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Quivers

A quiver is a finite oriented graph.
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Multiple edges are allowed.

No loops, no oriented cycles of length 2.

Two types of vertices: “frozen” and “mutable.”

Ignore edges connecting frozen vertices to each other.

2



Quiver mutations

Pick a mutable vertex z.

Quiver mutation µz : Q 7→ Q′ is computed in three steps.

Step 1. For each instance of x→z→y, introduce an edge x→y.

Step 2. Reverse the direction of all edges incident to z.

Step 3. Remove oriented 2-cycles.
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Mutation of Q′ at z recovers Q.
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Example: quivers associated with triangulations
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Mutations correspond to flips.
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Example: braid moves
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Other occurences of quiver mutation

• Seiberg dualities in string theory

• urban renewal transformations of planar graphs

• tropical Y -systems

• A’Campo–Gusein-Zade diagrams of morsified curve singularities

• star-triangle transformations of electric networks
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Mutation-acyclic quivers

A quiver is mutation-acyclic if it can be transformed by iterated

mutations into a quiver whose mutable part is acyclic.

Theorem 1 [A. Buan, R. Marsh, and I. Reiten, 2008]

A full subquiver of a mutation-acyclic quiver is mutation-acyclic.
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Classification of quivers of finite mutation type

A quiver has finite mutation type if its mutation equivalence class

consists of finitely many quivers (up to isomorphism).

Theorem 2 [A. Felikson, P. Tumarkin, and M. Shapiro, 2008]

Apart from 11 exceptions, a quiver has finite mutation type if

and only if its mutable part comes from a triangulated surface.
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Seeds and clusters

Let F ⊃ C be a field. A seed in F is a pair (Q, z) consisting of

• a quiver Q as above;

• an extended cluster z, a tuple of algebraically independent

(over C) elements of F labeled by the vertices of Q.

coefficient variables ←→ frozen vertices

cluster variables ←→ mutable vertices

The subset of z consisting of cluster variables is called a cluster .
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Seed mutations

Pick a mutable vertex. Let z be the corresponding cluster variable.

A seed mutation µz replaces z by the new cluster variable z′

defined by the exchange relation

z z′ =
∏

z←y
y +

∏

z→y
y .

The rest of cluster and coefficient variables remain unchanged.

Then mutate the quiver Q at the chosen vertex.
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Example: Grassmannian Gr2,N
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Ptolemy (or Grassmann–Plücker) relations:

Pac Pbd = Pbc Pad + Pab Pcd .
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Mutation dynamics on general surfaces

Seed mutations associated with flips on arbitrary triangulated

surfaces (oriented, with boundary) describe transformations of

the corresponding lambda lengths, a.k.a. Penner coordinates on

the appropriately defined decorated Teichmüller space.

See [SF–D. Thurston, arXiv:1210.5569].
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Example: chamber minors
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∆2∆13 = ∆12∆3 + ∆1∆23 .

See [SF, ICM 2010].
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Cluster algebra

The cluster algebra A(Q, z) is generated inside F by all elements

appearing in the seeds obtained from (Q, z) by iterated mutations.

(Q, z)

More precisely, we defined cluster algebras of geometric type with skew-

symmetric exchange matrices.
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Finite type classification

The classification of cluster algebras with finitely many seeds is

completely parallel to the Cartan-Killing classification.
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The Laurent phenomenon

Theorem 3 Every cluster variable in A(Q, z) is a Laurent

polynomial in the elements of z.

No “direct” description of these Laurent polynomials is known.

They are conjectured to have positive coefficients.
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The Starfish Lemma

Lemma 4 Let R be a polynomial ring. Let (Q, z) be a seed in

the field of fractions for R. Assume that

• all elements of z belong to R, and are pairwise coprime;

• all elements of clusters adjacent to z belong to R.

Then A(Q, z) ⊂ R.

Problem: Under these assumptions, give “polynomial” formulas

for all cluster variables.

Open for any cluster algebra of infinite mutation type.
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The Starfish Lemma for rings of invariants

Many important rings have a natural cluster algebra structure.

Here we focus on classical rings of invariants.

Lemma 5 Let G be a group acting on a polynomial ring R by

ring isomorphisms. Let (Q, z) be a seed in the field of fractions

for the ring of invariants RG. Assume that

• all elements of z belong to RG, and are pairwise coprime;

• all elements of clusters adjacent to z belong to RG.

Then A(Q, z) ⊂ R.

If, in addition, the set of cluster and coefficient variables for A(Q, z)

is known to contain a generating set for RG, then RG = A(Q, z).

Example: base affine space.
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Cluster structures in Grassmannians

The homogeneous coordinate ring of the Grassmannian

Grk,N = {subspaces of dimension k in C
N},

with respect to its Plücker embedding, has a standard cluster

structure, explicitly described by J. Scott [2003]. It can be ob-

tained as an application of the Starfish Lemma.

Although this cluster algebra has been extensively studied, our

understanding of it is still very limited for k ≥ 3.
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Cluster structures in classical rings of invariants

The homogeneous coordinate ring of Grk,N is isomorphic to the

ring of polynomial SLk-invariants of configurations of N vectors

in a k-dimensional complex vector space.

We anticipate natural cluster algebra structures in arbitrary rings

of SLk-invariants of collections of vectors and linear forms.

We establish this for k = 3.
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Tensors

Let V ∼= Ck. A tensor T of type (a, b) is a multilinear map

T : V ∗ × · · · × V ∗
︸ ︷︷ ︸

a copies

×V × · · · × V
︸ ︷︷ ︸

b copies

−→ C.

In coordinate notation, T is an (a+ b)-dimensional array indexed

by tuples of a “row indices” and b “column indices.”

Kronecker tensor: the standard pairing V ∗ × V → C.

Fix a volume form on V . This defines:

• the volume tensor of type (0, k);

• the dual volume tensor of type (k,0).

Contraction of tensors with respect to a pair of arguments:

a vector argument and a covector argument.
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SL(V ) invariants

The action of SL(V ) on (V ∗)a × V b defines the ring

Ra,b(V ) = C[(V ∗)a × V b]SL(V )

of SL(V )-invariant polynomial functions of a covariant and

b contravariant arguments.

First Fundamental Theorem of Invariant Theory

Theorem 6 (H. Weyl, 1930s) The ring Ra,b(V ) is generated by

the following SL(V )-invariant multilinear polynomials (tensors):

• the Plücker coordinates (volumes of k-tuples of vectors);

• the dual Plücker coordinates (volumes of k-tuples of covectors);

• the pairings of vectors with covectors.
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Signatures

We distinguish between incarnations of Ra,b(V ) that use different

orderings of the contravariant and covariant arguments.

A signature is a binary word encoding such an ordering:

covector arguments ◦

vector arguments •

Rσ(V )
def
= {SL(V ) invariants of signature σ}

R◦••(V ) ∼= R•◦•(V ) ∼= R••◦(V ) ∼= R1,2(V )

(signatures of type (1,2))
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Tensor diagrams

From now on: k = 3, V ∼= C
3.

Tensor diagrams are built using three types of building blocks

which correspond to the three families of Weyl’s generators:
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At trivalent vertices, a cyclic ordering must be specified.
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Operations on invariants and tensor diagrams

invariants tensor diagrams

addition formal sum

multiplication superposition

contraction plugging in

restitution clasping of endpoints

polarization unclasping
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Assembling a tensor diagram
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Tensor diagram D of signature [• • • ◦] of type (1,3)

representing an invariant [D] of multidegree (1,2,1,1)
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Different tensor diagrams may define the same invariant

=
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Skein relations
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+ two relations involving a vertex on the boundary
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Webs

(after G. Kuperberg [1996])

Planar tensor diagrams are called webs.

More precisely, a web of signature σ is a planar tensor diagram

drawn inside a convex (a+b)-gon whose vertices have been colored

according to σ. The cyclic ordering at each vertex is clockwise.

An invariant [D] associated with a web D with no multiple edges

and no internal 4-cycles is called a web invariant.
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The web basis

Theorem 7 (G. Kuperberg) Web invariants of signature σ form

a linear basis in the ring of invariants Rσ(V ).
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Towards a cluster structure in Rσ(V )

Fix a non-alternating signature σ of type (a, b) with a + b ≥ 6.

Goal: construct a cluster algebra structure in Rσ(V ).

Idea: describe a family of “special” seeds defining such a structure.

Step 1: Describe cluster variables appearing in these seeds.

Step 2: Explain how they group into clusters.

Step 3: Define the associated quivers.

Step 4: Verify the conditions of the Starfish Lemma.

Step 5: Check that all special seeds are mutation equivalent.

Step 6: Check that all Weyl generators appear.
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Coefficient variables
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Special seed associated to a triangulation
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All cluster and coefficient variables appearing in these special

seeds are web invariants.
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Quiver associated with a triangulation
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Main theorem

Theorem 8 Our construction defines a cluster structure on the

ring of invariants Rσ(V ). This cluster structure does not depend

on the choice of a triangulation T .

Each seed in Rσ(V ) has 2(a + b) − 8 cluster variables and a + b

coefficient variaables.
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Cluster types of Rσ(V )

a + b = 6 a + b = 7

a = 0 • • • • • • D4 • • • • • • • E6

a = 1 • • • • • ◦ A4 • • • • • • ◦ E6

a = 2 • • • • ◦ ◦ A4

• • • ◦ • ◦ A4

• • ◦ • • ◦ A2⊔A2

• • • • • ◦ ◦ D6

• • • • ◦ • ◦ D
(1)
5

• • • ◦ • • ◦ D6

a = 3 • • • ◦ ◦ ◦ D4

• • ◦ • ◦ ◦ A3⊔A1

• • • • ◦ ◦ ◦ E6

• • • ◦ ◦ • ◦ E6

• • ◦ • • ◦ ◦ D6

• • ◦ • ◦ • ◦ -

-
6

*
Y -
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Cluster types of Rσ(V ), a + b = 8

a = 0 a = 3

• • • • • • • • E8

a = 1

• • • • • • • ◦ E
(1)
7

• • • • • ◦ ◦ ◦ E8

• • • • ◦ ◦ • ◦ T433

• • • ◦ ◦ • • ◦ E8

• • • ◦ • ◦ • ◦ T433

• • ◦ • • ◦ • ◦

a = 2 a = 4

• • • • • • ◦ ◦ E8

• • • • • ◦ • ◦ T433

• • • • ◦ • • ◦ T433

• • • ◦ • • • ◦ E8

• • • • ◦ ◦ ◦ ◦ E
(1)
7

• • • ◦ ◦ ◦ • ◦ E
(1)
7

• • • ◦ ◦ • ◦ ◦ E
(1)
7

• • ◦ ◦ • • ◦ ◦ D8

• • ◦ ◦ • ◦ • ◦

• • ◦ • ◦ ◦ • ◦
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Functoriality

Let σ and σ′ be two non-alternating signatures related in one of

the two ways shown below:

σ = · · · • • ◦ • • ◦ • ◦ ◦ · · ·

↓
σ′ = · · · • • ◦ • ◦ • ◦ ◦ · · ·

σ = · · · • • ◦ • • • ◦ • ◦ ◦ · · ·

↓
σ′ = · · · • • ◦ • ◦ ◦ • ◦ ◦ · · ·

Then Rσ′(V ) is naturally identified with a subring of Rσ(V ):

Theorem 9 Rσ′(V ) is a cluster subalgebra of Rσ(V ).
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Grassmannians, revisited

Theorem 10 The canonical isomorphism between R0,N(V ) and

the homogeneous coordinate ring of the Grassmannian Gr3,N

identifies the cluster algebra structure described above with the

standard cluster structure in the Grassmannian.
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Grassmannians Gr3,N of finite cluster type

Non-Plücker cluster variables in R0,N(V ), for N ∈ {6,7,8}.

40



Main conjectures

Conjecture 11 All cluster variables are web invariants.

Conjecture 12 Cluster variables lie in the same cluster if and

only if their product is a web invariant.

Conjecture 13 Given a finite collection of distinct web invari-

ants, if the product of any two of them is a web invariant, then

so is the product of all of them.
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Cluster monomials

Given a cluster algebra, a cluster monomial is a monomial in the

elements of any extended cluster.

Theorem 14 [G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso,

and P.-G. Plamondon, 2012]. For cluster algebras defined by

quivers, cluster monomials are linearly independent.

Tantalizing problem: construct an additive basis containing all

cluster monomials. Solutions are only known in special cases:

• acyclic quivers [H. Nakajima et al.];

• surface quivers [G. Musiker, R. Schiffler, L. Williams];

• rank 2 quivers [A. Zelevinsky et al.].

Conjecture 15 In the cluster algebra Rσ(V ), Kuperberg’s web

basis contains all cluster monomials.
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Strong positivity conjecture

Conjecture 16 Any cluster algebra has a basis that includes all

cluster monomials and has nonnegative structure constants.

Conjecture 16 implies Laurent positivity.

Conjecture 16 suggests the existence of a monoidal categorification

[B. Leclerc–D. Hernandez, H. Nakajima, Y. Kimura–F. Qin].

For some choices of σ, some structure constants for the web

basis are negative. · ·
⌢

M. Khovanov and G. Kuperberg [1999]: the web basis is generally

different from G. Lusztig’s dual canonical basis.

It may however coincide with the dual semicanonical basis. · ·
⌣
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Which web invariants are cluster variables?

Conjecture 17 A web invariant is a cluster or coefficient variable

if and only if it can be given by a tree tensor diagram.

Theorem 18 If a tensor diagram D is a planar tree, then [D] is

a cluster or coefficient variable in Rσ(V ).

Our arborization algorithm conjecturally determines whether a

given web invariant can be given by a tree (resp., forest).
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Arborization algorithm
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