On surface cluster algebras: Band and snake graph calculus

Ilke Canakci ${ }^{1}$ Ralf Schiffler ${ }^{1}$
${ }^{1}$ Department of Mathematics
University of Connecticut
Maurice Auslander Distinguished Lectures and International Conference
April 18-23, 2013

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs.

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

$$
\begin{gathered}
x_{\gamma_{1}} x_{\gamma_{2}}=* x_{\gamma_{3}} x_{\gamma_{4}}+* x_{\gamma_{5}} x_{\gamma_{6}} \\
\text { Skein relation }([\mathrm{MW}])
\end{gathered}
$$

- Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

$$
x_{\gamma_{1}} x_{\gamma_{2}}=* x_{\gamma_{3}} x_{\gamma_{4}}+* x_{\gamma_{5}} x_{\gamma_{6}}
$$

Skein relation ([MW])

- Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].
- The authors in [MSW] associates a connected graph, called the snake graph to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.
R. Schiffler

Motivation

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:
cluster variable $\stackrel{[\text { FST }]}{\longleftrightarrow}$ arc

Motivation

Motivation

 GraphsLet $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:

$$
\text { cluster variable } \quad \stackrel{[\mathrm{FST}]}{\longrightarrow} \quad \text { arc } \quad \xrightarrow{[\mathrm{MSW}]} \quad \text { snake graph }
$$

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:
cluster variable $\quad \stackrel{[\text { FST }]}{\longleftrightarrow} \quad \operatorname{arc} \quad \xrightarrow{[\mathrm{MSW}]}$ snake graph
Question
"How much can we recover from snake graphs themselves?"

Motivation

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:
cluster variable $\xrightarrow{[\text { [FST }]} \quad$ arc $\quad \xrightarrow{[\text { MSW }]}$ snake graph
Question
"How much can we recover from snake graphs themselves?" In particular,

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:

$$
\text { cluster variable } \xrightarrow{[\operatorname{[FST]}} \quad \text { arc } \quad \xrightarrow{[\text { MSW }]} \text { snake graph }
$$

Question

"How much can we recover from snake graphs themselves?"
In particular,

- When do the two arcs corresponding to two snake graphs cross?

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).
We have the following situation:

$$
\text { cluster variable } \xrightarrow{[\operatorname{[FST]}} \quad \text { arc } \quad \xrightarrow{[\text { MSW }]} \text { snake graph }
$$

Question

"How much can we recover from snake graphs themselves?"
In particular,

- When do the two arcs corresponding to two snake graphs cross?
- What are the snake graphs corresponding to the skein relations?

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

 Cluster Algebras
Abstract Snake Graphs

```
Definition
A smake graph G is a connected graph in RR2 consisting of a finite
sequence of tiles G},\mp@subsup{G}{2}{},\ldots,\mp@subsup{G}{d}{}\mathrm{ with }d\geq1\mathrm{ , such that for each
i}=1,\ldots,d-
    (i) G}\mp@subsup{G}{i}{}\mathrm{ and }\mp@subsup{G}{i+1}{}\mathrm{ share exactly one edge e}\mp@subsup{e}{i}{}\mathrm{ and this edge is either the
    north edge of Gi and the south edge of G}\mp@subsup{G}{i+1}{}\mathrm{ or the east edge of
    Gi and the west edge of GG+1
    (ii) G}\mp@subsup{G}{i}{}\mathrm{ and }\mp@subsup{G}{j}{}\mathrm{ have no edge in common whenever }|i-j|\geq2\mathrm{ .
    (ii) G}\mp@subsup{G}{i}{}\mathrm{ and }\mp@subsup{G}{j}{}\mathrm{ are disjoint whenever }|i-j|\geq3\mathrm{ .
```

 Example

Abstract Snake Graphs

Definition

A snake graph \mathcal{G} is a connected graph in \mathbb{R}^{2} consisting of a finite sequence of tiles $G_{1}, G_{2}, \ldots, G_{d}$ with $d \geq 1$, such that for each $i=1, \ldots, d-1$
(i) G_{i} and G_{i+1} share exactly one edge e_{i} and this edge is either the north edge of G_{i} and the south edge of G_{i+1} or the east edge of G_{i} and the west edge of G_{i+1}.
(ii) G_{i} and G_{j} have no edge in common whenever $|i-j| \geq 2$.
(ii) G_{i} and G_{j} are disjoint whenever $|i-j| \geq 3$.

Abstract Snake Graphs

Definition

A snake graph \mathcal{G} is a connected graph in \mathbb{R}^{2} consisting of a finite sequence of tiles $G_{1}, G_{2}, \ldots, G_{d}$ with $d \geq 1$, such that for each $i=1, \ldots, d-1$
(i) G_{i} and G_{i+1} share exactly one edge e_{i} and this edge is either the north edge of G_{i} and the south edge of G_{i+1} or the east edge of G_{i} and the west edge of G_{i+1}.
(ii) G_{i} and G_{j} have no edge in common whenever $|i-j| \geq 2$.
(ii) G_{i} and G_{j} are disjoint whenever $|i-j| \geq 3$.

Example

Band and snake graph calculus

I. Canakci,

R. Schiffler

Example

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs ane Future Directions

Band and snake graph calculus

I. Canakci,

R. Schiffler

Example

Motivation

Abstract Snake Graphs

Relation to

 Cluster AlgebrasBand Graphs and Future Directions

\mathcal{G}_{1}

\mathcal{G}_{2}

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs and Future Directions

Example

Notation

- $\mathcal{G}=\left(G_{1}, G_{2}, \ldots, G_{d}\right)$
- We denote by e_{i} the interior edge between the tiles G_{i} and G_{i+1}
I. Canakci,
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Example

Notation

- $\mathcal{G}=\left(G_{1}, G_{2}, \ldots, G_{d}\right)$
- $\mathcal{G}[i, i+t]=\left(G_{i}, G_{i+1}, \ldots, G_{i+t}\right)$
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Example

Notation

- $\mathcal{G}=\left(G_{1}, G_{2}, \ldots, G_{d}\right)$
- $\mathcal{G}[i, i+t]=\left(G_{i}, G_{i+1}, \ldots, G_{i+t}\right)$
- We denote by e_{i} the interior edge between the tiles G_{i} and G_{i+1}.

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_{1} and \mathcal{G}_{2}.

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} have a local overlap \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_{1} and \mathcal{G}_{2}.
Notation: $\mathcal{G} \cong \mathcal{G}_{1}[s, \cdots, t] \cong \mathcal{G}_{2}\left[s^{\prime}, \cdots, t^{\prime}\right]$.
Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_{1} and \mathcal{G}_{2}.

- Note that two snake graphs may have several overlaps.

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition
A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example
A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Sign Function

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_{1} and \mathcal{G}_{2}

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Example

\mathcal{G}_{1} and \mathcal{G}_{2} cross at the overlap \mathcal{G}.

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Example

\mathcal{G}_{1} and \mathcal{G}_{2} cross at the overlap \mathcal{G}.

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Example

\mathcal{G}_{1} and \mathcal{G}_{2} cross at the overlap \mathcal{G}.

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Example

\mathcal{G}_{1} and \mathcal{G}_{2} cross at the overlap \mathcal{G}.

Crossing

Definition

We say that \mathcal{G}_{1} and \mathcal{G}_{2} cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_{1}\left(e_{s-1}\right)=-f_{1}\left(e_{t}\right)$ if $s>1, t<d$
- $f_{1}\left(e_{s-1}\right)=f_{2}\left(e_{t^{\prime}}^{\prime}\right)$ if $s>1, t<d, s^{\prime}=1, t^{\prime}<d^{\prime}$

Example

\mathcal{G}_{1} and \mathcal{G}_{2} cross at the overlap \mathcal{G}.

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Example: Resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Example: Resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Example: Resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$

\mathcal{G}_{4}

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Example: Resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs and Future Directions

Example: Resolution (Continued)

\mathcal{G}_{5}

Band and snake
graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs and Future Directions

Example: Resolution (Continued)

Band and snake
graph calculus
I. Canakci,
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs and Future Directions

Example: Resolution (Continued)

Resolution: Definition

Assumption: We will assume that $s>1, t<d, s^{\prime}=1$ and $t^{\prime}<d^{\prime}$. For all other cases, see [CS].

We define four connected subgraphs as follows.

Resolution: Definition

Assumption: We will assume that $s>1, t<d, s^{\prime}=1$ and $t^{\prime}<d^{\prime}$. For all other cases, see [CS].

We define four connected subgraphs as follows.

Resolution: Definition

Assumption: We will assume that $s>1, t<d, s^{\prime}=1$ and $t^{\prime}<d^{\prime}$. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $\mathcal{G}_{3}=\mathcal{G}_{1}[1, t] \cup \mathcal{G}_{2}\left[t^{\prime}+1, d^{\prime}\right]$,
- $\mathcal{G}_{4}=\mathcal{G}_{2}\left[1, t^{\prime}\right] \cup \mathcal{G}_{1}[t+1, d]$,

Resolution: Definition

Assumption: We will assume that $s>1, t<d, s^{\prime}=1$ and $t^{\prime}<d^{\prime}$. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $\mathcal{G}_{3}=\mathcal{G}_{1}[1, t] \cup \mathcal{G}_{2}\left[t^{\prime}+1, d^{\prime}\right]$,
- $\mathcal{G}_{4}=\mathcal{G}_{2}\left[1, t^{\prime}\right] \cup \mathcal{G}_{1}[t+1, d]$,
- $\mathcal{G}_{5}=\mathcal{G}_{1}[1, k]$ where $k<s-1$ is the largest integer such that the sign on the interior edge between tiles k and $k+1$ is the same as the sign on the interior edge of tiles $s-1$ and s,
- $\mathcal{G}_{6}=\overline{\mathcal{G}}_{2}\left[d^{\prime}, t^{\prime}+1\right] \cup \mathcal{G}_{1}[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G_{t^{\prime}+1}^{\prime}$ if G_{t+1} is north of G_{t} in \mathcal{G}_{1}.

Resolution: Definition

Assumption: We will assume that $s>1, t<d, s^{\prime}=1$ and $t^{\prime}<d^{\prime}$. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $\mathcal{G}_{3}=\mathcal{G}_{1}[1, t] \cup \mathcal{G}_{2}\left[t^{\prime}+1, d^{\prime}\right]$,
- $\mathcal{G}_{4}=\mathcal{G}_{2}\left[1, t^{\prime}\right] \cup \mathcal{G}_{1}[t+1, d]$,
- $\mathcal{G}_{5}=\mathcal{G}_{1}[1, k]$ where $k<s-1$ is the largest integer such that the sign on the interior edge between tiles k and $k+1$ is the same as the sign on the interior edge of tiles $s-1$ and s,
- $\mathcal{G}_{6}=\overline{\mathcal{G}}_{2}\left[d^{\prime}, t^{\prime}+1\right] \cup \mathcal{G}_{1}[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G_{t^{\prime}+1}^{\prime}$ if G_{t+1} is north of G_{t} in \mathcal{G}_{1}.

Definition

The resolution of the crossing of \mathcal{G}_{1} and \mathcal{G}_{2} in \mathcal{G} is defined to be $\left(\mathcal{G}_{3} \sqcup \mathcal{G}_{4}, \mathcal{G}_{5} \sqcup \mathcal{G}_{6}\right)$ and is denoted by $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$.

Bijection of Perfect Matchings

> Definition
> A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

Bijection of Perfect Matchings

Definition
A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

Bijection of Perfect Matchings

Definition

A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

Bijection of Perfect Matchings

Definition

A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

- Let Match (G) denote the set of all perfect matchings of the graph G and
$\operatorname{Match}\left(\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)=\operatorname{Match}\left(\mathcal{G}_{3} \sqcup \mathcal{G}_{4}\right) \cup \operatorname{Match}\left(\mathcal{G}_{5} \sqcup \mathcal{G}_{6}\right)$.

Bijection of Perfect Matchings

Definition

A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

- Let Match (G) denote the set of all perfect matchings of the graph G and
$\operatorname{Match}\left(\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)=\operatorname{Match}\left(\mathcal{G}_{3} \sqcup \mathcal{G}_{4}\right) \cup \operatorname{Match}\left(\mathcal{G}_{5} \sqcup \mathcal{G}_{6}\right)$.
Theorem (CS)
Let $\mathcal{G}_{1}, \mathcal{G}_{2}$ be two snake graphs. Then there is a bijection

$$
\operatorname{Match}\left(\mathcal{G}_{1} \sqcup \mathcal{G}_{2}\right) \longrightarrow \operatorname{Match}\left(\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)
$$

Bijection of Perfect Matchings

Definition

A perfect matching P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

- Let Match (G) denote the set of all perfect matchings of the graph G and
$\operatorname{Match}\left(\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)=\operatorname{Match}\left(\mathcal{G}_{3} \sqcup \mathcal{G}_{4}\right) \cup \operatorname{Match}\left(\mathcal{G}_{5} \sqcup \mathcal{G}_{6}\right)$.
Theorem (CS)
Let $\mathcal{G}_{1}, \mathcal{G}_{2}$ be two snake graphs. Then there is a bijection

$$
\text { Match }\left(\mathcal{G}_{1} \sqcup \mathcal{G}_{2}\right) \longrightarrow \operatorname{Match}\left(\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)
$$

- Note that we construct the bijection map and its inverse map explicitly.

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

 Cluster AlgebrasBand Graphs and
Future Directions
Band Graphs and
Future Directions

Band and snake graph calculus
I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to

 Cluster Algebras
Surface Example

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

 Cluster Algebras
Band Graphs and

 Future Directions
Surface Example

Band and snake graph calculus

I. Canakci,

R. Schiffler

Motivation

Abstract Snake

 Graphs
Relation to

 Cluster Algebras

Surface Example

\mathcal{G}_{2}

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

 Cluster Algebras
Band Graphs and

 Future Directions
Surface Example

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
 Abstract Snake

 Graphs
Relation to

 Cluster Algebras

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

 Cluster Algebras

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

 Cluster Algebras

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Cluster Algebras

I. Canakci,

R. Schiffler

Motivation

 Graphs

Relation to

 Cluster Algebras

Band and snake
graph calculus
I. Canakci,
R. Schiffler

Motivation

Abstract Snake

 Graphs
Relation to

 Cluster Algebras
Surface Example

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation
Abstract Smake Graphs

Relation to

 Cluster Algebras
Relation to Cluster Algebras

Let γ_{1} and γ_{2} be two arcs and \mathcal{G}_{1} and \mathcal{G}_{2} their corresponding snake graphs.

Theorem (CS)If γ_{1} and γ_{2} cross, then the snake graphs of the four arcs obtained by smoothing the crossing are given by the resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ of the crossing of the snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} at the overlap \mathcal{G}.

Relation to Cluster Algebras

Let γ_{1} and γ_{2} be two arcs and \mathcal{G}_{1} and \mathcal{G}_{2} their corresponding snake graphs.
Theorem (CS)
γ_{1} and γ_{2} cross if and only if \mathcal{G}_{1} and \mathcal{G}_{2} cross.
Theorem (CS)
If γ_{1} and γ_{2} cross, then the snake graphs of the four arcs obtained by
smoothing the crossing are given by the resolution Reso($\left.\mathcal{G}_{1} . \mathcal{G}_{2}\right)$ of the crossing of the snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} at the overlap \mathcal{G}.
\qquad
We do not assume that γ_{1} and γ_{2} cross only once. If the arcs cross multinle times the theorem can he used to resolve anv of the
crossings.

Relation to Cluster Algebras

Let γ_{1} and γ_{2} be two arcs and \mathcal{G}_{1} and \mathcal{G}_{2} their corresponding snake graphs.
Theorem (CS)
γ_{1} and γ_{2} cross if and only if \mathcal{G}_{1} and \mathcal{G}_{2} cross.
Theorem (CS)
If γ_{1} and γ_{2} cross, then the snake graphs of the four arcs obtained by smoothing the crossing are given by the resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ of the crossing of the snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} at the overlap \mathcal{G}.

Relation to Cluster Algebras

Let γ_{1} and γ_{2} be two arcs and \mathcal{G}_{1} and \mathcal{G}_{2} their corresponding snake graphs.
Theorem (CS)
γ_{1} and γ_{2} cross if and only if \mathcal{G}_{1} and \mathcal{G}_{2} cross.
Theorem (CS)
If γ_{1} and γ_{2} cross, then the snake graphs of the four arcs obtained by smoothing the crossing are given by the resolution $\operatorname{Res}_{\mathcal{G}}\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ of the crossing of the snake graphs \mathcal{G}_{1} and \mathcal{G}_{2} at the overlap \mathcal{G}.

Remark

We do not assume that γ_{1} and γ_{2} cross only once. If the arcs cross multiple times the theorem can be used to resolve any of the crossings.

Band and snake graph calculus
I. Canakci,
R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].
Corollary (CS)
Let γ_{1} and γ_{2} be two arcs which cross and let $\left(\gamma_{3}, \gamma_{4}\right)$ and $\left(\gamma_{5}, \gamma\right.$
the two pairs of arcs obtained by smoothing the crossing. Then where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G}.

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].

Corollary (CS)

Let γ_{1} and γ_{2} be two arcs which cross and let $\left(\gamma_{3}, \gamma_{4}\right)$ and $\left(\gamma_{5}, \gamma_{6}\right)$ be the two pairs of arcs obtained by smoothing the crossing. Then

$$
x_{\gamma_{1}} x_{\gamma_{2}}=x_{\gamma_{3}} x_{\gamma_{4}}+y(\tilde{\mathcal{G}}) x_{\gamma_{5}} x_{\gamma_{6}}
$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G}.

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].

Corollary (CS)

Let γ_{1} and γ_{2} be two arcs which cross and let $\left(\gamma_{3}, \gamma_{4}\right)$ and $\left(\gamma_{5}, \gamma_{6}\right)$ be the two pairs of arcs obtained by smoothing the crossing. Then

$$
x_{\gamma_{1}} x_{\gamma_{2}}=x_{\gamma_{3}} x_{\gamma_{4}}+y(\tilde{\mathcal{G}}) x_{\gamma_{5}} x_{\gamma_{6}}
$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G}.

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].

Corollary (CS)

Let γ_{1} and γ_{2} be two arcs which cross and let $\left(\gamma_{3}, \gamma_{4}\right)$ and $\left(\gamma_{5}, \gamma_{6}\right)$ be the two pairs of arcs obtained by smoothing the crossing. Then

$$
x_{\gamma_{1}} x_{\gamma_{2}}=x_{\gamma_{3}} x_{\gamma_{4}}+y(\tilde{\mathcal{G}}) x_{\gamma_{5}} x_{\gamma_{6}}
$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G}.

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW].

Corollary (CS)

Let γ_{1} and γ_{2} be two arcs which cross and let $\left(\gamma_{3}, \gamma_{4}\right)$ and $\left(\gamma_{5}, \gamma_{6}\right)$ be the two pairs of arcs obtained by smoothing the crossing. Then

$$
x_{\gamma_{1}} x_{\gamma_{2}}=x_{\gamma_{3}} x_{\gamma_{4}}+y(\tilde{\mathcal{G}}) x_{\gamma_{5}} x_{\gamma_{6}}
$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G}.

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Question: Is this construction straightforward?

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Question: Is this construction straightforward?

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Question: Is this construction straightforward? Answer: No!

Band Graphs

- I am currently working on extending our combinatorial formulas to band graphs associated to closed loops in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Question: Is this construction straightforward? Answer: No!

The difficulty here is to show the 'skein relations' for self-crossing arcs.

Band and snake

 graph calculusI. Canakci,
R. Schiffler

Motivation
Abstract Snake Graphs

Relation to

Cluster Algebras
Band Graphs and Future Directions

Thank you!

Bibliography

R I．Canakci，R．Schiffler Snake graph calculus and cluster algebras from surfaces，to appear in Journal of Algebra，preprint available at arxiv：1209．4617v1．
S．Fomin，M．Shapiro and D．Thurston，Cluster algebras and triangulated surfaces．Part I：Cluster complexes，Acta Math． 201 （2008），83－146．

S．Fomin and A．Zelevinsky，Cluster algebras I：Foundations，J．Amer． Math．Soc． 15 （2002），497－529．

五
G．Musiker，R．Schiffler and L．Williams，Positivity for cluster algebras from surfaces，Adv．Math．227，（2011），2241－2308．
國 G．Musiker，R．Schiffler and L．Williams，Bases for cluster algebras from surfaces，to appear in Compos．Math．
目 G．Musiker and L．Williams，Matrix formulae and skein relations for cluster algebras from surfaces，preprint，arXiv：1108．3382．

