> I. Canakci, R. Schiffler

Motivation

Abstract Snak Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

On surface cluster algebras: Band and snake graph calculus

Ilke Canakci¹ Ralf Schiffler¹

¹Department of Mathematics University of Connecticut

Maurice Auslander Distinguished Lectures and International Conference April 18 - 23, 2013

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by **Fomin and Zelevinsky** in [FZ1] form a class of combinatorially defined commutative algebras, and the set of **generators** of a cluster algebra, **cluster variables**, is obtained by an iterative process.
 - with boundary that has finitely many marked points.

- Guster variables are in bijection with certain curves [FST], called arcs.
- The authors in [MSW] associates a connected graph, called the snake graph to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs.
- The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

- Cluster variables are in bijection with certain curves [FST], called arcs.
- The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by **Fomin and Zelevinsky** in [FZ1] form a class of combinatorially defined commutative algebras, and the set of **generators** of a cluster algebra, **cluster variables**, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

 Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

 Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

 Cluster variables are in bijection with certain curves [FST], called arcs. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

• Cluster variables are in bijection with certain curves [FST], called **arcs**. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

• Cluster variables are in bijection with certain curves [FST], called **arcs**. Two crossing arcs satisfy the skein relations, [MW].

• The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by Fomin and Zelevinsky in [FZ1] form a class of combinatorially defined commutative algebras, and the set of generators of a cluster algebra, cluster variables, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

 $x_{\gamma_1}x_{\gamma_2} = *x_{\gamma_3}x_{\gamma_4} + *x_{\gamma_5}x_{\gamma_6}$ Skein relation ([MW])

- Cluster variables are in bijection with certain curves [FST], called **arcs**. Two crossing arcs satisfy the skein relations, [MW].
- The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Background

- Cluster algebras, introduced by **Fomin and Zelevinsky** in [FZ1] form a class of combinatorially defined commutative algebras, and the set of **generators** of a cluster algebra, **cluster variables**, is obtained by an iterative process.
- A surface cluster algebra $\mathcal{A}(S, M)$ is associated to a surface S with boundary that has finitely many marked points.

 $\begin{aligned} x_{\gamma_1} x_{\gamma_2} &= * x_{\gamma_3} x_{\gamma_4} + * x_{\gamma_5} x_{\gamma_6} \\ \text{Skein relation ([MW])} \end{aligned}$

- Cluster variables are in bijection with certain curves [FST], called **arcs**. Two crossing arcs satisfy the skein relations, [MW].
- The authors in [MSW] associates a connected graph, called the **snake graph** to each arc in the surface to obtain a direct formula for cluster variables of surface cluster algebras.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

Question

"How much can we recover from snake graphs themselves?" In particular,

. When do the two arcs corresponding to two snake graphs cross?

. What are the snake graphs corresponding to the skein relations?

A I > A = A A

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

cluster variable $\stackrel{\text{[FST]}}{\longleftrightarrow}$ arc

Question

"How much can we recover from snake graphs themselves?" In particular,

When do the two arcs corresponding to two snake graphs cross?

• What are the snake graphs corresponding to the skein relations?

A (10) F (10)

Motivation

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

 $\mathsf{cluster variable} \quad \stackrel{\mathsf{(FST)}}{\longleftrightarrow} \quad \mathsf{arc} \quad \stackrel{\mathsf{(MSW)}}{\longrightarrow} \quad \mathsf{snake \ graph}$

Question

"How much can we recover from snake graphs themselves?" In particular,

When do the two arcs corresponding to two snake graphs cross?
What are the snake graphs corresponding to the skein relations?

- The second sec

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

 $\mathsf{cluster} \ \mathsf{variable} \ \stackrel{[\mathsf{FST}]}{\longleftrightarrow} \ \ \mathsf{arc} \ \ \stackrel{[\mathsf{MSW}]}{\longrightarrow} \ \ \mathsf{snake} \ \mathsf{graph}$

Question

"How much can we recover from snake graphs themselves?"

In particular,

When do the two arcs corresponding to two snake graphs cross?

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

 $\mathsf{cluster variable} \quad \stackrel{\scriptscriptstyle [\mathsf{FST}]}{\longleftrightarrow} \quad \mathsf{arc} \quad \stackrel{\scriptscriptstyle [\mathsf{MSW}]}{\longrightarrow} \quad \mathsf{snake \ graph}$

Question

"How much can we recover from snake graphs themselves?" In particular,

• When do the two arcs corresponding to two snake graphs cross?

• What are the snake graphs corresponding to the skein relations?

- The second sec

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

 $\mathsf{cluster variable} \quad \stackrel{\scriptscriptstyle{[FST]}}{\longleftrightarrow} \quad \mathsf{arc} \quad \stackrel{\scriptscriptstyle{[MSW]}}{\longrightarrow} \quad \mathsf{snake \ graph}$

Question

"How much can we recover from snake graphs themselves?" In particular,

- When do the two arcs corresponding to two snake graphs cross?
- What are the snake graphs corresponding to the skein relations?

- The second sec

Motivation

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Motivation

Let $\mathcal{A}(S, M)$ cluster algebra associated to a surface (S, M).

We have the following situation:

 $\mathsf{cluster variable} \quad \stackrel{\scriptscriptstyle{[FST]}}{\longleftrightarrow} \quad \mathsf{arc} \quad \stackrel{\scriptscriptstyle{[MSW]}}{\longrightarrow} \quad \mathsf{snake \ graph}$

Question

"How much can we recover from snake graphs themselves?" In particular,

- When do the two arcs corresponding to two snake graphs cross?
- What are the snake graphs corresponding to the skein relations?

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Abstract Snake Graphs

Definition

A snake graph G is a connected graph in \mathbb{R}^2 consisting of a finite sequence of tiles G_1, G_2, \ldots, G_d with $d \ge 1$, such that for each $i = 1, \ldots, d-1$

- (i) G_i and G_{i+1} share exactly one edge e_i and this edge is either the north edge of G_i and the south edge of G_{i+1} or the east edge of G_i and the west edge of G_{i+1} .
- (ii) G_i and G_j have no edge in common whenever $|i j| \ge 2$.
- (ii) G_i and G_j are disjoint whenever $|i j| \ge 3$.

Example

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Abstract Snake Graphs

Definition

A snake graph G is a connected graph in \mathbb{R}^2 consisting of a finite sequence of tiles G_1, G_2, \ldots, G_d with $d \ge 1$, such that for each $i = 1, \ldots, d-1$

- (i) G_i and G_{i+1} share exactly one edge e_i and this edge is either the north edge of G_i and the south edge of G_{i+1} or the east edge of G_i and the west edge of G_{i+1} .
- (ii) G_i and G_j have no edge in common whenever $|i j| \ge 2$.
- (ii) G_i and G_j are disjoint whenever $|i j| \ge 3$.

Example

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Abstract Snake Graphs

Definition

A snake graph G is a connected graph in \mathbb{R}^2 consisting of a finite sequence of tiles G_1, G_2, \ldots, G_d with $d \ge 1$, such that for each $i = 1, \ldots, d-1$

- (i) G_i and G_{i+1} share exactly one edge e_i and this edge is either the north edge of G_i and the south edge of G_{i+1} or the east edge of G_i and the west edge of G_{i+1} .
- (ii) G_i and G_j have no edge in common whenever $|i j| \ge 2$.
- (ii) G_i and G_j are disjoint whenever $|i j| \ge 3$.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example

Notation

• $G = (G_1, G_2, \dots, G_d)$ • $G[i, i+1] = (G_0, G_0, i_0, \dots, G_{n+1})$ • We denote by e_i the interior edge between the tiles G_i and G_{i+1} .

・ロト ・回ト ・ヨト ・ヨト

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example

 \mathcal{G}_2

Notation

• $\mathcal{G} = (G_1, G_2, \ldots, G_d)$

G

• $G[i, i+t] = (G_i, G_{i+1}, \dots, G_{i+t})$

. We denote by e: the interior edge between the tiles G and Gan

イロト イヨト イヨト イヨト

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example

Notation

- $G = (G_1, G_2, ..., G_d)$
- $G[i, i+t] = (G_i, G_{i+1}, \dots, G_{i+t})$
- We denote by e_i the interior edge between the tiles G_i and G_{i+1}.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example

Notation

- $\mathcal{G} = (G_1, G_2, \ldots, G_d)$
- $G[i, i+t] = (G_i, G_{i+1}, ..., G_{i+t})$
- We denote by e_i the interior edge between the tiles G_i and G_{i+1} .

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example

Notation

- $\mathcal{G} = (G_1, G_2, \ldots, G_d)$
- $G[i, i + t] = (G_i, G_{i+1}, ..., G_{i+t})$
- We denote by e_i the interior edge between the tiles G_i and G_{i+1} .

• • • • • • • • • • • • •

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

lotation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

- N

< 🗇 🕨

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

< ロ > < 同 > < 三 > < 三

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

< ロ > < 同 > < 三 > < 三

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

イロト イポト イラト イラ

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t']$. Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

Note that two snake graphs may have several overlaps

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

• Note that two snake graphs may have several overlaps

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Local Overlaps

Definition

We say two snake graphs \mathcal{G}_1 and \mathcal{G}_2 have a **local overlap** \mathcal{G} if \mathcal{G} is a maximal subgraph contained in both \mathcal{G}_1 and \mathcal{G}_2 .

Notation: $\mathcal{G} \cong \mathcal{G}_1[s, \cdots, t] \cong \mathcal{G}_2[s', \cdots, t'].$

Example

Therefore \mathcal{G} is a local overlap of \mathcal{G}_1 and \mathcal{G}_2 .

• Note that two snake graphs may have several overlaps.

I. Canakci, R. Schiffler

Sign Function

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+, -\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example A sign function on \mathcal{G}_1 and \mathcal{G}_2

イロト イポト イラト イラト

I. Canakci, R. Schiffler

Sign Function

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra:

Band Graphs and Future Directions

Definition

A sign function f on a snake graph \mathcal{G} is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_1 and \mathcal{G}_2

- 不同 ト イモト イモト
I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

A sign function on \mathcal{G}_1 and \mathcal{G}_2

- 不同 ト イモト イモト

I. Canakci. R. Schiffler

Abstract Snake Graphs

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of \mathcal{G} to $\{+,-\}$ such that on every tile in \mathcal{G} the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

7 / 18

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Sign Function

Definition

A sign function f on a snake graph G is a map f from the set of edges of G to $\{+, -\}$ such that on every tile in G the north and the west edge have the same sign, the south and the east edge have the same sign and the sign on the north edge is opposite to the sign on the south edge.

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

Example

 \mathcal{G}_1 and \mathcal{G}_2 cross at the overlap \mathcal{G} .

Crossing

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Crossing

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e_{t'}')$ if s > 1, t < d, s' = 1, t' < d'

Example

I. Canakci. R. Schiffler

Abstract Snake Graphs

Crossing

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if s > 1, t < d, s' = 1, t' < d'

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if $s > 1, \ t < d, \ s' = 1, \ t' < d'$

Example

 \mathcal{G}_1 and \mathcal{G}_2 cross at the overlap \mathcal{G} .

Crossing

I. Canakci. R. Schiffler

Abstract Snake Graphs

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if s > 1, t < d, s' = 1, t' < d'

Example

 \mathcal{G}_1 and \mathcal{G}_2 cross at the overlap \mathcal{G} .

Crossing

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

Crossing

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if $s > 1, \ t < d, \ s' = 1, \ t' < d'$

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

Crossing

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if $s > 1, \ t < d, \ s' = 1, \ t' < d'$

Example

I. Canakci. R. Schiffler

Abstract Snake Graphs

Definition

We say that \mathcal{G}_1 and \mathcal{G}_2 cross in a local overlap \mathcal{G} if one of the following conditions hold.

Crossing

- $f_1(e_{s-1}) = -f_1(e_t)$ if s > 1, t < d
- $f_1(e_{s-1}) = f_2(e'_{t'})$ if s > 1, t < d, s' = 1, t' < d'

Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

 \mathcal{G}_2

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

 \mathcal{G}_4

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

 \mathcal{G}_4

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

 \mathcal{G}_2

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Example: Resolution (Continued)

I. Canakci, R. Schiffler

Abstract Snake Graphs

Example: Resolution (Continued)

I. Canakci, R. Schiffler

Abstract Snake Graphs

Example: Resolution (Continued)

I. Canakci, R. Schiffler (U. Conn.)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Resolution: Definition

Assumption: We will assume that s > 1, t < d, s' = 1 and t' < d'. For all other cases, see [CS].

Ne define four connected subgraphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$
- $\mathcal{G}_4 = \mathcal{G}_2[1,t'] \cup \mathcal{G}_1[t+1,d],$
- on the interior edge of tiles $s \sim 1$ and s_1
- $\begin{aligned} &\mathcal{G}_{0} := \mathcal{G}_{0}[d^{2}, t^{2} \mapsto 1] \cup \mathcal{G}_{1}[t \mapsto 1, d] \text{ where the two subgraphs are glued } \\ &\text{ along the south } \mathcal{G}_{0,1} \text{ and the north of } \mathcal{G}_{0,2} \cup f^{2} \mathcal{G}_{0,2} \text{ is north of } \mathcal{G}_{1} \text{ in } \mathcal{G}_{0,2} \text{ or } \mathcal{G}_{0,2} \text{ o$

Definition

The resolution of the crossing of \mathcal{G}_1 and \mathcal{G}_2 in \mathcal{G} is defined to be $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$ and is denoted by Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Resolution: Definition

Assumption: We will assume that s > 1, t < d, s' = 1 and t' < d'. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$
- $\mathcal{G}_4 = \mathcal{G}_2[1, t'] \cup \mathcal{G}_1[t+1, d],$
- G₅ = G₁[1, k] where k < s − 1 is the largest integer such that the sign on the interior edge between tiles k and k + 1 is the same as the sign on the interior edge of tiles s − 1 and s,
- $\mathcal{G}_6 = \overline{\mathcal{G}}_2[d', t'+1] \cup \mathcal{G}_1[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G'_{t'+1}$ if G_{t+1} is north of G_t in \mathcal{G}_1 .

Definition

The resolution of the crossing of \mathcal{G}_1 and \mathcal{G}_2 in \mathcal{G} is defined to be $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$ and is denoted by Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Resolution: Definition

Assumption: We will assume that s > 1, t < d, s' = 1 and t' < d'. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$
- $G_4 = G_2[1, t'] \cup G_1[t+1, d],$
- G₅ = G₁[1, k] where k < s − 1 is the largest integer such that the sign on the interior edge between tiles k and k + 1 is the same as the sign on the interior edge of tiles s − 1 and s,
- $\mathcal{G}_6 = \overline{\mathcal{G}}_2[d', t'+1] \cup \mathcal{G}_1[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G'_{t'+1}$ if G_{t+1} is north of G_t in \mathcal{G}_1 .

Definition

The **resolution of the crossing** of \mathcal{G}_1 and \mathcal{G}_2 in \mathcal{G} is defined to be $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$ and is denoted by Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Resolution: Definition

Assumption: We will assume that s > 1, t < d, s' = 1 and t' < d'. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$
- $G_4 = G_2[1, t'] \cup G_1[t+1, d],$
- $G_5 = G_1[1, k]$ where k < s 1 is the largest integer such that the sign on the interior edge between tiles k and k + 1 is the same as the sign on the interior edge of tiles s 1 and s,
- $\mathcal{G}_6 = \overline{\mathcal{G}}_2[d', t'+1] \cup \mathcal{G}_1[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G'_{t'+1}$ if G_{t+1} is north of G_t in \mathcal{G}_1 .

Definition

The **resolution of the crossing** of \mathcal{G}_1 and \mathcal{G}_2 in \mathcal{G} is defined to be $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$ and is denoted by Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$.

(日) (同) (三) (三)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebra

Band Graphs and Future Directions

Resolution: Definition

Assumption: We will assume that s > 1, t < d, s' = 1 and t' < d'. For all other cases, see [CS].

We define four connected subgraphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$
- $G_4 = G_2[1, t'] \cup G_1[t+1, d],$
- $G_5 = G_1[1, k]$ where k < s 1 is the largest integer such that the sign on the interior edge between tiles k and k + 1 is the same as the sign on the interior edge of tiles s 1 and s,
- $\mathcal{G}_6 = \overline{\mathcal{G}}_2[d', t'+1] \cup \mathcal{G}_1[t+1, d]$ where the two subgraphs are glued along the south G_{t+1} and the north of $G'_{t'+1}$ if G_{t+1} is north of G_t in \mathcal{G}_1 .

Definition

The **resolution of the crossing** of \mathcal{G}_1 and \mathcal{G}_2 in \mathcal{G} is defined to be $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$ and is denoted by Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$.

(日) (同) (三) (三)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

Let Match(G) denote the set of all perfect matchings of the graph G and graph G and $Match(Res_{\mathcal{G}}(G_1, G_2)) =: Match(G_2 \cup G_4) \cup Match(G_2 \cup G_6)$.

Theorem (CS) Let G_1, G_2 be two snake graphs. Then there is a bijection

 $\mathsf{Match}\,(\mathcal{G}_1 \sqcup \mathcal{G}_2) \longrightarrow \mathsf{Match}\,(\mathsf{Res}_{\,\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2))$

ote that we construct the bijection map and its inverse map

< ロ > < 同 > < 三 > < 三
I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

₽

 Let Match (G) denote the set of all perfect matchings of the graph G and Match (Res _G(G₁, G₂)) = Match (G₃ ⊔ G₄) ∪ Match (G₅ ⊔ G₆).

Let G_1, G_2 be two snake graphs. Then there is a bijection

 $\mathsf{Match}\left(\mathcal{G}_1\sqcup\mathcal{G}_2
ight)\longrightarrow\mathsf{Match}\left(\mathsf{Res}_{\mathcal{G}}(\mathcal{G}_1,\mathcal{G}_2)
ight)$

< ロ > < 同 > < 三 > < 三

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

• Let Match (G) denote the set of all perfect matchings of the graph G and Match (Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)) = Match (\mathcal{G}_3 \sqcup \mathcal{G}_4) \cup Match (\mathcal{G}_5 \sqcup \mathcal{G}_6).$

Theorem (CS)

Let $\mathcal{G}_1, \mathcal{G}_2$ be two snake graphs. Then there is a bijection

 $\mathsf{Match}\,(\mathcal{G}_1\sqcup\mathcal{G}_2)\longrightarrow\mathsf{Match}\,(\mathsf{Res}_{\,\mathcal{G}}(\mathcal{G}_1,\mathcal{G}_2))$

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

 Let Match (G) denote the set of all perfect matchings of the graph G and Match (Res _G(G₁, G₂)) = Match (G₃ ⊔ G₄) ∪ Match (G₅ ⊔ G₆).

Theorem (CS)

Let $\mathcal{G}_1, \mathcal{G}_2$ be two snake graphs. Then there is a bijection

 $\mathsf{Match}\,(\mathcal{G}_1\sqcup\mathcal{G}_2)\longrightarrow\mathsf{Match}\,(\mathsf{Res}_{\,\mathcal{G}}(\mathcal{G}_1,\mathcal{G}_2))$

Note that we construct the bijection map and its inverse map

イロト イポト イラト イラ

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

 Let Match (G) denote the set of all perfect matchings of the graph G and Match (Res _G(G₁, G₂)) = Match (G₃ ⊔ G₄) ∪ Match (G₅ ⊔ G₆).

Theorem (CS)

Let $\mathcal{G}_1, \mathcal{G}_2$ be two snake graphs. Then there is a bijection

 $\mathsf{Match}\,(\mathcal{G}_1\sqcup\mathcal{G}_2)\longrightarrow\mathsf{Match}\,(\mathsf{Res}_{\,\mathcal{G}}(\mathcal{G}_1,\mathcal{G}_2))$

 Note that we construct the bijection map and its inverse map explicitly.

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Bijection of Perfect Matchings

Definition

A **perfect matching** P of a graph G is a subset of the set of edges of G such that each vertex of G is incident to exactly one edge in P.

• Let Match (G) denote the set of all perfect matchings of the graph G and Match (Res $_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$) = Match ($\mathcal{G}_3 \sqcup \mathcal{G}_4$) \cup Match ($\mathcal{G}_5 \sqcup \mathcal{G}_6$).

Theorem (CS)

Let $\mathcal{G}_1, \mathcal{G}_2$ be two snake graphs. Then there is a bijection

$$\mathsf{Match}\left(\mathcal{G}_1\sqcup\mathcal{G}_2
ight)\longrightarrow\mathsf{Match}\left(\mathsf{Res}_{\,\mathcal{G}}(\mathcal{G}_1,\mathcal{G}_2)
ight)$$

• Note that we construct the bijection map and its inverse map explicitly.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Surface Example

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Relation to Cluster Algebras

Let γ_1 and γ_2 be two arcs and \mathcal{G}_1 and \mathcal{G}_2 their corresponding snake graphs.

Theorem (CS

 γ_1 and γ_2 cross if and only if \mathcal{G}_1 and \mathcal{G}_2 cross.

Theorem (CS)

If γ_1 and γ_2 cross, then the snake graphs of the four arcs obtained by **smoothing the crossing** are given by the **resolution** $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$ of the crossing of the snake graphs \mathcal{G}_1 and \mathcal{G}_2 at the overlap \mathcal{G} .

Remark

We do not assume that γ_1 and γ_2 cross only once. If the arcs cross multiple times the theorem can be used to resolve any of the crossings.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Relation to Cluster Algebras

Let γ_1 and γ_2 be two arcs and \mathcal{G}_1 and \mathcal{G}_2 their corresponding snake graphs.

Theorem (CS)

 γ_1 and γ_2 cross if and only if \mathcal{G}_1 and \mathcal{G}_2 cross.

Theorem (CS)

If γ_1 and γ_2 cross, then the snake graphs of the four arcs obtained by **smoothing the crossing** are given by the **resolution** Res_{*G*}($\mathcal{G}_1, \mathcal{G}_2$) of the crossing of the snake graphs \mathcal{G}_1 and \mathcal{G}_2 at the overlap \mathcal{G} .

Remark

We do not assume that γ_1 and γ_2 cross only once. If the arcs cross multiple times the theorem can be used to resolve any of the crossings.

> I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Relation to Cluster Algebras

Let γ_1 and γ_2 be two arcs and \mathcal{G}_1 and \mathcal{G}_2 their corresponding snake graphs.

Theorem (CS)

 γ_1 and γ_2 cross if and only if \mathcal{G}_1 and \mathcal{G}_2 cross.

Theorem (CS)

If γ_1 and γ_2 cross, then the snake graphs of the four arcs obtained by **smoothing the crossing** are given by the **resolution** $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$ of the crossing of the snake graphs \mathcal{G}_1 and \mathcal{G}_2 at the overlap \mathcal{G} .

Remark

We do not assume that γ_1 and γ_2 cross only once. If the arcs cross multiple times the theorem can be used to resolve any of the crossings.

> I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Relation to Cluster Algebras

Let γ_1 and γ_2 be two arcs and \mathcal{G}_1 and \mathcal{G}_2 their corresponding snake graphs.

Theorem (CS)

 γ_1 and γ_2 cross if and only if \mathcal{G}_1 and \mathcal{G}_2 cross.

Theorem (CS)

If γ_1 and γ_2 cross, then the snake graphs of the four arcs obtained by **smoothing the crossing** are given by the **resolution** $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$ of the crossing of the snake graphs \mathcal{G}_1 and \mathcal{G}_2 at the overlap \mathcal{G} .

Remark

We do not assume that γ_1 and γ_2 cross only once. If the arcs cross multiple times the theorem can be used to resolve any of the crossings.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW]. Corollary (CS) $% \left(\left(CS\right) \right) =0$

Let γ_1 and γ_2 be two arcs which cross and let (γ_3, γ_4) and (γ_5, γ_6) be the two pairs of arcs obtained by smoothing the crossing. Then

$$x_{\gamma_1}x_{\gamma_2} = x_{\gamma_3}x_{\gamma_4} + y(ilde{\mathcal{G}})x_{\gamma_5}x_{\gamma_6}$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G} .

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the periest matchings.

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW]. Corollary (CS)

Let γ_1 and γ_2 be two arcs which cross and let (γ_3, γ_4) and (γ_5, γ_6) be the two pairs of arcs obtained by smoothing the crossing. Then

$$x_{\gamma_1}x_{\gamma_2} = x_{\gamma_3}x_{\gamma_4} + y(\tilde{\mathcal{G}})x_{\gamma_5}x_{\gamma_6}$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G} .

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
 - Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW]. Corollary (CS)

Let γ_1 and γ_2 be two arcs which cross and let (γ_3, γ_4) and (γ_5, γ_6) be the two pairs of arcs obtained by smoothing the crossing. Then

$$x_{\gamma_1}x_{\gamma_2} = x_{\gamma_3}x_{\gamma_4} + y(\tilde{\mathcal{G}})x_{\gamma_5}x_{\gamma_6}$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G} .

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW]. Corollary (CS)

Let γ_1 and γ_2 be two arcs which cross and let (γ_3, γ_4) and (γ_5, γ_6) be the two pairs of arcs obtained by smoothing the crossing. Then

$$x_{\gamma_1}x_{\gamma_2} = x_{\gamma_3}x_{\gamma_4} + y(\tilde{\mathcal{G}})x_{\gamma_5}x_{\gamma_6}$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G} .

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Skein Relations

As a corollary we obtain a new proof of the skein relations [MW]. Corollary (CS)

Let γ_1 and γ_2 be two arcs which cross and let (γ_3, γ_4) and (γ_5, γ_6) be the two pairs of arcs obtained by smoothing the crossing. Then

$$x_{\gamma_1}x_{\gamma_2} = x_{\gamma_3}x_{\gamma_4} + y(\tilde{\mathcal{G}})x_{\gamma_5}x_{\gamma_6}$$

where $\tilde{\mathcal{G}}$ is the closure of the overlap \mathcal{G} .

Remark

- Note that Musiker and Williams in [MW] use hyperbolic geometry to prove the skein relations.
- Our proof is purely combinatorial. The key ingredient to our proof is Theorem 12 where we show the bijection between the perfect matchings.

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Band Graphs

- I am currently working on extending our combinatorial formulas to **band graphs** associated to *closed loops* in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Question: Is this construction straightforward? Answer: No!

The difficulty here is to show the 'skein relations' for self-crossing

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

Auslander Distinguished Lectures 2013 16 / 18

イロト 不得下 イヨト イヨト

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Band Graphs

- I am currently working on extending our combinatorial formulas to **band graphs** associated to *closed loops* in a surface, see [MSW2].
- Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

Question: Is this construction straightforward? Answer: No!

The difficulty here is to show the 'skein relations' for self-crossing

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

Auslander Distinguished Lectures 2013 16 / 18

(日) (同) (日) (日)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I am currently working on extending our combinatorial formulas to **band graphs** associated to *closed loops* in a surface, see [MSW2].

Band Graphs

• Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

 $\underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}}$

Question: Is this construction straightforward? **Answer:** No!

The difficulty here is to show the 'skein relations' for self-crossing

I. Canakci, R. Schiffler (U. Conn.)

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I am currently working on extending our combinatorial formulas to **band graphs** associated to *closed loops* in a surface, see [MSW2].

Band Graphs

• Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

 $\underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}}$

Question: Is this construction straightforward?

Answer: No.

The difficulty here is to show the 'skein relations' for self-crossing

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I am currently working on extending our combinatorial formulas to **band graphs** associated to *closed loops* in a surface, see [MSW2].

Band Graphs

• Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

 $\underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}}$

Question: Is this construction straightforward? **Answer:** No!

The difficulty here is to show the 'skein relations' for self-crossing

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

I am currently working on extending our combinatorial formulas to band graphs associated to *closed loops* in a surface, see [MSW2].

Band Graphs

• Closed loops appear naturally in the process of smoothing crossings. Consider the following example.

Example

In this example we resolve two crossings of the following arcs.

 $\underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} \longrightarrow \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}} + \underbrace{\textcircled{\bullet}}$

Question: Is this construction straightforward? **Answer:** No!

The difficulty here is to show the 'skein relations' for self-crossing arcs. $(\Box) (\overline{C})$

I. Canakci, R. Schiffler (U. Conn.)

Band and snake graph calculus

I. Canakci, R. Schiffler

Motivation

Abstract Snake Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions

Thank you!

2

・ロト ・回ト ・ヨト ・ヨト

I. Canakci, R. Schiffler

Motivation

Abstract Snak Graphs

Relation to Cluster Algebras

Band Graphs and Future Directions I. Canakci, R. Schiffler *Snake graph calculus and cluster algebras from surfaces*, to appear in *Journal of Algebra*, preprint available at arxiv:1209.4617v1.

Bibliography

- .
- S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, *Acta Math.* **201** (2008), 83-146.
- S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.
- - G. Musiker, R. Schiffler and L. Williams, Positivity for cluster algebras from surfaces, *Adv. Math.* **227**, (2011), 2241–2308.
- - G. Musiker, R. Schiffler and L. Williams, Bases for cluster algebras from surfaces, to appear in *Compos. Math.*
 - G. Musiker and L. Williams, Matrix formulae and skein relations for cluster algebras from surfaces, preprint, arXiv:1108.3382.

(日) (同) (日) (日)