HOMEWORK 2

Problem 1 (5pts). Let G_1, G_2 be algebraic groups such that $G_1 = \mathbb{G}_a^n$ and the connected component G_2° is a torus. Show that there are no nontrivial algebraic group homomorphisms between G_1, G_2 in either direction.

Problem 2 (4pts). Let H be a connected algebraic group and Z be a finite normal subgroup of H. Show that Z is in the center of H.

Problem 3 (4pts). Let G be a semisimple algebraic group, \mathfrak{g} its Lie algebra and $x \in \mathfrak{g}$. Assume that the centralizer $Z_G(x)$ is reductive. Show that x is semisimple. You are allowed to use facts proved in Lecture 9.

Extra-credit problem. This problem explains the classification of nilpotent orbits in the classical Lie algebras $\mathfrak{so}_n, \mathfrak{sp}_n$ (in the latter case n is even, of course).

a) Show that the nilpotent O_n -orbits in \mathfrak{so}_n and the nilpotent Sp_n -orbits in \mathfrak{sp}_n are uniquely recovered form their Jordan types (a partition of n).

b) The partitions appearing for \mathfrak{so}_n (resp., \mathfrak{sp}_n) are precisely those where the multiplicity of every even (resp., odd) part is even.

c) Show that a nilpotent O_n -orbit splits into two SO_n -orbits if and only if the parts of the corresponding partition are all even.