The algebra of polynomial integro-differential operators and its group of automorphisms

V. V. Bavula

We prove that the algebra $\mathbb{I}_n := K\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, \int_1, \ldots, \int_n \rangle$ of integrodifferential operators on a polynomial algebra is a prime, central, catenary, self-dual, non-Noetherian algebra of classical Krull dimension n and of Gelfand-Kirillov dimension 2n. Its weak dimension is n, and $n \leq \text{gl.dim}(\mathbb{I}_n) \leq 2n$. All the ideals of \mathbb{I}_n are found explicitly, there are only finitely many of them $(\leq 2^{2^n})$, they commute $(\mathfrak{ab} = \mathfrak{ba})$ and are idempotent ideals $(\mathfrak{a}^2 = \mathfrak{a})$. An analogue of the Hilbert's Syzygy Theorem is proved for \mathbb{I}_n . The group of units of the algebra \mathbb{I}_n is described (it is a huge group). A canonical form is found for each integro-differential operators (by proving that the algebra \mathbb{I}_n is a generalized Weyl algebra). All the mentioned results hold for the Jacobian algebra \mathbb{A}_n (but $\mathrm{GK}(\mathbb{A}_n) = 3n$, note that $\mathbb{I}_n \subset \mathbb{A}_n$). It is proved that the algebras \mathbb{I}_n and \mathbb{A}_n are ideal equivalent.

The group G_n of automorphisms of the algebra \mathbb{I}_n is found:

$$G_n = S_n \ltimes \mathbb{T}^n \ltimes \operatorname{Inn}(\mathbb{I}_n) \supseteq S_n \ltimes \mathbb{T}^n \ltimes \underbrace{\operatorname{GL}_{\infty}(K) \ltimes \cdots \ltimes \operatorname{GL}_{\infty}(K)}_{2^n - 1 \text{ times}},$$

$$G_1 \simeq \mathbb{T}^1 \ltimes \operatorname{GL}_{\infty}(K),$$

where S_n is the symmetric group, \mathbb{T}^n is the *n*-dimensional torus, $\operatorname{Inn}(\mathbb{I}_n)$ is the group of inner automorphisms of \mathbb{I}_n (which is huge). It is proved that each automorphism $\sigma \in G_n$ is uniquely determined by the elements $\sigma(x_i)$'s or $\sigma(\frac{\partial}{\partial x_i})$'s or $\sigma(\int_i)$'s. The stabilizers in G_n of all the ideals of \mathbb{I}_n are found, they are subgroups of *finite* index in G_n . It is shown that the group G_n has trivial centre. For each automorphism $\sigma \in G_n$, an *explicit inversion formula* is given via the elements $\sigma(\frac{\partial}{\partial x_i})$ and $\sigma(\int_i)$.

Department of Pure Mathematics University of Sheffield Hicks Building Sheffield S3 7RH UK email: v.bavula@sheffield.ac.uk