Counting Moduli of Quiver Representations with Relations

Jiarui Fei
University of California, Riverside

April 21, 2013

Quiver with Relations

Fix a set R of homogeneous elements in $k Q$ with respect to the bigrading: $k Q=\bigoplus_{v, w \in Q_{0}} v k Q w$. If $M(r)=0$ for all $r \in R$, then we say M is a representation of Q with relations R. The path algebra of Q with relations R is the quotient algebra $A:=k Q /\langle R\rangle$. A representation of Q with relations R naturally becomes an A-module.

Quiver with Relations

Fix a set R of homogeneous elements in $k Q$ with respect to the bigrading: $k Q=\bigoplus_{v, w \in Q_{0}} v k Q w$. If $M(r)=0$ for all $r \in R$, then we say M is a representation of Q with relations R. The path algebra of Q with relations R is the quotient algebra $A:=k Q /\langle R\rangle$. A representation of Q with relations R naturally becomes an A-module.

The assignment $M \mapsto M(r)$ defines a polynomial map $e v(r): \operatorname{Rep}_{\alpha}(Q) \rightarrow \operatorname{Hom}\left(k^{\alpha(t r)}, k^{\alpha(h r)}\right)$, which is represented by an $\alpha(h r) \times \alpha($ tr $)$ matrix with entries in $k\left[\operatorname{Rep}_{\alpha}(Q)\right]$. Let $\tilde{R} \subseteq k\left[\operatorname{Rep}_{\alpha}(Q)\right]$ be the ideal generated by the entries of all $\operatorname{ev}(r)$ for which $r \in R$. The representation space $\operatorname{Rep}_{\alpha}(A)$ is the scheme $\operatorname{Spec}\left(k\left[\operatorname{Rep}_{\alpha}(Q)\right] / \tilde{R}\right)$.

One-point Extensions from Quivers

Let E be a representation of Q. The one-point extension of Q by E is the triangular algebra $k Q[E]:=\left(\begin{array}{cc}k Q & 0 \\ E & k\end{array}\right)$.

One-point Extensions from Quivers

Let E be a representation of Q. The one-point extension of Q by E is the triangular algebra $k Q[E]:=\left(\begin{array}{cc}k Q & 0 \\ E & k\end{array}\right)$.

Suppose that E is presented by $0 \rightarrow P_{1} \xrightarrow{D} P_{0} \rightarrow E \rightarrow 0$ with $P_{1}=\oplus_{v} b_{v}^{1} P_{v}$ and $P_{0}=\oplus_{v} b_{v}^{0} P_{v}$. Then the algebra $A=k Q[E]$ can be presented by a new quiver $Q(E)$, which is obtained from Q by adjoining a new vertex "-" and for each P_{v} in P_{0} a new arrow from " - " to the vertex v. The relations are clearly given by the matrix D.
The one-point coextension $k Q^{\circ}[E]:=\left(\begin{array}{cc}k & 0 \\ E^{*} & k Q\end{array}\right)$ can be similarly described using injective presentation of E. By convention, the newly adjoined vertex is denoted by " + ".

Examples of One-point Extensions

Consider the quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$ with relation $a b=0$. The corresponding algebra A is one-point-(co)extended from the Dynkin quiver A_{2} by the simple S_{2}, because $0 \rightarrow P_{3} \xrightarrow{b} P_{2} \rightarrow S_{2} \rightarrow 0$ and $0 \rightarrow S_{2} \rightarrow I_{2} \xrightarrow{a} I_{1} \rightarrow 0$.

Examples of One-point Extensions

Consider the quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$ with relation $a b=0$. The corresponding algebra A is one-point-(co)extended from the Dynkin quiver A_{2} by the simple S_{2}, because $0 \rightarrow P_{3} \xrightarrow{b} P_{2} \rightarrow S_{2} \rightarrow 0$ and $0 \rightarrow S_{2} \rightarrow I_{2} \xrightarrow{a} I_{1} \rightarrow 0$.

Consider quiver $1 \xrightarrow{a, b, c} 2 \xrightarrow{x, y, z} 3$ with relation $A X=0$, where $A=\left(\begin{array}{ccc}c & 0 & -a \\ -b & a & 0 \\ 0 & -c & b\end{array}\right), X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. It is coextended from K_{3} by E, where $0 \rightarrow E \rightarrow 3 I_{2} \xrightarrow{A} 3 I_{1} \rightarrow 0$. Note that E is not general in $\operatorname{Rep}_{(3,3)}\left(K_{3}\right)$. (Beilinson's $\left.\mathbb{P}^{2}\right)$

Examples of One-point Extensions

Consider quiver

with relation $A X=0$, where
$A=(a, b)$ and $X=\left(\begin{array}{cccc}x_{1} & x_{2} & \cdots & x_{n-1} \\ x_{2} & x_{3} & \cdots & x_{n}\end{array}\right)$. Then it is extended from K_{n} by $E_{n} \oplus P_{3}$, or coextended from K_{2} by $E_{n}^{\circ} \oplus I_{1}$. Here,

$$
\begin{aligned}
0 & \rightarrow(n-1) P_{3} \xrightarrow{X^{T}} 2 P_{2} \rightarrow E_{n} \rightarrow 0, \\
0 & \rightarrow E_{n}^{\circ} \rightarrow n I_{2} \xrightarrow{B^{T}}(n-1) I_{1} \rightarrow 0,
\end{aligned}
$$

where $B=\left(\begin{array}{cccccc}a & b & 0 & 0 & \cdots & 0 \\ 0 & a & b & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a & b\end{array}\right)$. Note that E° is exceptional, but E is not.

Affine Representation Varieties

The dimension vector for $\operatorname{Rep}(Q[E])$ consists of two parts: the dimension of the vector space supported on "-" and outside "-". To simplify notation, a dimension vector with tilde, say $\tilde{\alpha}$, consists of two components $\left(\alpha_{-}, \alpha\right)$, or $\left(\alpha, \alpha_{+}\right)$for coextension.

$\operatorname{Rep}_{(\alpha, n)}\left(Q^{\circ}[E]\right)$ is the subvariety of $\operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(k^{\alpha}, n E\right)$

Affine Representation Varieties

The dimension vector for $\operatorname{Rep}(Q[E])$ consists of two parts: the dimension of the vector space supported on " - " and outside " - ". To simplify notation, a dimension vector with tilde, say $\tilde{\alpha}$, consists of two components $\left(\alpha_{-}, \alpha\right)$, or $\left(\alpha, \alpha_{+}\right)$for coextension. $\operatorname{Rep}_{(n, \alpha)}(Q[E])$ is the subvariety of $\operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(n E, k^{\alpha}\right)$

$$
\left\{(M, f) \in \operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(n E, k^{\alpha}\right) \mid f \in \operatorname{Hom}_{Q}(n E, M)\right\}
$$

$\operatorname{Rep}_{(\alpha, n)}\left(Q^{\circ}[E]\right)$ is the subvariety of $\operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(k^{\alpha}, n E\right)$

$$
\left\{(M, f) \in \operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(k^{\alpha}, n E\right) \mid f \in \operatorname{Hom}_{Q}(M, n E)\right\}
$$

Counting Affine

For any dimension vector β, we define $\operatorname{Hom}_{Q}(E, \alpha)_{\beta}=$

$$
\begin{array}{r}
\left\{\left(M, \phi, E_{1}, M_{1}\right) \in \operatorname{Rep}_{\alpha}(Q) \times \operatorname{Hom}\left(E, k^{\alpha}\right) \times \operatorname{Gr}^{\beta}(E) \times \operatorname{Gr}_{\beta}(\alpha) \mid\right. \\
\left.\phi \in \operatorname{Hom}_{Q}(E, M), E / \operatorname{Ker} \phi=E_{1}, \operatorname{Im} \phi=M_{1}\right\}
\end{array}
$$

Lemma

$p: \operatorname{Hom}_{Q}(E, \alpha)_{\beta} \rightarrow \operatorname{Gr}^{\beta}(E) \times \operatorname{Gr}_{\beta}(\alpha)$ is a fibre bundle with fibre

$$
\begin{aligned}
& \mathrm{GL}_{\beta} \times \operatorname{Rep}_{\alpha-\beta}(Q) \times \bigoplus_{a \in Q_{1}}\left(\operatorname{Hom}\left(k^{(\alpha-\beta)(t a)}, k^{\beta(h a)}\right) .\right. \\
& \text { So } \quad r_{(n, \alpha)}(Q[E]):=\sum_{\alpha=\gamma+\beta} \frac{\left|\mathrm{Gr}^{\beta}(n E)\right|}{\langle\gamma, \beta\rangle\left|\mathrm{GL}_{n}\right|} r_{\gamma}(Q) . \\
& \text { Dually } \quad r_{(\alpha, n)}\left(Q^{\circ}[E]\right)=\sum_{\alpha=\gamma+\beta} \frac{\left|\mathrm{Gr}_{\gamma}(n E)\right|}{\langle\gamma, \beta\rangle\left|\mathrm{GL}_{n}\right|} r_{\beta}(Q) .
\end{aligned}
$$

Moduli of Quiver Representations

A slope function μ is certain quotient of two linear functionals σ / θ on $\mathbb{Z}^{Q_{0}}$ with $\theta(\alpha)>0$ for any dimension vector α. Definition. A representation M is called μ-semi-stable (res
μ-stable) if $\mu(\bar{L}) \leqslant \mu(\bar{M})$ (resp. $\mu(\bar{L})<\mu(\bar{M}))$ for every nc
subrepresentation $L \subset M$. Let Rep ${ }_{\alpha}^{\mu}(Q)$ be the variety of
α-dimensional μ-semistable representations.
Facts. There is a good categorical quotient
$q: \operatorname{Rep}_{\alpha}^{\mu}(Q) \rightarrow \operatorname{Mod}_{\alpha}^{\mu}(Q)$, and its restriction to the stable representations is a geometric quotient

Moduli of Quiver Representations

A slope function μ is certain quotient of two linear functionals σ / θ on $\mathbb{Z}^{Q_{0}}$ with $\theta(\alpha)>0$ for any dimension vector α.
Definition. A representation M is called μ-semi-stable (resp. μ-stable) if $\mu(\bar{L}) \leqslant \mu(\bar{M})$ (resp. $\mu(\bar{L})<\mu(\bar{M}))$ for every non-trivial subrepresentation $L \subset M$. Let $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ be the variety of α-dimensional μ-semistable representations.

Moduli of Quiver Representations

A slope function μ is certain quotient of two linear functionals σ / θ on $\mathbb{Z}^{Q_{0}}$ with $\theta(\alpha)>0$ for any dimension vector α.
Definition. A representation M is called μ-semi-stable (resp. μ-stable) if $\mu(\bar{L}) \leqslant \mu(\bar{M})$ (resp. $\mu(\bar{L})<\mu(\bar{M})$) for every non-trivial subrepresentation $L \subset M$. Let $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ be the variety of α-dimensional μ-semistable representations.
Facts. There is a good categorical quotient
$q: \operatorname{Rep}_{\alpha}^{\mu}(Q) \rightarrow \operatorname{Mod}_{\alpha}^{\mu}(Q)$, and its restriction to the stable representations is a geometric quotient.

Harder-Narasimhan Filtration

HN filtration. Fix a slope function μ. Every representation M has a unique filtration

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{m-1} \subset M_{m}=M
$$

such that $\left\{\begin{array}{l}N_{i}=M_{i} / M_{i+1} \text { is } \mu \text {-semi-stable, } \\ \mu\left(\bar{N}_{i}\right)>\mu\left(\bar{N}_{i+1}\right) .\end{array}\right.$
Key Lemma

Harder-Narasimhan Filtration

HN filtration. Fix a slope function μ. Every representation M has a unique filtration

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{m-1} \subset M_{m}=M
$$

such that $\left\{\begin{array}{l}N_{i}=M_{i} / M_{i+1} \text { is } \mu \text {-semi-stable, } \\ \mu\left(\bar{N}_{i}\right)>\mu\left(\bar{N}_{i+1}\right) .\end{array}\right.$
Key Lemma

$$
\left|\operatorname{Rep}_{\alpha}^{\mu}(A)\right|=\sum_{*}(-1)^{s-1}\left|\operatorname{Frep}_{\alpha_{1} \cdots \alpha_{s}}(A)\right|
$$

where the sum runs over all decomposition $\alpha_{1}+\cdots+\alpha_{s}=\alpha$ of α into non-zero dimension vectors such that $\mu\left(\sum_{l=1}^{k} \alpha_{l}\right)<\mu(\alpha)$ for $k<s$.

Frep Varieties

For any decomposition of dimension vector $\alpha=\sum_{i=1}^{s} \alpha_{i}$, we define $\mathrm{Fl}_{\alpha_{s} \cdots \alpha_{1}}:=\prod_{v \in Q_{0}} \mathrm{Fl}_{\alpha_{s}(v) \cdots \alpha_{1}(v)}$, where $\mathrm{FI}_{\alpha_{s}(v) \cdots \alpha_{1}(v)}$ is the usual flag variety parameterizing flags of subspaces of dimension $\alpha_{1}(v)<\dot{\alpha}_{2}(v)<\cdots<\dot{\alpha}_{s-1}(v)$ in $k^{\alpha(v)}$. To simplify the notation, we denote $\dot{\alpha}_{i}:=\sum_{j=1}^{i} \alpha_{j}$.

Definition

We define the Frep variety $\operatorname{Frep}_{\alpha_{5} \cdots \alpha_{1}}(A)$
$=\left\{\left(M, L_{1}, \ldots, L_{s-1}\right) \in \operatorname{Rep}_{\alpha}(A) \times \mathrm{FI}_{\alpha_{s} \cdots \alpha_{1}} \mid L_{1} \subset \cdots \subset L_{s}=M\right\}$.

Consequence of Weil Conjecture

Lemma

If X is counted by a rational function $P_{X} \in \mathbb{C}(t)$, then it must lie in $\mathbb{Z}[t]$. Moreover if X is l-pure, then

$$
P_{X}(q)=\sum_{i \geq 0} \operatorname{dim} H_{c}^{2 i}\left(X, \mathbb{Q}_{I}\right) q^{i}
$$

is the I-adic Poincaré polynomial
positive integral polynomial if it is a geometric quotient.

Consequence of Weil Conjecture

Lemma

If X is counted by a rational function $P_{X} \in \mathbb{C}(t)$, then it must lie in $\mathbb{Z}[t]$. Moreover if X is l-pure, then

$$
P_{X}(q)=\sum_{i \geq 0} \operatorname{dim} H_{c}^{2 i}\left(X, \mathbb{Q}_{I}\right) q^{i}
$$

is the I-adic Poincaré polynomial
(Reineke) In particular, the GIT quotient $\operatorname{Mod}_{\alpha}^{\mu}(Q)$ is counted by a positive integral polynomial if it is a geometric quotient.

F-polynomial Count

Definition

We say an algebra A is polynomial-count if each $\operatorname{Rep}_{\alpha}(A)$ is polynomial-count. It is called F-polynomial-count if each $\operatorname{Frep}_{\alpha_{1} \cdots \alpha_{s}}(A)$ is polynomial-count.

F-polynomial Count

Definition

We say an algebra A is polynomial-count if each $\operatorname{Rep}_{\alpha}(A)$ is polynomial-count. It is called F-polynomial-count if each $\operatorname{Frep}_{\alpha_{1} \cdots \alpha_{s}}(A)$ is polynomial-count.

In particular, if A is F-polynomial-count, then each $\operatorname{Mod}_{\alpha}^{\mu}(A)$ is polynomial-count when it is a geometric quotient. We conjecture that the assumption of being a geometric quotient can be dropped. Moreover, we do not know a single example where A is polynomial-count but not F-polynomial-count. We conjecture that if each $\operatorname{Frep}_{\alpha_{1} \alpha_{2}}(A)$ is polynomial-count, then A is

F-polynomial-count.

Counting 2-step Frep of $Q[E]$

Lemma

$p: \operatorname{Frep}_{\tilde{\beta}, \tilde{\gamma}}(Q[E]) \rightarrow \mathrm{F}_{\tilde{\beta}, \tilde{\gamma}}$ is a fibre bundle with fibre

$$
\operatorname{Rep}_{\left(\alpha_{-}, \gamma\right)}(Q[E]) \times \operatorname{Rep}_{\tilde{\beta}}(Q[E]) \times \prod_{a \in Q_{1}} \operatorname{Hom}\left(k^{\beta(t a)}, k^{\gamma(h a)}\right)
$$

So $\quad r_{\tilde{\beta}, \tilde{\gamma}}(Q[E])=\langle\beta, \gamma\rangle^{-1}\left[\begin{array}{c}\alpha_{-} \\ \gamma_{-}\end{array}\right]\left|\mathrm{GL}_{\beta_{-}}\right| r_{\tilde{\beta}}(Q[E]) r_{\left(\alpha_{-}, \gamma\right)}(Q[E])$.

Proof.

Counting Frep of $Q[E]$

The 2-step case can be recursively generalized to the n-step case. We only state the analog for the last formula.

$$
r_{\tilde{\alpha}_{1} \cdots \tilde{\alpha}_{s}}(Q[E])=\prod_{i=1}^{s}\left[\begin{array}{c}
\dot{\alpha}_{i,-} \tag{1}\\
\alpha_{i,-}
\end{array}\right]\left|\mathrm{GL}_{\dot{\alpha}_{i-1,-}}\right| r_{\left(\dot{\alpha}_{i,-}, \alpha_{i}\right)}(Q[E]) .
$$

The formula for coextension.

$$
r_{\tilde{\alpha}_{s} \cdots \tilde{\alpha}_{1}}\left(Q^{\circ}[E]\right)=\prod_{i=2}^{s}\left[\begin{array}{c}
\dot{\alpha}_{i,+} \\
\alpha_{i,+}
\end{array}\right]\left|\mathrm{GL}_{\dot{\alpha}_{i-1,+}}\right| r_{\left(\alpha_{i}, \dot{\alpha}_{i,+}\right)}\left(Q^{\circ}[E]\right) .
$$

So all Frep varieties can be counted in terms of representation varieties $\operatorname{Rep}_{\alpha}(Q[E])$.

Counting Moduli

Definition

A representation $E \in \operatorname{Rep}(Q)$ is called polynomial-count, if all its Grassmannians $\operatorname{Gr}_{\gamma}(E)$ are polynomial-count. It is called add-polynomial-count, if each $n E$ is polynomial-count.
$\operatorname{Rep}_{\alpha}^{\mu}(Q[E])$ can be explicitly counted in terms of $\operatorname{Gr}_{\gamma}(n E)$'s. In particular, if E is add-polynomial-count, then each $\left.\operatorname{Mod}_{\sim}^{\mu}(Q \mid E\rceil\right)$ is polynomial-count when it is a geometric quotient. We will see in the end that the assumption of being a geometric quotient can be dropped.

Counting Moduli

Definition

A representation $E \in \operatorname{Rep}(Q)$ is called polynomial-count, if all its Grassmannians $\mathrm{Gr}_{\gamma}(E)$ are polynomial-count. It is called add-polynomial-count, if each $n E$ is polynomial-count.

Theorem
$\operatorname{Rep}_{\alpha}^{\mu}(Q[E])$ can be explicitly counted in terms of $\operatorname{Gr}_{\gamma}(n E)$'s. In particular, if E is add-polynomial-count, then each $\operatorname{Mod}_{\alpha}^{\mu}(Q[E])$ is polynomial-count when it is a geometric quotient.
We will see in the end that the assumption of being a geometric quotient can be dropped.

Counting Quiver Grassmannian

Corollary Assume that $\operatorname{dim} U=\alpha_{1}$ and $\operatorname{dim} V=\alpha_{2}$.

$$
\sum_{\gamma_{1}+\gamma_{2}=\gamma}\left\langle\gamma_{1}, \alpha_{2}-\gamma_{2}\right\rangle\left|\operatorname{Gr}_{\gamma_{1}}(U)\right|\left|\operatorname{Gr}_{\gamma_{2}}(V)\right|=\sum_{[W]} \frac{\left|\operatorname{Ext}_{Q}(U, V)_{W}\right|}{\left|\operatorname{Ext}_{Q}(U, V)\right|}\left|\operatorname{Gr}_{\gamma}(W)\right| .
$$

$$
\text { Now suppose that } \operatorname{Ext}_{Q}(U, V)=0 \text {. Then }
$$

$$
\text { Hence, if both } U \text { and } V \text { are (add)-polynomial-count, then so is }
$$

non-trivial middle term of the extensions, then

Counting Quiver Grassmannian

Corollary Assume that $\operatorname{dim} U=\alpha_{1}$ and $\operatorname{dim} V=\alpha_{2}$.

$$
\sum_{\gamma_{1}+\gamma_{2}=\gamma}\left\langle\gamma_{1}, \alpha_{2}-\gamma_{2}\right\rangle\left|\operatorname{Gr}_{\gamma_{1}}(U)\right|\left|\operatorname{Gr}_{\gamma_{2}}(V)\right|=\sum_{[W]} \frac{\left|\operatorname{Ext}_{Q}(U, V)_{W}\right|}{\left|\operatorname{Ext}_{Q}(U, V)\right|}\left|\operatorname{Gr}_{\gamma}(W)\right| .
$$

Now suppose that $\operatorname{Ext}_{Q}(U, V)=0$. Then

$$
F_{\bullet}(U \oplus V)=\sum_{\gamma_{1}, \gamma_{2}}\left\langle\gamma_{1}, \alpha_{2}-\gamma_{2}\right\rangle \operatorname{Gr}_{\gamma_{1}}(U) \operatorname{Gr}_{\gamma_{2}}(V) x^{\gamma_{1}+\gamma_{2}}
$$

Hence, if both U and V are (add)-polynomial-count, then so is $U \oplus V$. Moreover, if $\operatorname{Ext}_{Q}(V, U)=k^{e}$ and W is the only non-trivial middle term of the extensions, then

$$
\left(q^{e}-1\right) F_{\bullet}(W)=q^{e} \sum_{\gamma_{1}, \gamma_{2}}\left\langle\gamma_{2}, \alpha_{1}-\gamma_{1}\right\rangle \operatorname{Gr}_{\gamma_{2}}(V) \operatorname{Gr}_{\gamma_{1}}(U) x^{\gamma_{1}+\gamma_{2}}-F_{\bullet}(U \oplus V)
$$

Acyclic Cluster Theory

For any indecomposable rigid T of an acyclic quiver, Cluster theory allows us recursively use the last formula to compute all $\operatorname{Gr}_{\gamma}(T)$'s. Each step of recursion is related to the cluster mutation.

Acyclic Cluster Theory

For any indecomposable rigid T of an acyclic quiver, Cluster theory allows us recursively use the last formula to compute all $\operatorname{Gr}_{\gamma}(T)$'s. Each step of recursion is related to the cluster mutation.

In particular, Positivity conjecture is true in acyclic cases: each $\operatorname{Gr}_{\gamma}(T)$ is counted by a positive polynomial, because $\operatorname{Gr}_{\gamma}(T)$ is smooth and thus I-pure.

Example 1 continued

Come back to Beilinson's \mathbb{P}^{2} (coextended from K_{3} by E). It is known that for a general representation E_{g} of dimension $(6,3), \operatorname{Gr}_{(1,1)}\left(E_{g}\right)$ is an elliptic curve. So E_{g} is not polynomial-count. However, for this special $E \operatorname{Gr}_{(1,1)}(E)$ is three \mathbb{P}_{1} 's intersecting at a point. With a little effort one can show that E is actually polynomial-count.

3-Vertex Case in general

Let $A:=k K_{m}^{\circ}[E]$ be the algebra coextended from K_{m} by a representation E of dimension ϵ. For any dimension vector $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ of K_{m}, there is a unique choice of weight σ up to scalar such that $\sigma(\alpha)=0$. There are two ways to extend σ to A. One is $\sigma_{+}=(\sigma,-\delta)$, and the other is $\sigma_{-}=(\delta, \sigma)$, for some sufficiently small positive number δ.

Proposition

$$
\begin{aligned}
\operatorname{Mod}_{(\gamma, 1)}^{\mu_{+}}(A) & \cong \operatorname{Gr}_{\gamma}(E) \text { and } \operatorname{Mod}_{\left(\gamma_{1}, 1,1\right)}^{\mu_{-}}(A) \cong \operatorname{Gr}_{\left(\gamma_{1}, 1\right)}(E), \\
\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Gr}_{(1,2)}(E)\right|+\left([m-1]-\left[\epsilon_{2}-1\right]\right)\left|\operatorname{Gr}_{(1,1)}(E)\right|, \\
\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Gr}_{(2,2)}(E)\right|+\left([2 m-1]-\left[\epsilon_{2}-1\right]\right)\left|\operatorname{Gr}_{(2,1)}(E)\right|,
\end{aligned}
$$

where $[n]$ is the quantum number.

Example 2 continued

(coextended from K_{2} by $E_{n}^{\circ} \oplus I_{1}$)

[C.Szántó] $\left|\operatorname{Gr}_{\gamma}\left(E_{n}^{\circ}\right)\right|= \begin{cases}1 & \gamma=(0,0),(n+1, n) \\ {\left[\begin{array}{ll}n-\gamma_{1} \\ \gamma_{2}-\gamma_{1}\end{array}\right]\left[\begin{array}{c}\gamma_{2}+1 \\ \gamma_{1}\end{array}\right]} & \text { otherwise, }\end{cases}$
where $\left[\begin{array}{c}n \\ m\end{array}\right]$ is the quantum binomial coefficient. So we are able to find all $\left|\operatorname{Mod}_{\alpha}^{\mu}\left(A_{n}\right)\right|$. For example,

$$
\begin{aligned}
\left|\operatorname{Mod}_{(1,1,1)}^{\mu_{-}}\left(A_{n}\right)\right| & =q^{2}+2 q+1 \\
\left|\operatorname{Mod}_{(1,1,1)}^{\mu_{+}}\left(A_{n}\right)\right| & =[n]+[3]-1 \\
\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{-}}\left(A_{n}\right)\right| & =q^{4}+2 q^{3}+4 q^{2}+2 q+1
\end{aligned}
$$

However, all $\operatorname{Mod}_{(1,1,1)}^{\mu_{-}}\left(A_{n}\right)$ are different, they are Hirzebruch surfaces \mathbb{F}_{n}.

Example 3

Consider quiver $1 \xrightarrow{a, b, c} 2 \xrightarrow{x, y, z} 3$ with relation $x a+y b+z c=0$. It is coextended from K_{3} by a rigid module presented by $0 \rightarrow E \rightarrow 3 I_{2} \xrightarrow{(a b c)} I_{1} \rightarrow 0$. Similar calculation as before gives

$$
\begin{aligned}
\left|\operatorname{Mod}_{(1,1,1)}^{\mu_{ \pm}}(A)\right| & =[2][3], \\
\left|\operatorname{Mod}_{(2,1,1)}^{\mu_{ \pm}}(A)\right| & =\left|\operatorname{Mod}_{(1,1,2)}^{\mu_{ \pm}}(A)\right|=[3], \\
\left|\operatorname{Mod}_{(1,2,1)}^{\mu_{ \pm}}(A)\right| & =[3][5], \\
\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Mod}_{(1,2,2)}^{\mu_{-}}(A)\right|=[3][5](1,0,1), \\
\left|\operatorname{Mod}_{(1,2,2)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{+}}(A)\right|=[3](1,1,3,3,3,1,1) .
\end{aligned}
$$

The first one is a divisor \mathcal{D} on $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of bidegree $(1,1)$, or equivalently the complete flag variety \mathcal{F}_{3} of k^{3}.

Example 3 - deformed

Now consider the deformation $E^{\prime} \oplus I_{2}$ of E, where $0 \rightarrow E^{\prime} \rightarrow 2 I_{2} \xrightarrow{(a b)} I_{1} \rightarrow 0$. Since $\operatorname{Ext}_{Q}\left(I_{2}, E^{\prime}\right)=k$ with E the only non-trivial middle term, we can compute $F_{\bullet}\left(E^{\prime}\right)$

$$
F_{\bullet}\left(E^{\prime}\right)=1+[2] x^{(1,0)}+[2]^{2} x^{(1,1)}+[2] x^{(2,1)}+x^{(0,2)}+[5] x^{(1,2)}+\left[\begin{array}{l}
5 \\
2
\end{array}\right] x^{(2,2)}+\cdot .
$$

$$
\begin{aligned}
\left|\operatorname{Mod}_{(1,1,1)}^{\mu_{ \pm}}(A)\right| & =(1,3,2,1), \\
\left|\operatorname{Mod}_{(2,1,1)}^{\mu_{ \pm}}(A)\right| & =\left|\operatorname{Mod}_{(1,1,2)}^{\mu_{ \pm}}(A)\right|=(2,2,1), \\
\left|\operatorname{Mod}_{(1,2,1)}^{\mu_{ \pm}}(A)\right| & =[3][5], \\
\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Mod}_{(1,2,2)}^{\mu_{+}}(A)\right|=[3][5](1,0,1), \\
\left|\operatorname{Mod}_{(1,2,2)}^{\mu_{-}}(A)\right| & =\left|\operatorname{Mod}_{(2,2,1)}^{\mu_{+}}(A)\right|=[3](1,1,4,4,3,1,1) .
\end{aligned}
$$

Note that the first one is irreducible and singular.

The Δ-Analog

Theorem
If E is add-polynomial-count and $\operatorname{Mod}_{\alpha}^{\mu}(Q[E])$ is a geometric quotient, then $\sum_{M \in \operatorname{Mod}_{\alpha}^{\mu}(Q[E])}\left|\operatorname{Gr}_{\gamma}(M)\right|$ is polynomial-count for any γ.

The Δ-Analog

Theorem
If E is add-polynomial-count and $\operatorname{Mod}_{\alpha}^{\mu}(Q[E])$ is a geometric quotient, then $\sum_{M \in \operatorname{Mod}_{\alpha}^{\mu}(Q[E])}\left|\operatorname{Gr}_{\gamma}(M)\right|$ is polynomial-count for any γ.
This one can be generalized to the flags of representations without any essential difficulty.

The Construction of the Variety

There are projective varieties related to both the moduli and Grassmannian of representations. We need the tensor product algebra $A_{2}(A):=k A \otimes k A_{2}$, where A_{2} is the quiver of Dynkin type A_{2}.

The Construction of the Variety

There are projective varieties related to both the moduli and Grassmannian of representations. We need the tensor product algebra $A_{2}(A):=k A \otimes k A_{2}$, where A_{2} is the quiver of Dynkin type A_{2}.

If $\operatorname{Rep}_{\alpha}^{\mu}(A)$ contains exclusively μ-stable points, then there is another stability (slope function) $\hat{\mu}$ such that the natural projection $\operatorname{Rep}_{(\gamma, \alpha)}\left(A_{2}(A)\right) \rightarrow \operatorname{Rep}_{\alpha}(A)$ induces a surjective map $\operatorname{Mod}_{(\gamma, \alpha)}^{\hat{\mu}}\left(A_{2}(A)\right) \rightarrow \operatorname{Mod}_{\alpha}^{\mu}(A)$, whose fibre over M is exactly $\operatorname{Gr}_{\gamma}(M)$.

The S-analog and the Number F_{W}

Consider

$$
\oint(W)=a_{W}^{-1} \sum_{i=0}(-1)^{i+1} F_{i}(W) x^{\alpha}
$$

where $F_{i}(W)$ is the number of i-step filtrations of W. We denote $F_{W}:=\sum_{i=0}(-1)^{i} F_{i}(W)$.

The S-analog and the Number F_{W}

Consider

$$
\oint(W)=a_{W}^{-1} \sum_{i=0}(-1)^{i+1} F_{i}(W) x^{\alpha}
$$

where $F_{i}(W)$ is the number of i-step filtrations of W.
We denote $F_{W}:=\sum_{i=0}(-1)^{i} F_{i}(W)$.
Lemma. If W is a direct sum of simples: $\bigoplus_{[S]} S^{m_{S}}$ and let $q_{S}=\left|\operatorname{End}_{Q}(S)\right|$, then $F_{W}=\prod_{[S]}(-1)^{m_{S}} q_{S}\binom{m_{S}}{2}$; otherwise $F_{W}=0$.

The Generating Series

Theorem (Mozgovoy-Reineke)

$$
\begin{aligned}
& \oint \chi_{\mu_{0}}=\operatorname{Exp}\left(\frac{A_{\mu_{0}}(A)}{1-q}\right) \\
& M_{\mu_{0}}(A)=\operatorname{Exp}\left(A_{\mu_{0}}(A)\right)
\end{aligned}
$$

Here, Exp is a Plethystic Exponential in the λ-ring $\mathbb{Q}(q)[[\mathbf{x}]]$.
$A_{\mu_{0}}(A)$ is the generating series counting equiv. classes of absolutely stable representations with slope μ_{0}. $M_{\mu_{0}}(A)$ is the generating series counting $\operatorname{Mod}_{\alpha}^{\mu}(A)\left(\mu(\alpha)=\mu_{0}\right)$.

Final Results for $Q[E]$

It follows from the flag generalization of Δ-analog that we are able to compute in terms of $\operatorname{Gr}_{\gamma}(E)$ the series $A_{\mu_{0}}$ and thus $M_{\mu_{0}}$.

The assumption of being a geometric quotient in all our results for O「Fl can he dronned

Final Results for $Q[E]$

It follows from the flag generalization of Δ-analog that we are able to compute in terms of $\operatorname{Gr}_{\gamma}(E)$ the series $A_{\mu_{0}}$ and thus $M_{\mu_{0}}$.
Theorem
The assumption of being a geometric quotient in all our results for $Q[E]$ can be dropped.

The Universal Case $A_{2}(Q)$

Let us consider a category, which is universal in the sense that it contains all one-point extensions of Q as its full subcategories. It is clearly the module category of $A_{2}(Q):=k Q \otimes k A_{2}$.

The Universal Case $A_{2}(Q)$

Let us consider a category, which is universal in the sense that it contains all one-point extensions of Q as its full subcategories. It is clearly the module category of $A_{2}(Q):=k Q \otimes k A_{2}$.

Let V be an α-dimensional k-vector space. We denote by $\ln _{c \cap d \hookrightarrow e}^{c_{d} \hookrightarrow c_{e}}(\alpha)$ the incidence variety

$$
\left\{(C, D, E) \in \operatorname{Gr}_{c}(V) \times \mathrm{Fl}_{e-d, d}(V) \mid \operatorname{dim}(C \cap D)=c_{d}, \operatorname{dim}(C \cap E)=c_{e}\right\},
$$

and by $\operatorname{Gr}_{d}^{b \cap e}(\alpha)$ the incidence variety
$\left\{(B, E) \in \operatorname{Gr}^{b}(V) \times \operatorname{Gr}^{e}(V) \mid V / B_{s}=B, V / E_{s}=E, \operatorname{dim}\left(B_{s} \cap E_{s}\right)=\alpha-b-e+d\right\}$.

Counting Frep of $A_{2}(Q)$

Lemma

$p: \operatorname{Frep}_{\left(\beta_{u}, \beta_{d}\right),\left(\gamma_{u}, \gamma_{d}\right)}\left(A_{2}(Q)\right) \rightarrow \mathrm{FI}_{\left(\beta_{u}, \beta_{d}\right),\left(\gamma_{u}, \gamma_{d}\right)}$ is a fibre bundle with fibre

$$
\begin{aligned}
& \bigsqcup_{b, c, d, e, c_{d}, c_{e}} \operatorname{In}_{c \cap d \hookrightarrow e}^{c_{d} \hookrightarrow c_{e}}\left(\gamma_{d}\right) \times \operatorname{Gr}_{e-d}^{b \cap e}\left(\beta_{u}\right) \times \mathrm{Gr}^{c}\left(\gamma_{u}\right) \times \mathrm{Gr}_{b}\left(\beta_{d}\right) \times \mathrm{GL}_{b} \times \mathrm{GL}_{c} \times \mathrm{GL}_{e} \\
& \times \prod_{a \in Q_{1}} \operatorname{Hom}\left(k^{c_{d}(t a)}, k^{c_{d}(h a)}\right) \times \operatorname{Hom}\left(k^{\left(c_{e}-c_{d}\right)(t a)}, k^{c_{e}(h a)}\right) \times \operatorname{Hom}\left(k^{\left(c-c_{e}\right)(t a)}, k^{c(h a)}\right) \\
& \times \operatorname{Hom}\left(k^{\left(d-c_{d}\right)(t a)}, k^{d(h a)}\right) \times \operatorname{Hom}\left(k^{\left(e-d-c_{e}+c_{d}\right)(t a)}, k^{e(h a)}\right) \times \operatorname{Hom}\left(k^{\left(\gamma_{d}-e-c+c_{e}\right)(t a)}, k^{\gamma_{d}(h a)}\right. \\
& \times \\
& \times \operatorname{Hom}\left(k^{b(t a)}, k^{(b+d-e)(t a)}\right) \times \operatorname{Hom}\left(k^{\beta_{u}(t a)}, k^{\left(\beta_{u}-b-d\right)(h a)}\right) \\
& \times \operatorname{Hom}\left(k^{\gamma_{u}(t a)}, k^{\left(\gamma_{u}-c\right)(h a)}\right) \times \operatorname{Hom}\left(k^{\left(\beta_{d}-b\right)(t a)}, k^{\beta_{d}(h a)}\right) \\
& \times \operatorname{Hom}\left(k^{\beta_{u}(t a)}, k^{\left(\gamma_{u}-c\right)(h a)}\right) \times \operatorname{Hom}\left(k^{\left(\beta_{d}-b\right)(t a)}, k^{\gamma_{d}(h a)}\right)
\end{aligned}
$$

To be continued...

So $r_{\left(\beta_{u}, \beta_{d}\right),\left(\gamma_{u}, \gamma_{d}\right)}\left(A_{2}(Q)\right):=\frac{\left|\operatorname{Frep}_{\left(\beta_{u}, \beta_{d}\right),\left(\gamma_{u}, \gamma_{d}\right)}\left(A_{2}(Q)\right)\right|}{\left|\operatorname{GL}_{\left(\alpha_{u}, \alpha_{d}\right)}\right|}$ is equal to

$$
\begin{gathered}
\sum_{b, c, e, d_{\beta}, d_{\gamma}} t_{\left(b, c, d, e, c_{d}, c_{e}\right)} \cdot r_{\gamma_{u}-c} r_{\beta_{d}-b} \cdot r_{\beta_{u}-b-d} r_{b+d-e} . \\
r_{c_{d}} r_{c_{e}-c_{d}} r_{c-c_{e}} r_{d-c_{d}} r_{e-d-c_{e}+c_{d}} r_{\gamma_{d}-c-e+c_{e}},
\end{gathered}
$$

where $t_{\left(b, c, d, e, c_{d}, c_{e}\right)}=$

$$
\frac{\left(\left\langle\beta_{u}, \gamma_{u}\right\rangle\left\langle\beta_{d}, \gamma_{d}\right\rangle \cdot\left\langle\beta_{d}-b, b\right\rangle\left\langle c, \gamma_{u}-c\right\rangle \cdot\langle e-d, b+d-e\rangle\left\langle b+d, \beta_{u}-b-d\right\rangle\right)^{-1}\left[\begin{array}{l}
e \\
d
\end{array}\right]}{\left\langle c-c_{e}, c_{e}-c_{d}\right\rangle\left\langle d-c_{d}, c_{d}\right\rangle\left\langle e-d-c_{e}+c_{d}, d+c_{e}-c_{d}\right\rangle\left\langle\gamma_{d}-c-e+c_{e}, c+e-c_{e}\right\rangle} .
$$

This result can be generalized to the s-step Frep varieties. So we conclude that the algebra $A_{2}(Q)$ is F-polynomial-count.

Proof by picture

Counting Moduli of $A_{2}(Q)$

We can do the Δ-analog and S-analog counting for $A_{2}(Q)$ as well.
Theorem
$\operatorname{Mod}_{\alpha}^{\mu}\left(A_{2}(Q)\right)$ has a counting polynomial, which can be explicitly computed.

An Example

Consider the 3 -arrow Kronecker quiver K_{3} with dimension vectors $\alpha=(3,4)$ and $\gamma=(1,3)$. Let M be a general representation of dimension α, then M has no subrepresentation of dimension (1,2). So the projection $\operatorname{Gr}_{\gamma}(M) \rightarrow \operatorname{Gr}_{1}\left(M_{1}\right) \cong \mathbb{P}^{2}$ is an isomorphism. We find that

$$
\begin{aligned}
& \left|\operatorname{Mod}_{\alpha}^{\mu}\left(K_{3}\right)\right|=(1,0,1)^{2}(1,1,1,3,5,3,1,1,1), \\
& \left|\operatorname{Mod}_{(\gamma, \alpha)}^{\mu}\left(A_{2}\left(K_{3}\right)\right)\right|=[3][2]^{2}(1,4,2,8,5,8,2,4,1),
\end{aligned}
$$

where $\hat{\mu}$ is the special slope function considered before. Recall that $\hat{\sigma}(\gamma)=(\epsilon, \epsilon) \cdot \gamma$ for some sufficiently small ϵ. Now we change the slope to $\tilde{\sigma}=(\epsilon, 0)$, then

$$
\left|\operatorname{Mod}_{(\gamma, \alpha)}^{\tilde{\mu}}\left(A_{2}\left(K_{3}\right)\right)\right|=\left|\mathbb{P}^{2}\right|\left|\operatorname{Mod}_{\alpha}^{\mu}\left(K_{3}\right)\right|
$$

Application to Homological Stratification

Definition

For any representation E, the E-homological stratification of $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ is the decomposition of $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ into (finite) disjoint union of locally closed subvarieties $\operatorname{Rep}_{\alpha}^{\mu}(Q ; E, h)$, where

$$
\operatorname{Rep}_{\alpha}^{\mu}(Q ; E, h)=\left\{M \in \operatorname{Rep}_{\alpha}^{\mu}(Q) \mid \operatorname{hom}_{Q}(E, M)=h\right\}
$$

Application to Homological Stratification

Definition

For any representation E, the E-homological stratification of $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ is the decomposition of $\operatorname{Rep}_{\alpha}^{\mu}(Q)$ into (finite) disjoint union of locally closed subvarieties $\operatorname{Rep}_{\alpha}^{\mu}(Q ; E, h)$, where

$$
\operatorname{Rep}_{\alpha}^{\mu}(Q ; E, h)=\left\{M \in \operatorname{Rep}_{\alpha}^{\mu}(Q) \mid \operatorname{hom}_{Q}(E, M)=h\right\}
$$

Theorem

$\left|\operatorname{Rep}_{\alpha}^{\mu}(Q ; E, h)\right|$ can be explicitly computed from $\operatorname{Gr}_{\gamma}(E)$. When E is add-polynomial-count and $\operatorname{Mod}_{\alpha}^{\mu}(Q)$ is a geometric quotient, each homological strata on $\operatorname{Mod}_{\alpha}^{\mu}(Q)$ is polynomial-count.
The proof combines our method with a wall-crossing formula of M. Reineke.

Thank you!

Time for questions and comments
 -

