INVARIANT THEORY, HW3

Problem 1, 7pts. This problem describes the algebra of invariants $\mathbb{C}[V]^{T}$ under a faithful action of a torus T on a vector space V. Recall that V has an eigen-basis v_{1}, \ldots, v_{n}, let $\chi_{1}, \ldots, \chi_{n}$ be the corresponding eigen-characters of T. Let $\tilde{T} \subset \mathrm{GL}(V)$ be the maximal torus of all operators diagonal in the basis v_{1}, \ldots, v_{n}. So $T \subset \tilde{T}$. Note that \tilde{T} / T is a torus naturally acting on $\mathbb{C}[V]^{T}$ and the character lattice $\mathfrak{X}(\tilde{T} / T)$ naturally embeds into $\mathfrak{X}(\tilde{T})=\mathbb{Z}^{n}$. Let \mathcal{M} denote the submonoid $\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n} \mid \sum_{i=1}^{n} m_{i} \chi_{i}=0\right\} \subset \mathbb{Z}_{\geqslant 0}^{n}$.
a, 3pts) Show that each eigenspace of \tilde{T} / T in $\mathbb{C}[V]^{T}$ has dimension 0 or 1 and the dimension is equal to 1 iff the corresponding eigencharacter lies in \mathcal{M}. For $\psi \in \mathcal{M}$ let f_{ψ} denote an eigen-vector for ψ in $\mathbb{C}[V]^{T}$.
b, 2pts) Show that elements $\psi_{1}, \ldots, \psi_{k}$ generate the monoid \mathcal{M} iff the polynomials $f_{\psi_{1}}, \ldots, f_{\psi_{k}}$ generate the algebra $\mathbb{C}[V]^{T}$. Deduce that \mathcal{M} is a finitely generated monoid.
c, 2pts) Show that the relations of the form $f_{\psi_{1}}^{s_{1}} \ldots f_{\psi_{k}}^{s_{k}}-f_{\psi_{1}}^{r_{1}} \ldots f_{\psi_{k}}^{r_{k}}=$ 0 with $s_{i}, r_{i} \geqslant 0$ and $\sum_{i=1}^{k}\left(s_{i}-r_{i}\right) \psi_{i}=0$ generate the ideal of relations between the generators $f_{\psi_{1}}, \ldots, f_{\psi_{r}} .{ }^{1}$
Problem 2, 7pts. This problem studies the subvarieties of nilpotent elements (=elements whose orbit closures contain 0) for natural actions of classical groups. Use the Hilbert-Mumford theorem ${ }^{2}$ to prove the following claims.
a, 2pts) Let $G=\mathrm{GL}(U)$ act on $V:=U^{\oplus k} \oplus U^{* \oplus \ell}$ in a natural way. Show that ($u_{1}, \ldots, u_{k}, u^{1}, \ldots, u^{l}$) is nilpotent iff $\left\langle u_{i}, u^{j}\right\rangle=0$ for all i, j.
b) 2 pts) Let $G=\mathrm{SL}(U)$ acts on $U^{\oplus k}$. Then $\left(u_{1}, \ldots, u_{k}\right)$ is nilpotent iff u_{1}, \ldots, u_{k} do not span U.
c, 3pts) Let U be a finite dimensional space equipped with an orthogonal form (\cdot, \cdot). Consider the natural action of the orthogonal group $G=\mathrm{O}(U)$ on $V=U^{\oplus k}$. Then $\left(u_{1}, \ldots, u_{k}\right)$ is nilpotent iff $\left(u_{i}, u_{j}\right)=0$ for all i, j. State and prove the corresponding claim for the symplectic group.

[^0]
[^0]: ${ }^{1}$ Of course, there is a more economical set of relations.
 ${ }^{2}$ Solutions based on computing the algebras of invariants do not count

