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Neural networks can create blueprints for complex 
device designs that would be difficult if not impossible 

to generate with traditional techniques.

David Sell, a former student of Jonathan 
Fan, Stanford University, USA, at work in 
an experiment to characterize freeform 

surfaces similar to the ones the Fan 
group designs using deep learning. 
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I
n today’s interconnected and data-rich world, there 
seem to be few areas of life where artificial intelli-
gence (AI) is not making inroads. Enabled by ever 
more powerful computer hardware and ubiquitous 
digital information, deep learning—a technology 

modeled on the workings of the brain—is being exploited 
in everything from machine vision to natural-language 
processing and image recognition to game playing. All 
of these applications, and more, rest on spotting and 
generalizing patterns within vast data sets.

Scientists have enthusiastically embraced the tech-
nology. High-energy physicists use it to sift through the 
debris of particle collisions, looking for signs of exotic 
matter, while medical scientists exploit its classification 
ability to diagnose diseases. Microscopy also stands to 
benefit, as deep neural networks can, in effect, boost the 
resolution of optical microscopes after being trained to 
associate lower- and higher-resolution versions of spe-
cific images with one another.

But deep learning is not limited to the analysis 
or manipulation of data from pre-existing devices. 
Increasingly, researchers are also showing its use in 
designing new devices in the first place. This is the case 
in optics and photonics, where advanced fabrication 
techniques have diversified the possible shapes, sizes 
and structural compositions that devices can possess—
particularly in the boom area of nanophotonics, where 
subwavelength features allow light to be manipulated 
in ways not possible at larger scales.

As Jonathan Fan of Stanford University, USA, puts 
it, rather than designing new optical systems based on 
simple, intuitive shapes, researchers can now fashion 
devices with unusual structures to generate unique 
electromagnetic responses. “Deep networks are a 

very good fit for this objective,” he says. “They are 
well suited to identifying non-obvious connections 
between structure and function within the frame-
work of physical constraints—in our case, Maxwell’s 
equations.”

Lightening the legwork
Physicists typically design new optical devices by 
starting from a random or intuitive layout and using 
a computer simulation based on Maxwell’s equations 
to calculate the structure’s optical response. They then 
use one of a number of techniques, such as so-called 
genetic algorithms or adjoint methods, to work back-
ward and adjust the design to close the gap between 
the simulated and desired response. But each iteration 
requires a fresh simulation, making this process—known 
as inverse design—very resource hungry and time con-
suming as the number of design parameters increases.

Rather than simulating Maxwell’s equations directly, 
neural networks instead approximate the equations 
by learning the relationship between the input and 
output—the design structure and its optical response. 
This involves feeding a network numerous examples 
of the former and iteratively adjusting the network’s 
parameters so that, eventually, it accurately predicts 
the response from a given structure. This process usu-
ally relies on a conventional technique to provide the 
training data, which again involves generating large 
numbers of processor-intensive simulations. However, 
the simulations here represent a one-time cost. The 
network, once trained, can typically calculate optical 
responses in a fraction of a second.

“One run of a neural network takes about 200 ms,” 
says Ravi Hegde of the Indian Institute of Technology 
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Generative networks can create realistic-looking faces from scratch.
T. Karras et al. arXiv:1710.10196v3 [cs.NE] (2018)
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in Gujarat, “whereas a Maxwell solver typically 
takes hours.”

Deep neural networks of various shapes and sizes 
all consist of interconnected layers of processing units 
called neurons (see “The network effect,” below). When 
learning, networks adjust neurons’ weights and biases 
through “backpropagation.” This involves feeding the 
difference between the calculated and desired optical 
response into a user-defined “loss function,” and using 
that function to work out the size of the adjustments 
layer by layer, moving backward from the output.

A trained network can carry out inverse design by 
again using backpropagation. In this case, however, 

the neural weights are kept fixed while the inputs are 
varied to alter the proposed structure. Starting from a 
random or intuitive structure, the inputs are progres-
sively tuned by backpropagating the difference between 
the desired output and the latest calculated output—
and then stopping when the design generates outputs 
close enough to the target response.

Scientists as far back as the 1990s used this approach 
to design fairly simple centimeter-scale devices at 
microwave frequencies, including transmission lines, 
amplifiers and antennas. But with advances in computer 
power and network architecture, the new wave of AI 
has since allowed scientists to investigate designs all 

Deep learning is not limited to the analysis or manipulation of 
data from pre-existing devices. Increasingly, researchers are 
also showing its use in designing new devices in the first place. 

Generative adversarial network
Used to design complex freeform devices, this involves a 
tug-of-war between a generator that tries to mimic a set 
of training data and a discriminator that attempts to tell 
the difference between the two data sets. The generator 
creates its “fake” structures by applying certain param-
eters to a random input distribution and is guided to the 
“real” structures by dueling with the discriminator.

Adapted by permission from Springer Nature, J. Jiang et al. Nat. Rev. Mater. 6, 679 (2021); © 2021

The network effect
Scientists use a range of neural networks to design and optimize optical devices, employing backpropagation 
during training to adjust the weights of their neurons. Below are some of the most prominent networks.

Fully connected network
The most traditional form, this tends to be used when optimizing relatively 
few parameters. Each neuron in one layer is connected to every neuron in 
the previous (and successive) layer. Neurons calculate the weighted sum 
of all the incoming links and then apply a nonlinear function, sending the 
result to neurons in the next layer.

Convolutional network
This is generally used to process high-dimensional inputs in the form 
of images. It scans a small matrix known as a kernel across the grid 
of input data, calculates the weighted sum from each region of the 
grid and then applies a nonlinear function. Storing the result as a 
single value in the next layer, it repeats the process across regions 
and then from layer to layer, using a different kernel. The result is 
a more manageable number of data points that provide information 
about large features in the image.
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the way down to the nanoscale and across increasingly 
large swaths of design space.

The next dimension
In 2018, Marin Soljačić and colleagues at the Massa-
chusetts Institute of Technology, USA, reported using 
a fully connected network with four hidden layers to 
simulate light scattering from a multilayer nanopar-
ticle. They trained the network via tens of thousands 
of Monte Carlo simulations to learn the relationship 
between the thicknesses of eight silica/titanium dioxide 
layers—the input—and the scattering cross-section at 
seven different wavelengths—the output. Having done 
so, they found they needed just a few design iterations 
to work out the nanoparticle geometry that could gen-
erate a given output spectrum.

This work relied on just a handful of geometric 
parameters while extending research down to very 
small spatial scales. Many inverse-design problems, 
in contrast, involve freeform devices defined as images 
built up from hundreds or thousands of pixels or voxels. 
Because the quantity of training data needed to prop-
erly sample a design space scales exponentially with 
the number of parameters, fully connected networks 
require many layers to design such devices.

To deal with this “curse of dimensionality,” computer 
scientists use so-called convolutional neural networks 
to process image data by cutting the number of dimen-
sions that have to be processed. They do so using small 
matrices to progressively reduce the number of data 
points from layer to layer while retaining information 
about ever-larger features from the image.

Susumu Noda and Takashi Asano of Kyoto Univer-
sity, Japan, employed a convolutional neural network 
to improve the design and the Q factors of nanocavities 

made by removing a certain number of air holes from 2D 
silicon photonic crystals. To optimize displacements of 
50 other air holes from their baseline positions around 
the central gap, they trained the network with 1,000 
random arrangements of the holes and their associated 
Q-values. They then used backpropagation to progres-
sively improve device performance—showing that after 
1,000 iterations, the Q factor increased by more than an 
order of magnitude compared to manual optimization. 

Noda and colleague Menaka De Zoysa also built 
a convolutional network to control the beam pattern 
of photonic-crystal surface-emitting lasers, whose 
high-power, high-quality beams might benefit smart 
manufacturing in the future. The researchers say that, 
by learning the relationship between beam patterns 
and injection-current profiles, the network was able 
to control beams on demand in the face of fabrication 
errors and environmental noise.

Inverted inversion
One serious issue of inverse design is the “one-to-many 
problem”—while any specific design will yield a unique 
response under a given input, a specific output can be 
generated by multiple devices. Another problem is that 
the design-searching algorithm can get stuck in a local 
maximum—a good design but not the best—rather than 
finding the global maximum. Circumventing these 
problems calls for a thorough exploration of the design 
space during both training and design.

In their nanocavity work, Noda and Asano took a 
number of steps to boost the variety of their candidate 
designs. One was to set up several neural networks and 
train each one in a different order. They also tweaked 
their loss function to navigate larger portions of the 
design space and retrained their networks multiple 

Susumu Noda and Takashi Asano, Kyoto University, Japan, used a neural network to optimize the 
position of air holes, and thus the Q factor, in the design of a photonic-crystal nanocavity.
S. Noda and T. Asano
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times using the candidate designs from the previous 
rounds’ results.

An alternative approach to inverse design is simply 
to invert the network’s inputs and outputs—training the 
network with multiple examples of optical responses 
and correcting its weights and thresholds based on the 
associated device structure. In principle, the desired 
structure should then pop out once the target response 
is fed in at the front. However, the one-to-many prob-
lem again comes into play, with the network’s surrogate 
model failing to converge.

In 2017, Zongfu Yu and colleagues at the University 
of Wisconsin–Madison, USA, proposed a “tandem” net-
work as a solution to this problem. Their idea was to 
pre-train a standard forward-modeling network with 
device designs and their associated responses, and then 
use the forward network to guide an inverted network 
attached to its inputs. The inverted network is trained by 
adjusting its weights based on the difference between 
its input—a certain electromagnetic response—and the 
forward network’s output—the calculated response. 
Because the forward network is not a perfect physical 
simulator, it produces a simplified design space that 
makes converging on certain designs easier for the 
inverse network.

That scheme has since been used by several groups 
to demonstrate innovative inverse designs. Research-
ers in the Republic of Korea, for example, showed that 
it enabled the simultaneous specification of nanopar-
ticles’ structural and material properties, and a group 
in Italy used it to establish the parameters of a complex 
topological insulator. Scientists in Israel, meanwhile, 
demonstrated the technique’s ability to design nanostruc-
tures sensitive to certain substances, potentially leading 
to new devices for sensing, imaging and spectroscopy.

Starting from scratch
Not content to rest on their laurels, computer scientists 
have, over the last few years, developed an entirely new 
class of neural network that essentially generates new 
data sets rather than discerning patterns within existing 
ones. The inputs of such a “generative network” are not 
design (or response) parameters but a random variable 
sampled from a standard probability distribution and 

The design-searching algorithm can get stuck in a local 
maximum—a good design but not the best—rather than finding 
the global maximum.

(In)visible progress
Optical cloaks made from carefully chosen meta-
materials hide objects by diverting electromagnetic 
waves around those objects so that to downstream 
observers, it appears that the radiation has prop-
agated forward unimpeded. Proposed in 2006 and 
subsequently demonstrated at microwave frequen-
cies, cloaks can now be made simply by varying the 
geometry of isotropic dielectric materials.

Olivier Martin and Andre-Pierre Blanchard-Dionne 
at the École Polytechnique Fédérale de Lausanne, 
Switzerland, showed how the design of such a cloak 
can be optimized by combining a generative adver-
sarial network with a forward network. The former 
generates a series of candidate layouts consisting of 
64×64-pixel images, in which each pixel represents 
a material with one of two dielectric constants. The 
forward network, previously trained using data gen-
erated by finite-element simulations, then calculates 
the scattering coefficient of each layout, compares this 
against the desired coefficient and backpropagates 
the difference to the generative network to optimize 
the cloaking design.

To ensure that the scheme yields the low-
est possible scattering coefficients, Martin and 
Blanchard-Dionne added an extra step—using 
finite-element simulation to refine the calculation of 
scattering coefficients and using the results to iter-
atively retrain the forward network. Doing so for a 
6-µm-diameter cloak exposed to infrared radiation, 
they found they could reduce the scattered field com-
pared with the case of no cloak by more than a factor 
of 100—comparable, they say, to what can be done 
with conventional topology optimization but without 
any initial assumptions about the cloak’s layout.

Adapted from A.-P. Blanchard-Dionne and O.J. F. Martin. OSA Continuum 4, 87 (2021)
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Deep neural networks were used to work out the 
optimum configuration of two materials with different 
dielectric constants, yielding an optical cloak that reduces 
scattering of electromagnetic waves almost to zero.

Perfect electrical 
conductor
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conditional labels. Processed by the network’s hidden 
layers—typically several fully connected layers followed 
by a number of inverse convolutional ones—these inputs 
are transformed into a set of high-dimensional images.

One way of training a generative network is to hook 
it up to a conventional “discriminative network” so that 
the two act as adversaries. The loss function of the former 
attempts to minimize the difference between its output 
and a set of training images of device designs, while 
the latter is geared up to spot this difference. When the 
discriminative network can no longer tell the two sets 
of images apart, the generative network is trained and 
ready to produce new and improved device designs—
as researchers in Switzerland have done to design an 
optical cloak (see “(In)visible progress,” p. 43). 

While this and other implementations of generative 
networks rely on training data, Jonathan Fan and Jiaqi 
Jiang at Stanford have instead shown how to train a 
generative network using a Maxwell simulator, as they 
did with their “global topology-optimization network” 
(GLOnet) to find the global maximum. GLOnet relies 
on an exponential weighting within the loss function, 
meaning the distribution of possible device designs is 
very narrow and ideally centered on the globally opti-
mum design.

Fan and Jiang found they could outperform con-
ventional simulations when optimizing the design of 
silicon metagratings. Setting up several dozen networks 
with different combinations of operating wavelength 
and deflection angle, they saw that in the vast majority 
of cases, the GLOnets yielded devices that were able to 
channel light in a particular direction at least as effi-
ciently as those formulated conventionally.

Traditional optics, too
Exploring beyond the nanoscale, researchers are also 
exploiting deep-learning technology to optimize the 
arrangement of micrometer-scale components on pho-
tonic chips and at the centimeter scale of traditional 
optics, according to Hegde. The latter category contains 

compound lenses of interest for smartphone cameras 
and semiconductor lithography, whose design parame-
ters include the curvature of each lens and the distance 
between lenses, Hegde notes.

Another emerging application of deep learning to 
more conventional optical systems is in the design of 
intelligent sensors. Aydogan Ozcan at the University 
of California, Los Angeles, USA, envisages using neu-
ral networks to “lock in” the benefits of AI within the 
sensing hardware itself—rather than to simply improve 
analysis of data from a pre-existing device.

Ozcan and colleagues have demonstrated the poten-
tial of this approach for medicine by developing a new 
kind of assay-based sensor to diagnose Lyme disease—a 
tick-borne illness that can lead to conditions such as 
arthritis and palsy. The researchers used a fully con-
nected neural network to identify which combination 
of antibodies should be tested for in potentially infected 
people to maximize the chances of a correct diagnosis. 
Using 50 human serum samples to train the network 
and another 50 for blind testing, they found they could 
reduce both false positives and false negatives to less 
than 10%—a significant improvement, they say, com-
pared with existing point-of-care assays.

Back at the nanoscale, simulating the electromagnetic 
response of an extremely broad range of structures is 
crucial for inverse design. Several groups have shown 
how deep networks themselves can execute this function 
and thereby speed up device development. For exam-
ple, Peter Wiecha and Otto Muskens at the University 
of Southampton, UK, have used a convolutional net-
work to predict the electric field produced by arbitrary 
3D nanostructures when illuminated by plane waves. 
After training the network using commercial-level sim-
ulation software, they found it could accurately and 
quickly predict both the near and far fields as well as 
a variety of secondary quantities, such as higher-order 
antenna resonances and non-radiating anapole states.

Fan’s group at Stanford has also developed a con-
volutional network for simulation, but one that draws 

Aydogan Ozcan’s group used deep learning to design a new kind of assay-based sensor to diagnose Lyme disease.
Reprinted with permission from H.-A. Joung et al. ACS Nano 14, 229 (2020); © 2020 ACS

Lyme patient Assay (15 min) Readout & analysis (2 min)
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on physics as well as training data. The network learns 
to predict the magnetic near field of a nanoscale struc-
ture and then uses Maxwell’s equations to calculate the 
electric field, having been trained in part by using the 
equations as a physical constraint within its loss func-
tion. By incorporating this simulator into their GLOnet 
algorithm, Fan and colleagues found they could optimize 
the design of a certain type of dielectric metagrating 
nearly as effectively as they could using a conventional 
simulator, but some 7,000 times faster. 

Despite the outliers
For all the deep-learning-fueled optics research, 
Yongmin Liu of Northeastern University, USA, says 
that, so far, very little of it has led to commercial 
devices. But he is confident that will change, arguing 
that neural networks enable designs with counter-
intuitive functionalities that would be impossible 
to realize with traditional techniques—and that 
will ultimately lead to new applications in imaging, 
communications and computing.

Indeed, Liu and co-workers reported earlier this 
year that a combination of different neural networks 
can optimize the design of metasurfaces. With the right 
arrangement of “meta-atoms,” a single metasurface can 
yield as many as eight independent responses when 
exposed to near-infrared light with the right frequen-
cies and polarizations, as the researchers demonstrated 
experimentally via multiplexed holograms and lenses. 
“That is only possible with machine learning,” says Liu. 

Others are more cautious, however. Wiecha says 
that in around 5% of cases, his team’s work modeling 
electric fields generated outliers—results with signifi-
cant errors—just as other neural networks do. Outliers 
can be minimized by throwing more training data at a 
network, he says, but it doesn’t always make sense to 
devote the necessary time and resources. Unless there 
is a need to produce many similar devices from a single 
training set, he argues that conventional optimization 
can often get the job done quicker and more accurately. 
“People often think that deep learning can do miracles 
for inverse design,” he says. “But it is not like this.”

Sharing data for network training is one of the 
aims of MetaNet, an online database set up by Fan 

and colleagues in 2020 to try to introduce common 
benchmarks for assessing neural networks and device 
designs. But more than two years on, only two other 
researchers have uploaded data to the site, says Fan. 
He reckons this is partly because photonics researchers 
value new physics more than new techniques. “For some 
subfields of optics, specialized researchers can and will 
work together,” he says, “but it will be case by case.”

Despite the difficulties, Fan shares Liu’s sense of 
optimism about machine learning’s potential, particu-
larly for designing metamaterials. Hegde, too, is excited, 
arguing that physics-based learning will help create 
more accurate neural networks and thereby “enable us 
to attack complex design problems that are intractable 
today.” Even Martin is enthusiastic, having obtained 
very promising results in a new project to develop 
nanomotors—after being initially skeptical that deep 
learning could go significantly beyond the training 
data. “I am amazed that it works so well,” he says. OPN

Edwin Cartlidge (edwin.cartlidge@yahoo.com) is a freelance 
science writer based in Rome, Italy.

Another emerging application of deep learning to more 
conventional optical systems is in the design of intelligent 
sensors. 

Yongmin Liu and colleagues used neural networks to 
arrange tiny metal–insulator–metal pillars on a meta
surface to generate frequency-dependent holograms. 
Adapted with permission from W. Ma et al. Adv. Mat. 34, 2110022 (2022)

For references and resources, go online: 
optica-opn.org/link/deep-design.
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