of the Ginzburg Algebra

Stephen Hermes Brandeis University, Waltham, MA

Maurice Auslander Distinguished Lectures and International Conference Woodshole, MA

April 23, 2013

Outline:

2 Relation with the Preprojective Algebra

Quivers with Potential

Definition (Derksen-Weyman-Zelevinsky)

A quiver with potential (QP for short) is a pair (Q, W) where Q is a quiver with

- no loops
- no 2-cycles

and W is a **potential** on Q, i.e., an element of

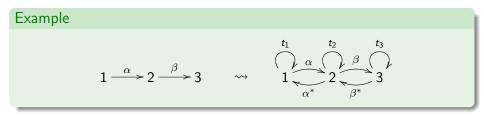
```
HH_0(kQ) = kQ/[kQ, kQ].
```

Equivalently, W is a linear combination of cycles of Q considered up to cyclic equivalence.

The Ginzburg Algebra

The **Ginzburg algebra** $\Gamma_{(Q,W)}$ of a QP (Q,W) is the dga constructed as follows. As a graded algebra, $\Gamma_{(Q,W)} = k\hat{Q}$ where \hat{Q} is the quiver:

- Start with Q (in degree 0).
- 2 Add reversed arrows $\alpha^* : j \to i$ (degree -1) for each $\alpha : i \to j$ in Q.
- Solution Add loops t_i (degree -2) for each vertex i of Q.



・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

The Ginzburg Algebra

Equipped with a differential d determined by:

• $d\alpha = 0$ for $\alpha \in Q_1$ • $d\alpha^* = \partial_{\alpha}W$ for $\alpha \in Q_1$ where $\partial_{\alpha} : HH_0(kQ) \to kQ$ (the cyclic partial derivative) given by

$$\partial_{\alpha}(w) = \sum_{w=u\alpha v} vu$$

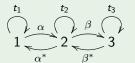
•
$$dt_i = e_i \left(\sum_{\alpha \in Q_1} [\alpha, \alpha^*] \right) e_i$$

 $([x, y] = xy - yx).$

• Extend to all of $\Gamma_{(Q,W)}$ by Leibniz law:

$$d(xy) = d(x)y + (-1)^{|x|} x d(y).$$

Example



$$d\alpha = d\beta = d\alpha^* = d\beta^* = 0$$

$$dt_1 = \alpha\alpha^*, dt_3 = -\beta^*\beta$$

$$dt_2 = \beta\beta^* - \alpha^*\alpha$$

Stephen Hermes (Brandeis University) On the Homology of the Ginzburg Algebra

The Ginzburg Algebra

If Q is acyclic (e.g. Q Dynkin) $HH_0(kQ) = 0$; hence the only potential Q admits is the trivial one W = 0. In this situation we write $\Gamma_Q = \Gamma_{(Q,0)}$.

For *Q* acyclic $kQ = H^0\Gamma_Q$. But what about higher degrees?

Definition

Define the **weight** of a path γ in \widehat{Q} to be the number of times γ traverses a loop t_i .

Gives a weight grading on Γ_Q . Descends to a grading on $H^*\Gamma_Q$. Denote the weight w component of $H^*\Gamma_Q$ by $H^*_w\Gamma_Q$.

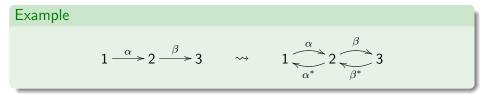
伺下 イヨト イヨト ニヨ

The Preprojective Algebra

Recall the **preprojective algebra** of Q is the algebra $\Pi_Q = k \overline{Q}/(\rho)$ where

• \overline{Q} is the subquiver of \widehat{Q} consisting of arrows of weight 0.

•
$$\rho = \sum_{\alpha \in Q_1} [\alpha, \alpha^*].$$



 Π_Q contains kQ as a subalgebra. As a (right) kQ-module it splits into a direct sum of preprojective indecomposable modules with each isoclass represented exactly once.

 $\Pi_Q = H_0^* \Gamma_Q \subset H^* \Gamma_Q$. This inclusion is proper in general.

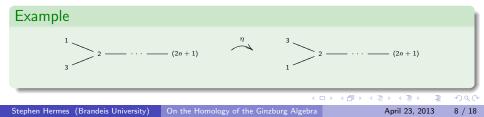
The Preprojective Algebra

For *Q* Dynkin, we have an (covariant) involution η of Π_Q :

 ${\small \textcircled{\ }}{\small \textbf{ Let }} \ \bar{\eta} \ \text{be the involution of the underlying graph } |Q| \ \text{of } Q$

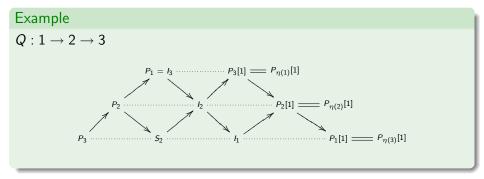
$$\bar{\eta} = \begin{cases} \text{identity map} & |Q| = D_{2n}, E_7, E_8\\ \text{unique non-trivial involution} & |Q| = A_n, D_{2n+1}, E_6 \end{cases}$$

- ② This determines an involution of \overline{Q} by requiring $\eta(\alpha) : \eta(i) \to \eta(j)$ for $\alpha : i \to j$ in \overline{Q} .
- **3** Determines an involution of $k\overline{Q}$ preserving (ρ) and so gives an involution η of Π_Q .



The Preprojective Algebra

The involution η is used to construct $\mathscr{D}^{b}(kQ)$ from mod kQ:



The Homology of Γ_Q

Theorem (H.) Suppose Q is Dynkin. Then there is an algebra isomorphism

 $H^*\Gamma_Q \cong \Pi_Q^{\eta}[u]$

where $\Pi_Q^{\eta}[u]$ is the η -twisted polynomial algebra. Moreover, under this isomorphism, polynomial degree corresponds to weight.

As a k-vector space $\Pi_Q^{\eta}[u] = \Pi_Q \otimes_k k[u]$; the multiplication is given by

$$(xu^p)\cdot(yu^q)=x\eta^p(y)u^{p+q}$$

for $x, y \in \Pi_Q$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Remark on the Proof

The proof is given by showing both $H^*\Gamma_Q$ and $\Pi^{\eta}_Q[u]$ are isomorphic to

$$\bigoplus_{n\geq 0} H^* \mathscr{P}_{dg}(kQ)(kQ, \tau^{-n}kQ)$$

where $\mathscr{P}_{dg}(kQ)$ denotes the dg category of bounded projective complexes of kQ-modules with morphisms of arbitrary degree, and τ denotes the Auslander-Reiten translate.

The element $u \in \prod_{Q}^{\eta}[u]$ comes from the evident map $kQ \to kQ[1]$.

The Homology of $\Gamma(Q)$

Corollary (Folklore?)

There is an isomorphism

$$H^*\Gamma_Q \cong \bigoplus_{n\geq 0} F^n kQ$$

in
$$\mathscr{D}^{b}(kQ)$$
 where $F = \tau^{-}[1]$.

Knowing $H^*\Gamma_Q$ is nice, but we really want Γ_Q . To recapture Γ_Q we need to know an A_∞ -structure on $H^*\Gamma_Q$.

A_{∞} -Algebras

Definition

An A_{∞} -algebra is a k-module V together with "multiplications"

$$\mu_n: V^{\otimes n} \to V, \qquad n \ge 1$$

satisfying the relations

$$\sum_{\substack{n=p+q+r\\q\geq 1,p,r\geq 0}} (-1)^{p+qr} \mu_{p+1+r} \circ \left(1^{\otimes p} \otimes \mu_q \otimes 1^{\otimes r}\right) = 0.$$

n=1:
$$\mu_1 \circ \mu_1 = 0$$
 i.e., (V, μ_1) is a chain complex
n=2: $\mu_2 \circ (1 \otimes \mu_1 + \mu_1 \otimes 1) = \mu_1 \circ \mu_2$
i.e., $\mu_2 : V \otimes V \rightarrow V$ is a chain map.
n=3: $\mu_2 \circ (\mu_2 \otimes 1) - \mu_2 \circ (1 \otimes \mu_2) = \mu_1 \circ \mu_3 + \mu_3 \circ d_{V^{\otimes 3}}$
i.e., μ_2 is associative up to a homotopy μ_3
n=4: ...

3. 3

► < Ξ ►</p>

Examples

- Any ordinary associative algebra (μ_n = 0 for n ≠ 2); Conversely, for an A_∞-algebra V with μ₁ = 0, (V, μ₂) is an associative algebra.
- Any differential graded algebra $(\mu_n = 0 \text{ for } n \ge 2)$
- Any chain complex homotopy equivalent to an A_{∞} -algebra (not true for dgas!)

Remark

Two dgas (A, d_A, μ_A) and (B, d_B, μ_B) are quasi-isomorphic (as dgas) if and only if the A_{∞} -algebras $(A, d_A, \mu_A, 0, ...)$ and $(B, d_B, \mu_B, 0, ...)$ are quasi-isomorphic (as A_{∞} -algebras).

Kadeishvili's Theorem

Theorem (Kadeishvili)

Let A be a dga. Then there is a unique A_{∞} -algebra $(H^*A, \mu_1, \mu_2, ...)$ so that:

- $\mu_1 = 0$
- μ_2 is the usual multiplication
- the map j : HA → A given by choosing representative cycles is a quasi-isomorphism of A_∞-algebras.

The A_{∞} -algebra H^*A above is called the **minimal model** of A. Kadeishvili's Theorem says dgas are determined (up to quiso) by their minimal models (up to A_{∞} -quiso).

The Minimal for Γ_Q

Recall there is an isomorphism $H^*\Gamma_Q \cong \Pi_Q^{\eta}[u]$.

Theorem (H.)

Suppose Q Dynkin and let $(H^*\Gamma_Q, 0, \mu_2, \mu_3, ...)$ be the minimal model of Γ_Q .

- **1** The maps μ_n are u-equivariant.
- **2** The element $u \in \mu_3\left(\Pi_Q^{\otimes 3}\right)$ and so $H^*\Gamma_Q$ is generated as an A_∞ -algebra by Π_Q .
- **3** The higher multiplications $\mu_n = 0$ for n > 3.

Remark on Proofs

Recall

$$H^*\Gamma_Q \cong \bigoplus_{n\geq 0} H^*\mathscr{P}_{dg}(kQ)(kQ, \tau^{-n}kQ)$$

and u maps to $kQ \rightarrow kQ[1]$ under this isomorphism.

The category $\mathscr{P}_{dg}(kQ)$ of projective complexes is a dg category so $H^*\mathscr{P}_{dg}(kQ)$ is an A_{∞} -category. Transfers to A_{∞} -structure on $\bigoplus H^*\mathscr{P}_{dg}(kQ)(kQ,\tau^{-n}kQ).$

Proofs given by studying A_{∞} -structure on $H^* \mathscr{P}_{dg}(kQ)$.

Thank You!

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯