SCHUR-WEYL DUALITY FOR QUANTUM GROUPS

YI SUN

Abstract

These are notes for a talk in the MIT-Northeastern Fall 2014 Graduate seminar on Hecke algebras and affine Hecke algebras. We formulate and sketch the proofs of Schur-Weyl duality for the pairs $\left(U_{q}\left(\mathfrak{s l}_{n}\right), H_{q}(m)\right),\left(Y\left(\mathfrak{s l}_{n}\right), \Lambda_{m}\right)$, and $\left(U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right), \mathcal{H}_{q}(m)\right)$. We follow mainly [Ara99, Jim86, Dri86, CP96], drawing also on the presentation of [BGHP93, Mol07].

Contents

1. Introduction 1
2. Finite-type quantum groups and Hecke algebras 2
2.1. Definition of the objects 2
2.2. $\quad R$-matrices and the Yang-Baxter equation 2
2.3. From the Yang-Baxter equation to the Hecke relation 3
2.4. Obtaining Schur-Weyl duality 3
3. Yangians and degenerate affine Hecke algebras 4
3.1. Yang-Baxter equation with spectral parameter and Yangian 4
3.2. The Yangian of $\mathfrak{s l}_{n}$ 4
3.3. Degenerate affine Hecke algebra 5
3.4. The Drinfeld functor 5
3.5. Schur-Weyl duality for Yangians 6
4. Quantum affine algebras and affine Hecke algebras 8
4.1. Definition of the objects 8
4.2. Drinfeld functor and Schur-Weyl duality 9
References 9

1. Introduction

Let $V=\mathbb{C}^{n}$ be the fundamental representation of $\mathfrak{s l}_{n}$. The vector space $V^{\otimes m}$ may be viewed as a $U\left(\mathfrak{s l}_{n}\right)$ and S_{m}-representation, and the two representations commute. Classical Schur-Weyl duality gives a finer understanding of this representation. We first state the classifications of representations of S_{m} and $\mathfrak{s l}_{n}$.

Theorem 1.1. The finite dimensional irreducible representations of S_{m} are parametrized by partitions $\lambda \vdash m$. For each such λ, the corresponding representation S_{λ} is called a Specht module.

Theorem 1.2. The finite dimensional irreducible representations of $\mathfrak{s l}_{n}$ are parametrized by signatures λ with $\ell(\lambda) \leq n$ and $\sum_{i} \lambda_{i}=0$. For any partition λ with $\ell(\lambda) \leq n$, there is a unique shift λ^{\prime} of λ so that $\sum_{i} \lambda_{i}^{\prime}=0$. We denote the irreducible with this highest weight by L_{λ}.

The key fact underlying classical Schur-Weyl duality is the following decomposition of a tensor power of the fundamental representation.

Theorem 1.3. View $V^{\otimes m}$ as a representation of S_{m} and $U\left(\mathfrak{s l}_{n}\right)$. We have the following:
(a) the images of $\mathbb{C}\left[S_{m}\right]$ and $U\left(\mathfrak{s l}_{n}\right)$ in $\operatorname{End}(W)$ are commutants of each other, and
(b) as a $\mathbb{C}\left[S_{m}\right] \otimes U\left(\mathfrak{s l}_{n}\right)$-module, we have the decomposition

$$
V^{\otimes m}=\bigoplus_{\substack{\lambda \nmid m \\ \ell(\lambda) \leq n}} S_{\lambda} \boxtimes L_{\lambda} .
$$

We now reframe this result as a relation between categories of representations; this reformulation will be the one which generalizes to the affinized setting. Say that a representation of $U\left(\mathfrak{s l}_{n}\right)$ is of weight m if each of its irreducible components occurs in $V^{\otimes m}$. In general, the weight of a representation is not well-defined; however, for small weight, we have the following characterization from the Pieri rule.

Lemma 1.4. The irreducible L_{λ} is of weight $m \leq n-1$ if and only if $\lambda=\sum_{i} c_{i} \omega_{i}$ with $\sum_{i} i c_{i}=m$.
Given a S_{m}-representation W, define the $U\left(\mathfrak{s l}_{n}\right)$-representation $\mathrm{FS}(W)$ by

$$
\mathrm{FS}(W)=\operatorname{Hom}_{S_{m}}\left(W, V^{\otimes m}\right),
$$

where the $U\left(\mathfrak{s l}_{n}\right)$-action is inherited from the action on $V^{\otimes m}$. Evidently, FS is a functor $\operatorname{Rep}\left(S_{m}\right) \rightarrow$ $\operatorname{Rep}\left(U\left(\mathfrak{s l}_{n}\right)\right)$, and we may rephrase Theorem 1.3 as follows.

Theorem 1.5. For $n>m$, the functor FS is an equivalence of categories between $\operatorname{Rep}\left(S_{m}\right)$ and the subcategory of $\operatorname{Rep}\left(U\left(\mathfrak{s l}_{n}\right)\right)$ consisting of weight m representations.

In this talk, we discuss generalizations of this duality to the quantum group setting. In each case, $U\left(\mathfrak{s l}_{n}\right)$ will be replaced with a quantization $\left(U_{q}\left(\mathfrak{s l}_{n}\right), Y_{\hbar}\left(\mathfrak{s l}_{n}\right)\right.$, or $\left.U_{q}\left(\widehat{\mathfrak{s}}_{n}\right)\right)$, and $\mathbb{C}\left[S_{m}\right]$ will be replaced by a Hecke algebra $\left(H_{q}(m), \Lambda_{m}\right.$, or $\mathcal{H}_{q}(m)$).

2. Finite-type quantum groups and Hecke algebras

2.1. Definition of the objects. Our first generalization of Schur-Weyl duality will be to the finite type quantum setting. In this case, $U_{q}\left(\mathfrak{s l}_{n}\right)$ will replace $U\left(\mathfrak{s l}_{n}\right)$, and the Hecke algebra $H_{q}(m)$ of type A_{m-1} will replace S_{m}. We begin by defining these objects.

Definition 2.1. Let \mathfrak{g} be a simple Kac-Moody Lie algebra of simply laced type with Cartan matrix $A=\left(a_{i j}\right)$. The Drinfeld-Jimbo quantum group $U_{q}(\mathfrak{g})$ is the Hopf algebra given as follows. As an algebra, it is generated by $x_{i}^{ \pm}$and $q^{h_{i}}$ for $i=1, \ldots, n-1$ so that $\left\{q^{h_{i}}\right\}$ are invertible and commute, and we have have the relations

$$
q^{h_{i}} x_{j}^{ \pm} q^{-h_{i}}=q^{ \pm a_{i j}} e_{j}, \quad\left[x_{i}^{+}, x_{j}^{-}\right]=\delta_{i j} \frac{q^{h_{i}}-q^{-h_{i}}}{q-q^{-1}}, \quad \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]\left(x_{i}^{ \pm}\right)^{r} x_{j}^{ \pm}\left(x_{i}^{ \pm}\right)^{1-a_{i j}-r}=0 .
$$

The coalgebra structure is given by the coproduct

$$
\Delta\left(x_{i}^{+}\right)=x_{i}^{+} \otimes q^{h_{i}}+1 \otimes x_{i}^{+}, \quad \Delta\left(x_{i}^{-}\right)=x_{i}^{-} \otimes 1+q^{-h_{i}} \otimes x_{i}^{-}, \quad \Delta\left(q^{h_{i}}\right)=q^{h_{i}} \otimes q^{h_{i}},
$$

and counit $\varepsilon\left(x_{i}^{ \pm}\right)=0$ and $\varepsilon\left(q^{h_{i}}\right)=1$, and the antipode is given by

$$
S\left(x_{i}^{+}\right)=-x_{i}^{+} q^{-h_{i}}, \quad S\left(x_{i}^{-}\right)=-q^{h_{i}} x_{i}^{-}, \quad S\left(q^{h_{i}}\right)=q^{-h_{i}} .
$$

Definition 2.2. The Hecke algebra $H_{q}(m)$ of type A_{m-1} is the associative algebra given by

$$
\left.H_{q}(m)=\left\langle T_{1}, \ldots, T_{m-1}\right|\left(T_{i}-q^{-1}\right)\left(T_{i}+q\right)=0, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1},\left[T_{i}, T_{j}\right]=0 \text { for }|i-j| \neq 1\right\rangle .
$$

2.2. R-matrices and the Yang-Baxter equation. To obtain $H_{q}(m)$-representations from $U_{q}\left(\mathfrak{s l}_{n}\right)$-representations, we use the construction of R-matrices.

Proposition 2.3. There exists a unique universal R-matrix $\mathcal{R} \in U_{q}\left(\mathfrak{s l}_{n}\right) \hat{\otimes} U_{q}\left(\mathfrak{s l}_{n}\right)$ such that:
(a) $\mathcal{R} \in q^{\sum_{i} x_{i} \otimes x_{i}}\left(1+\left(U_{q}\left(\mathfrak{n}_{+}\right) \hat{\otimes} U_{q}\left(\mathfrak{n}_{-}\right)\right)_{>0}\right)$ for $\left\{x_{i}\right\}$ an orthonormal basis of, and
(b) $\mathcal{R} \Delta(x)=\Delta^{21}(x) \mathcal{R}$, and
(c) $(\Delta \otimes 1) \mathcal{R}=\mathcal{R}^{13} \mathcal{R}^{23}$ and $(1 \otimes \Delta) \mathcal{R}=\mathcal{R}^{13} \mathcal{R}^{12}$.

We say that such an \mathcal{R} defines a pseudotriangular structure on $U_{q}\left(\mathfrak{s l}_{n}\right)$. Let $P(x \otimes y)=y \otimes x$ denote the flip map, and let $\widehat{\mathcal{R}}=P \circ \mathcal{R}$. From Proposition 2.3, we may derive several additional properties of \mathcal{R} and $\widehat{\mathcal{R}}$.
Corollary 2.4. The universal R-matrix of $U_{q}\left(\mathfrak{s l}_{n}\right)$:
(a) satisfies the Yang-Baxter equation

$$
\mathcal{R}^{12} \mathcal{R}^{13} \mathcal{R}^{23}=\mathcal{R}^{23} \mathcal{R}^{13} \mathcal{R}^{12}
$$

(b) gives an isomorphism $\widehat{\mathcal{R}}: W \otimes V \rightarrow V \otimes W$ for any $V, W \in \operatorname{Rep}\left(U_{q}\left(\mathfrak{s l}_{n}\right)\right)$;
(c) satisfies a different version of the Yang-Baxter equation

$$
\widehat{\mathcal{R}}^{23} \widehat{\mathcal{R}}^{12} \widehat{\mathcal{R}}^{23}=\widehat{\mathcal{R}}^{12} \widehat{\mathcal{R}}^{23} \widehat{\mathcal{R}}^{12}
$$

(d) when evaluated in the tensor square $V^{\otimes 2}$ of the fundamental representation of $U_{q}\left(\mathfrak{s l}_{n}\right)$ is given by

$$
\begin{equation*}
\left.\mathcal{R}\right|_{V \otimes V}=q \sum_{i} E_{i i} \otimes E_{i i}+\sum_{i \neq j} E_{i i} \otimes E_{j j}+\left(q-q^{-1}\right) \sum_{i>j} E_{i j} \otimes E_{j i} . \tag{1}
\end{equation*}
$$

2.3. From the Yang-Baxter equation to the Hecke relation. We wish to use Corollary 2.4 to define a $H_{q}(m)$-action on $V^{\otimes m}$. Define the map $\sigma^{m}: H_{q}(m) \rightarrow \operatorname{End}\left(V^{\otimes m}\right)$ by

$$
\sigma^{m}: T_{i} \mapsto \widehat{\mathcal{R}}^{i, i+1}
$$

Lemma 2.5. The map σ^{m} defines a representation of $H_{q}(m)$ on $V^{\otimes m}$.
Proof. The braid relation follows from Corollary 2.4(c) and the commutativity of non-adjacent reflections from the definition of σ^{m}. The Hecke relation follows from a direct check on the eigenvalues of the triangular matrix $\left.\mathcal{R}\right|_{V \otimes V}$ from (1).
2.4. Obtaining Schur-Weyl duality. We have analogues of Theorems 1.3 and 1.5 for $V^{\otimes m}$.

Theorem 2.6. If q is not a root of unity, we have:
(a) the images of $U_{q}\left(\mathfrak{s l}_{n}\right)$ and $H_{q}(m)$ in $\operatorname{End}\left(V^{\otimes m}\right)$ are commutants of each other;
(b) as a $H_{q}(m) \otimes U_{q}\left(\mathfrak{s l}_{n}\right)$-module, we have the decomposition

$$
V^{\otimes m}=\bigoplus_{\substack{\lambda \vdash m \\ \ell(\lambda) \leq n}} S_{\lambda} \boxtimes L_{\lambda}
$$

where S_{λ} and L_{λ} are quantum deformations of the classical representations of S_{m} and $U\left(\mathfrak{s l}_{n}\right)$.
Proof. We explain a proof for $n>m$, though the result holds in general. For (a), we use a dimension count from the non-quantum case. By the definition of σ^{m} in terms of R-matrices, each algebra lies inside the commutant of the other. We now claim that $\sigma^{m}\left(H_{q}(m)\right)$ spans $\operatorname{End}_{U_{q}\left(\mathfrak{s l}_{n}\right)}\left(V^{\otimes m}\right)$. If q is not a root of unity, the decomposition of $V^{\otimes m}$ into $U_{q}\left(\mathfrak{s l}_{n}\right)$-isotypic components is the same as in the classical case, meaning that its commutant has the same dimension as in the classical case. Similarly, $H_{q}(m)$ is isomorphic to $\mathbb{C}\left[S_{m}\right]$; because σ^{m} is faithful, this means that $\sigma^{m}\left(H_{q}(m)\right)$ has the same dimension as the classical case, and thus $\sigma^{m}\left(H_{q}(m)\right)$ is the entire commutant of $U_{q}\left(\mathfrak{s l}_{n}\right)$. Finally, because $U_{q}\left(\mathfrak{s l}_{n}\right)$ is semisimple and $V^{\otimes m}$ is finite-dimensional, $U_{q}\left(\mathfrak{s l}_{n}\right)$ is isomorphic to its double commutant, which is the commutant of $H_{q}(m)$. For (b), $V^{\otimes m}$ decomposes into such a sum by (a), so it suffices to identify the multiplicity space of L_{λ} with S_{λ}; this holds because it does under the specialization $q \rightarrow 1$.

Corollary 2.7. For $n>m$, the functor $\mathrm{FS}_{q}: \operatorname{Rep}\left(H_{q}(m)\right) \rightarrow \operatorname{Rep}\left(U_{q}\left(\mathfrak{s l}_{n}\right)\right)$ defined by

$$
\mathrm{FS}_{q}(W)=\operatorname{Hom}_{H_{q}(m)}\left(W, V^{\otimes m}\right)
$$

with $U_{q}\left(\mathfrak{s l}_{n}\right)$-module structure induced from $V^{\otimes m}$ is an equivalence of categories between $\operatorname{Rep}\left(H_{q}(m)\right)$ and the subcategory of weight m representations of $U_{q}\left(\mathfrak{s l}_{n}\right)$.

Proof. From semisimplicity and the explicit decomposition of $V^{\otimes m}$ provided by Theorem 2.6(b).

3. Yangians and degenerate affine Hecke algebras

3.1. Yang-Baxter equation with spectral parameter and Yangian. We extend the results of the previous section to the analogue of $U_{q}\left(\mathfrak{s l}_{n}\right)$ given by the solution to the Yang-Baxter equation with spectral parameter. This object is known as the Yangian $Y\left(\mathfrak{s l}_{n}\right)$, and it will be Schur-Weyl dual to the degenerate affine Hecke algebra Λ_{m}. We first introduce the Yang-Baxter equation with spectral parameter

$$
\begin{equation*}
R^{12}(u-v) R^{13}(u) R^{23}(v)=R^{23}(v) R^{13}(u) R^{12}(u-v) \tag{2}
\end{equation*}
$$

We may check that (2) has a solution in $\operatorname{End}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ given by

$$
R(u)=1-\frac{P}{u} .
$$

This solution allows us to define the Yangian $Y\left(\mathfrak{g l}_{n}\right)$ via the RTT formalism.
Definition 3.1. The Yangian $Y\left(\mathfrak{g l}_{n}\right)$ is the Hopf algebra with generators $t_{i j}^{(k)}$ and defining relation

$$
\begin{equation*}
R^{12}(u-v) t^{1}(u) t^{2}(v)=t^{2}(v) t^{1}(u) R^{12}(u-v) \tag{3}
\end{equation*}
$$

where $t(u)=\sum_{i, j} t_{i j}(u) \otimes E_{i j} \in Y\left(\mathfrak{s l}_{n}\right) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right), t_{i j}(u)=\delta_{i j} u^{-1}+\sum_{k \geq 1} t_{i j}^{(k)} u^{-k-1} \in Y\left(\mathfrak{s l}_{n}\right)\left[\left[u^{-1}\right]\right]$, the superscripts denote action in a tensor coordinate, and the relation should be interpreted in $Y\left(\mathfrak{s l}_{n}\right)\left(\left(v^{-1}\right)\right)\left[\left[u^{-1}\right]\right] \otimes$ $\operatorname{End}\left(\mathbb{C}^{n}\right) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)$. The coalgebra structure is given by

$$
\Delta\left(t_{i j}(u)\right)=\sum_{a=1}^{n} t_{i a}(u) \otimes t_{a j}(u)
$$

and the antipode by $S(t(u))=t(u)^{-1}$.
Remark. There is an embedding of Hopf algebras $U\left(\mathfrak{g l}_{n}\right) \rightarrow Y\left(\mathfrak{g l}_{n}\right)$ given by $t_{i j} \mapsto t_{i j}^{(0)}$.
Remark. Relation (3) is equivalent to the relations

$$
\begin{equation*}
\left[t_{i j}^{(r)}, t_{k l}^{(s-1)}\right]-\left[t_{i j}^{(r-1)}, t_{k l}^{(s)}\right]=t_{k j}^{(r-1)} t_{i l}^{(s-1)}-t_{k j}^{(s-1)} t_{i l}^{(r-1)} \tag{4}
\end{equation*}
$$

for $1 \leq i, j, k, l \leq n$ and $r, s \geq 1$ (where $t_{i j}^{-1}=\delta_{i j}$). For $r=0$ and $i=j=a$, this implies that

$$
\begin{equation*}
\left[t_{a a}^{(0)}, t_{k l}^{(s-1)}\right]=\delta_{k a} t_{a l}^{(s-1)}-\delta_{a l} t_{k a}^{(s-1)} \tag{5}
\end{equation*}
$$

meaning that $t_{i j}^{(k)}$ and $t_{i j}^{(0)}$ map between the same $U\left(\mathfrak{g l}_{n}\right)$-weight spaces.
Remark. For any a, the map eva $: Y\left(\mathfrak{g l}_{n}\right) \rightarrow U\left(\mathfrak{g l}_{n}\right)$ given by

$$
\mathrm{ev}_{a}: t_{i j}(u) \mapsto 1+\frac{E_{i j}}{u-a}
$$

is an algebra homomorphism but not a Hopf algebra homomorphism. Pulling back $U\left(\mathfrak{g l}_{n}\right)$-representations through this map gives the evaluation representations of $Y\left(\mathfrak{g l}_{n}\right)$.
3.2. The Yangian of $\mathfrak{s l}_{n}$. For any formal power series $f(u)=1+f_{1} u^{-1}+f_{2} u^{-2}+\cdots \in \mathbb{C}\left[\left[u^{-1}\right]\right]$, the map

$$
t(u) \mapsto f(u) t(u)
$$

defines an automorphism μ_{f} of $Y\left(\mathfrak{g l}_{n}\right)$. One can check that the elements of $Y\left(\mathfrak{g l}_{n}\right)$ fixed under μ_{f} form a Hopf subalgebra.

Definition 3.2. The Yangian $Y\left(\mathfrak{s l}_{n}\right)$ of $\mathfrak{s l}_{n}$ is $Y\left(\mathfrak{s l}_{n}\right)=\left\{x \in Y\left(\mathfrak{g l}_{n}\right) \mid \mu_{f}(x)=x\right\}$.
We may realize $Y\left(\mathfrak{s l}_{n}\right)$ as a quotient of $Y\left(\mathfrak{g l}_{n}\right)$. Define the quantum determinant of $Y\left(\mathfrak{g l}_{n}\right)$ by

$$
\begin{equation*}
\operatorname{qdet} t(u)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} t_{\sigma(1), 1}(u) t_{\sigma(2), 2}(u-1) \cdots t_{\sigma(n), n}(u-n+1) \tag{6}
\end{equation*}
$$

Proposition 3.3. We have the following:
(a) the coefficients of $q \operatorname{det} t(u)$ generate $Z\left(Y\left(\mathfrak{g l}_{n}\right)\right)$;
(b) $Y\left(\mathfrak{g l}_{n}\right)$ admits the tensor decomposition $Z\left(Y\left(\mathfrak{g l}_{n}\right)\right) \otimes Y\left(\mathfrak{s l}_{n}\right)$;
(c) $Y\left(\mathfrak{s l}_{n}\right)=Y\left(\mathfrak{g l}_{n}\right) /(\operatorname{qdet} t(u)-1)$.

Observe that any representation of $Y\left(\mathfrak{g l}_{n}\right)$ pulls back to a representation of $Y\left(\mathfrak{s l}_{n}\right)$ under the embedding $Y\left(\mathfrak{s l}_{n}\right) \rightarrow Y\left(\mathfrak{g l}_{n}\right)$. Further, the image of $U\left(\mathfrak{s l}_{n}\right)$ under the previous embedding $U\left(\mathfrak{g l}_{n}\right) \rightarrow Y\left(\mathfrak{g l}_{n}\right)$ lies in $Y\left(\mathfrak{s l}_{n}\right)$, so we may consider any $Y\left(\mathfrak{s l}_{n}\right)$-representation as a $U\left(\mathfrak{s l}_{n}\right)$-representation. We say that a representation of $Y\left(\mathfrak{s l}_{n}\right)$ is of weight m if it is of weight m as a representation of $U\left(\mathfrak{s l}_{n}\right)$.
3.3. Degenerate affine Hecke algebra. The Yangian will be Schur-Weyl dual to the degenerate affine Hecke algebra Λ_{m}, which may be viewed as a $q \rightarrow 1$ limit of the affine Hecke algebra.
Definition 3.4. The degenerate affine Hecke algebra Λ_{m} is the associative algebra given by

$$
\begin{aligned}
\Lambda_{m}=\left\langle s_{1}, \ldots, s_{m-1}, x_{1}, \ldots, x_{m}\right| s_{i}^{2}=1, s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1},\left[x_{i}, x_{j}\right]=0 \\
& \left.s_{i} x_{i}-x_{i+1} s_{i}=1,\left[s_{i}, s_{j}\right]=\left[s_{i}, x_{j}\right]=0 \text { if }|i-j| \neq 1\right\rangle
\end{aligned}
$$

Remark. We have the following facts about Λ_{m} :

- s_{i} and x_{i} generate copies of $\mathbb{C}\left[S_{m}\right]$ and $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ inside Λ_{m};
- the center of Λ_{m} is $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]^{S_{m}}$;
- the elements $y_{i}=x_{i}-\sum_{j<i} s_{i j}$ in Λ_{m} give an alternate presentation via

$$
\Lambda=\left\langle s_{1}, \ldots, s_{m-1}, y_{1}, \ldots, y_{m} \mid s y_{i}=y_{s(i)} s,\left[y_{i}, y_{j}\right]=\left(y_{i}-y_{j}\right) s_{i j}\right\rangle
$$

3.4. The Drinfeld functor. We now upgrade FS to a functor between $\operatorname{Rep}\left(\Lambda_{m}\right)$ and $\operatorname{Rep}\left(Y\left(\mathfrak{s l}_{n}\right)\right)$. For a Λ_{m}-representation W, define the linear map $\rho_{W}: Y\left(\mathfrak{g l}_{n}\right) \rightarrow \operatorname{End}(\operatorname{FS}(W))$ by

$$
\rho_{W}: t(u) \mapsto T^{1, \star}\left(u-x_{1}\right) T^{2, \star}\left(u-x_{2}\right) \cdots T^{m, \star}\left(u-x_{m}\right)
$$

where

$$
T\left(u-x_{l}\right)=1+\frac{1}{u-x_{l}} \sum_{a b} E_{a b} \otimes E_{a b} \in \operatorname{End}(W \otimes V \otimes V)
$$

should be thought of as the image of the evaluation map ev $a: Y\left(\mathfrak{g l}_{n}\right) \rightarrow U\left(\mathfrak{g l}_{n}\right)$ given by $t_{i j}(u) \mapsto 1+\frac{E_{i j}}{u-a}$ at " $a=x_{l}$ ".
Proposition 3.5. The map ρ_{W} gives a representation of $Y\left(\mathfrak{g l}_{n}\right)$ on $\operatorname{FS}(W)$.
Proof. Define $S=\sum_{a b} E_{a b} \otimes E_{a b}$. We first check the image of ρ_{W} lies in $\operatorname{Hom}_{S_{m}}\left(W, V^{\otimes m}\right)$. For any $f: W \rightarrow V^{\otimes m}$, we must check that $\rho_{W}(f)\left(s_{i} w\right)=P^{i, i+1} \rho_{W}(f)(w)$. Because all coefficients of $\prod_{l}\left(u-x_{l}\right)$ are central in Λ_{m}, it suffices to check this for

$$
\widetilde{\rho}_{W}: t(u) \mapsto \prod_{l}\left(u-x_{l}\right) \rho_{W}(t(u))=\prod_{l}\left(u-x_{l}+S^{l, \star}\right)
$$

Notice that $\left(u-x_{j}+S^{j, \star}\right)$ commutes with the action of s_{i} and $P^{i, i+1}$ unless $j=i, i+1$, so it suffices to check that

$$
\left(u-x_{i}+S^{i, \star}\right)\left(u-x_{i+1}+S^{i+1, \star}\right) f\left(s_{i} w\right)=P^{i, i+1}\left(u-x_{i}+S^{i, \star}\right)\left(u-x_{i+1}+S^{i+1, \star}\right) f(w)
$$

We compute the first term as

$$
\begin{aligned}
& \left(u-x_{i}+S^{i, \star}\right)\left(u-x_{i+1}+S^{i+1, \star}\right) f\left(s_{i} w\right) \\
& \quad=\left(u+S^{i, \star}\right)\left(u+S^{i+1, \star}\right) f\left(s_{i} w\right)-\left(u+S^{i+1, \star}\right) f\left(x_{i} s_{i} w\right)-\left(u+S^{i, \star}\right) f\left(x_{i+1} s_{i} w\right)+f\left(x_{i} x_{i+1} s_{i} w\right)
\end{aligned}
$$

Now notice that

$$
\begin{aligned}
\left(u+S^{i, \star}\right)\left(u+S^{i+1, \star}\right) f\left(s_{i} w\right) & =\left(u+S^{i, \star}\right)\left(u+S^{i+1, \star}\right) P^{i, i+1} f(w) \\
& =P^{i, i+1}\left(u+S^{i, \star}\right)\left(u+S^{i+1, \star}\right) f(w)+P^{i, i+1}\left[S^{i+1, \star}, S^{i, \star}\right] f(w)
\end{aligned}
$$

and

$$
\begin{aligned}
-\left(u+S^{i+1, \star}\right) f\left(x_{i} s_{i} w\right) & =-\left(u+S^{i+1, \star}\right) f\left(\left(s_{i} x_{i+1}+1\right) w\right) \\
& =-P^{i, i+1}\left(u+S^{i, \star}\right) f\left(x_{i+1} w\right)-\left(u+S^{i+1, \star}\right) f(w)
\end{aligned}
$$

and

$$
\begin{aligned}
-\left(u+S^{i, \star}\right) f\left(x_{i+1} s_{i} w\right) & =-\left(u+S^{i, \star}\right) f\left(\left(s_{i} x_{i}-1\right) w\right) \\
& =-P^{i, i+1}\left(u+S^{i+1, \star}\right) f\left(x_{i} w\right)+\left(u+S^{i, \star}\right) f(w)
\end{aligned}
$$

and

$$
f\left(x_{i} x_{i+1} s_{i} w\right)=P^{i, i+1} f\left(x_{i} x_{i+1} w\right)
$$

Putting these together, we find that

$$
\begin{array}{r}
\left(u-x_{i}+S^{i, \star}\right)\left(u-x_{i+1}+S^{i+1, \star}\right) f\left(s_{i} w\right)=P^{i, i+1}\left(u-x_{i}+S^{i, \star}\right)\left(u-x_{i+1}+S^{i+1, \star}\right) f(w) \\
+\left(P^{i, i+1}\left[S^{i+1, \star}, S^{i, \star}\right]+S^{i, \star}-S^{i+1, \star}\right) f(w)
\end{array}
$$

We may check in coordinates that $\left[S^{i, \star}, S^{i+1, \star}\right]=\left[P^{i, i+1}, S^{i, \star}\right]$ so that

$$
P^{i, i+1}\left[S^{i+1, \star}, S^{i, \star}\right]=P^{i, i+1} S^{i, \star} P^{i, i+1}-S^{i, \star}=S^{i+1, \star}-S^{i, \star},
$$

which yields the desired. To check that ρ_{W} is a valid $Y\left(\mathfrak{g l}_{n}\right)$-representation, we note that the x_{l} form a commutative subalgebra of Λ_{m}, hence the same proof that ev_{a} is a valid map of algebras shows that ρ_{W} is a representation, since the action of the x_{i} commutes with the action of $U\left(\mathfrak{g l}_{n}\right)$.
Lemma 3.6. We may reformulate the action of $Y\left(\mathfrak{g l}_{n}\right)$ on $\operatorname{End}(\operatorname{FS}(W))$ via the equality

$$
\rho_{W}(t(u))=1+\sum_{l=1}^{m} \frac{1}{u-y_{l}} S^{l, \star}
$$

In particular, in terms of the generators y_{l}, we have

$$
\rho_{W}\left(t_{i j}^{(k)}\right)=\delta_{i j}+\sum_{l=1}^{m} y_{l}^{k} E_{j i}^{l}
$$

Proof. We claim by induction on k that

$$
\prod_{l=1}^{k} T^{l, \star}\left(u-x_{l}\right)=1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}
$$

The base case $k=1$ is trivial. For the inductive step, noting that $S^{l, \star} S^{k+1, \star}=P^{l, k+1} S^{k+1, \star}$, we have

$$
\begin{aligned}
\left(1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}\right)\left(1+\frac{S^{k+1, \star}}{u-x_{k+1}}\right) & =1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}+\frac{1}{u-x_{k+1}}\left(1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}\right) S^{k+1, \star} \\
& =1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}+\frac{1}{u-x_{k+1}}\left(1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} P^{l, k+1}\right) S^{k+1, \star} \\
& =1+\sum_{l=1}^{k} \frac{1}{u-y_{l}} S^{l, \star}+\frac{1}{u-x_{k+1}}\left(1+\sum_{l=1}^{k} P^{l, k+1} \frac{1}{u-y_{k+1}}\right) S^{k+1, \star} \\
& =1+\sum_{l=1}^{k+1} \frac{1}{u-y_{l}} S^{l, \star}
\end{aligned}
$$

3.5. Schur-Weyl duality for Yangians. The upgraded functor FS is known as the Drinfeld functor, and an analogue of Theorem 1.5 holds for it.
Theorem 3.7. For $n>m$, the functor $\mathrm{FS}: \operatorname{Rep}\left(\Lambda_{m}\right) \rightarrow \operatorname{Rep}\left(Y\left(\mathfrak{s l}_{n}\right)\right)$ is an equivalence of categories onto the subcategory of $\operatorname{Rep}\left(Y\left(\mathfrak{s l}_{n}\right)\right)$ generated by representations of weight m.

Proof. We first show essential surjectivity. Viewing any representation W^{\prime} of $Y\left(\mathfrak{s l}_{n}\right)$ of weight m as a representation of $U\left(\mathfrak{s l}_{n}\right)$, we have by Theorem 1.5 that $W^{\prime}=\mathrm{FS}(W)$ for some S_{m}-representation W. We must now extend the S_{m}-action to an action of Λ_{m} by defining the action of the y_{l}. For this, we use that W^{\prime} is also a representation of $Y\left(\mathfrak{g l}_{n}\right)$ via the quotient map $Y\left(\mathfrak{g l}_{n}\right) \rightarrow Y\left(\mathfrak{s l}_{n}\right)$.

Lemma 3.8. We have the following:
(a) if $v \in V^{\otimes m}$ is a vector with non-zero component in each isotypic component of $V^{\otimes m}$ viewed as a $U\left(\mathfrak{s l}_{n}\right)$-representation, the linear map $W \rightarrow \mathrm{FS}(W)$ given by $w \mapsto v \cdot w^{*}$ is injective, where $w^{*} \in W^{*}$ is the image of w under the canonical isomorphism $W \simeq W^{*}$;
(b) if e_{1}, \ldots, e_{n} is the standard basis for V, then $v=e_{i_{1}} \otimes \cdots \otimes e_{i_{m}} \in V^{\otimes m}$ is such a vector for i_{1}, \ldots, i_{m} distinct.

Proof. Theorem 1.3 and reduction to isotypic components of W gives (a), and (b) follows because v is a cyclic vector for $U\left(\mathfrak{s l}_{n}\right)$ in $V^{\otimes m}$.

Define the special vectors

$$
v^{(j)}=e_{2} \otimes \cdots \otimes e_{j} \otimes e_{n} \otimes e_{j+1} \cdots \otimes e_{m} \text { and } w^{(j)}=e_{2} \otimes \cdots \otimes e_{j} \otimes e_{1} \otimes e_{j+1} \cdots \otimes e_{m}
$$

For $w \in W$, the action of $t_{1 n}^{(1)}$ on $v^{(j)} \cdot w^{*}$ lies in $w^{(j)} \cdot W^{*}$ by $U\left(\mathfrak{s l}_{n}\right)$-weight considerations via (5). By Lemma 3.8 , we may define linear maps $\alpha_{j} \in \operatorname{End}_{\mathbb{C}}(W)$ by

$$
t_{1 n}^{(1)}\left(v^{(j)} \cdot w^{*}\right)=w^{(j)} \cdot \alpha_{j}(w)^{*}
$$

Similarly, we may define maps $\beta_{j}, \gamma_{j} \in \operatorname{End}_{\mathbb{C}}(W)$ so that

$$
t_{11}^{(1)}\left(w^{(j)} \cdot w^{*}\right)=w^{(j)} \cdot \beta_{j}(w)^{*}
$$

and

$$
t_{1 n}^{(2)}\left(v^{(j)} \cdot w^{*}\right)=w^{(j)} \cdot \gamma_{j}(w)^{*}
$$

Evaluate the relation $\left[t_{1 n}^{(1)}, t_{11}^{(0)}\right]-\left[t_{1 n}^{(0)}, t_{11}^{(1)}\right]=0$ on $v^{(j)} \cdot w^{*}$ to find that $\alpha_{j}(w)-\beta_{j}(w)=0$. Now, combining the relations

$$
-\left[t_{1 n}^{(2)}, t_{11}^{(0)}\right]=t_{1 n}^{(2)} \text { and }\left[t_{1 n}^{(2)}, t_{11}^{(0)}\right]-\left[t_{1 n}^{(1)}, t_{11}^{(1)}\right]=t_{1 n}^{(1)} t_{11}^{(0)}-t_{1 n}^{(0)} t_{11}^{(1)},
$$

we find that

$$
-t_{1 n}^{(2)}-\left[t_{1 n}^{(1)}, t_{11}^{(1)}\right]=t_{1 n}^{(1)} t_{11}^{(0)}-t_{1 n}^{(0)} t_{11}^{(1)}
$$

Evaluating this on $v^{(j)} \cdot w^{*}$ implies that $-\gamma_{j}(w)+\alpha_{j}^{2}(w)=0$.
Lemma 3.9. The formulas for the action of the following Yangian elements

$$
t_{1 n}^{(1)}=\sum_{l} \alpha_{l} E_{1 n}^{(l)}, \quad t_{11}^{(1)}=\sum_{l} \alpha_{l} E_{11}^{(l)}, \quad t_{1 n}^{(2)}=\sum_{l} \alpha_{l}^{2} E_{1 n}^{(l)}
$$

hold on all of $\mathrm{FS}(W)$.
Proof. For $t_{1 n}^{(1)}$, because $t_{i j}^{(0)}$ commutes with $t_{1 n}^{(1)}$ for $i, j \notin\{1, n\}$, it suffices by Lemma 3.8(b) to verify the claim on basis vectors $v \in V$ containing e_{2}, \ldots, e_{n-1} at most once as tensor factors. In fact, for each configuration of e_{1} 's and e_{n} 's which occur, it suffices to verify the claim for a single such basis vector. Similar claims hold for $t_{11}^{(1)}$ and basis vectors containing e_{2}, \ldots, e_{n} at most once. Call basis vectors containing r copies of e_{1} and s of copies of e_{n} vectors of type (r, s).

The claim holds for $t_{11}^{(1)}$ for $(0, \star)$ trivially and for $(1, \star)$ because it holds for $w^{(j)}$. Now, we have $\left[t_{11}^{(1)}, t_{1 n}^{(0)}\right]=$ $t_{1 n}^{(1)}$, so this implies that the claim holds for $t_{1 n}^{(1)}$ for $(0, \star)$. Now, observe that $\left[t_{1 n}^{(1)}, t_{12}^{(0)}\right]=0$, so replacing any v of type (r, s) which does not contain e_{2} with v^{\prime} which has e_{2} instead of e_{1} in a single tensor coordinate yields

$$
t_{1 n}^{(1)} v=t_{1 n}^{(1)} t_{12}^{(0)} v^{\prime}=t_{12}^{(0)} t_{1 n}^{(1)} v^{\prime},
$$

whence the claim holds for $t_{1 n}^{(1)}$ on v if it holds for v^{\prime}. Induction on r yields the claim for all $t_{1 n}^{(1)}$. Now, for $t_{11}^{(1)}$, suppose the claim holds for type $(r-1,0)$, and choose a v of type $(r, 0)$ with e_{1} in coordinates i_{1}, \ldots, i_{r}, and let v^{\prime} be the vector containing e_{n} instead of e_{1} in the single tensor coordinate i_{r}. Then we have $v=t_{1 n}^{(0)} v^{\prime}$, so

$$
t_{11}^{(1)} v=t_{11}^{(1)} t_{1 n}^{(0)} v^{\prime}=t_{1 n}^{(0)} t_{11}^{(1)} v^{\prime}+\left[t_{11}^{(0)}, t_{1 n}^{(1)}\right] v^{\prime}=t_{1 n}^{(0)} \sum_{j=1}^{r-1} \alpha_{i_{j}} E_{11}^{\left(i_{j}\right)} v^{\prime}+\alpha_{i_{r}} v=\left(\sum_{j=1}^{r-1} \alpha_{i_{j}}+\alpha_{i_{r}}\right) v
$$

which yields the claim for $t_{11}^{(1)}$ by induction on r. The claim for $t_{1 n}^{(2)}$ follows from the relation

$$
t_{1 n}^{(2)}=t_{1 n}^{(0)} t_{11}^{(1)}-t_{1 n}^{(1)} t_{11}^{(0)}-\left[t_{1 n}^{(1)}, t_{11}^{(1)}\right] .
$$

To conclude, we claim that the assignment $y_{l} \mapsto \alpha_{l}$ extends the S_{m}-action on $\mathrm{FS}(W)$ to a Λ_{m}-action. For this, we evaluate relations from $Y\left(\mathfrak{s l}_{n}\right)$ on carefully chosen vectors in $\mathrm{FS}(W)$. To check that $s_{i} y_{i}=y_{i+1} s_{i}$, note that $v^{(i)} \cdot w^{*}=v^{(i+1)} \cdot\left(s_{i} w\right)^{*}$, so acting by $t_{1 n}^{(1)}$ on both sides gives the desired

$$
s_{i} w^{(i+1)} \cdot \alpha_{i}(w)^{*}=w^{(i)} \cdot \alpha_{i}(w)^{*}=w^{(i+1)} \cdot \alpha_{i+1}\left(s_{i}(w)\right)^{*}
$$

For the second relation, we evaluate

$$
-t_{1 n}^{(2)}-\left[t_{1 n}^{(1)}, t_{11}^{(1)}\right]=t_{1 n}^{(1)} t_{11}^{(0)}-t_{1 n}^{(0)} t_{11}^{(1)}
$$

on

$$
\begin{aligned}
& e_{2} \otimes \cdots \otimes e_{i} \otimes e_{n} \otimes e_{i+1} \otimes \cdots \otimes e_{j-1} \otimes e_{1} \otimes e_{j} \otimes \cdots \otimes e_{m} \cdot w^{*} \\
& \quad=e_{2} \otimes \cdots \otimes e_{i} \otimes e_{1} \otimes e_{i+1} \otimes \cdots \otimes e_{j-1} \otimes e_{n} \otimes e_{j} \otimes \cdots \otimes e_{m} \cdot\left(s_{i j} w\right)^{*},
\end{aligned}
$$

we find that

$$
-\left(\alpha_{j}-\alpha_{i}\right) s_{i j} w=\alpha_{i}\left(\alpha_{j}(w)\right)-\alpha_{j}\left(\alpha_{i}(w)\right)
$$

which shows that $\left[\alpha_{i}, \alpha_{j}\right]=\left(\alpha_{i}-\alpha_{j}\right) s_{i j}$.
It remains to show that FS is fully faithful. Injectivity on morphisms follows because FS is fully faithful in the classical case. For surjectivity, any map $F: \mathrm{FS}(W) \rightarrow \mathrm{FS}\left(W^{\prime}\right)$ of $Y\left(\mathfrak{s l}_{n}\right)$-modules is of the form $F=\mathrm{FS}(f)$ for a map $f: W \rightarrow W^{\prime}$ of S_{m}-modules. Further, viewing W and W^{\prime} as $Y\left(\mathfrak{g l}_{n}\right)$-modules via the quotient map, F commutes with the full $Y\left(\mathfrak{g l}_{n}\right)$-action because the center acts trivially on both W and W^{\prime}. Now, because F commutes with the action of $t_{1 n}^{(1)}$, we see for all $w \in W$ and $v \in V^{\otimes m}$ that

$$
\sum_{l=1}^{m} E_{1 n}^{(l)} v \cdot f\left(y_{l} w\right)^{*}=\sum_{l=1}^{m} E_{1 n}^{(l)} v \cdot\left(y_{l} f(w)\right)^{*}
$$

Taking $v=w^{(j)}$ shows that $f\left(y_{j} w\right)=y_{j} f(w)$, so that f is a map of Λ_{m}-modules, as needed.

4. Quantum affine algebras and affine Hecke algebras

4.1. Definition of the objects. Our goal in this section will be to extend Corollary 2.7 to the case of $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$ and $\mathcal{H}_{q}(m)$. We first define these objects.

Definition 4.1. The quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is the quantum group of the Kac-Moody algebra associated to type $A_{n-1}^{(1)}$, meaning that the Cartan matrix A is given by

$$
A=\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & -1 \\
-1 & 0 & 0 & \cdots & -1 & 2
\end{array}\right)
$$

Remark. The obvious embedding $x_{i}^{ \pm} \mapsto x_{i}^{ \pm}$and $q^{h_{i} / 2} \mapsto q^{h_{i} / 2}$ realizes $U_{q}\left(\mathfrak{s l}_{n}\right)$ as a Hopf subalgebra of $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$. We say that a $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$-representation is of weight m if it is of weight m as a $U_{q}\left(\mathfrak{s l}_{n}\right)$-representation.

Definition 4.2. The affine Hecke algebra $\mathcal{H}_{q}(m)$ is the associative algebra given by

$$
\begin{aligned}
\mathcal{H}_{q}(m)=\left\langle T_{1}^{ \pm}, \ldots, T_{m-1}^{ \pm}, X_{1}^{ \pm}, \ldots, X_{m}^{ \pm}\right|\left[X_{i}, X_{j}\right]= & 0,\left(T_{i}-q^{-1}\right)\left(T_{i}+q\right)=0, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \\
& \left.T_{i} X_{i} T_{i}=q^{2} X_{i+1},\left[T_{i}, T_{j}\right]=\left[T_{i}, X_{j}\right]=0 \text { for }|i-j| \neq 1\right\rangle
\end{aligned}
$$

4.2. Drinfeld functor and Schur-Weyl duality. We now give an extension of Corollary 2.7 to the affine setting. The strategy is the analogue of the one we took for Yangians. For variety, we present a construction directly in the Kac-Moody presentation in this case. For a $\mathcal{H}_{q}(m)$-representation W, define the linear map $\rho_{q, W}: U_{q}\left(\widehat{\mathfrak{s}}_{n}\right) \rightarrow \operatorname{End}\left(\mathrm{FS}_{q}(W)\right)$ by

$$
\begin{aligned}
& \rho_{q, W}\left(x_{0}^{ \pm}\right)=\sum_{l=1}^{m} X_{l}^{ \pm} \otimes\left(q^{\mp h_{\theta} / 2}\right)^{\otimes l-1} \otimes x_{\theta}^{\mp} \otimes\left(q^{\mp h_{\theta} / 2}\right)^{\otimes m-l}, \text { and } \\
& \rho_{q, W}\left(q^{h_{0}}\right)=1 \otimes\left(q^{-h_{\theta}}\right)^{\otimes m},
\end{aligned}
$$

where $x_{\theta}^{+}=E_{1 n}$ and $x_{\theta}^{-}=E_{n 1}$ as operators in $\operatorname{End}(V)$, and $q^{h_{\theta}}=q^{h_{1}+\cdots+h_{n-1}}$.
Theorem 4.3. The map $\rho_{q, W}$ defines a representation of $U_{q}\left(\widehat{\mathfrak{s}}_{n}\right)$ on $\mathrm{FS}_{q}(W)$.
Proof. By a direct computation of the relations of $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$. For details, the reader may consult [CP96, Theorem 4.2]; note that the coproduct used there differs from our convention, which follows [Jim86].
Theorem 4.4. For $n>m$, the functor $\operatorname{FS}_{q}: \operatorname{Rep}\left(\mathcal{H}_{q}(m)\right) \rightarrow \operatorname{Rep}\left(U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)\right)$ is an equivalence of categories onto the subcategory of $\operatorname{Rep}\left(U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)\right)$ generated by representations of weight m.

Proof. The proof of essential surjectivity is analogous to that of Theorem 3.7. The action of $X_{i}^{ \pm}$is obtained by evaluation on some special basis vectors in $V^{\otimes m}$ and the relations of $\mathcal{H}_{q}(m)$ are shown to be satisfied for them from the relations of $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$. For details, see [CP96, Sections 4.4-4.6]. The check that FS_{q} is fully faithful is again essentially the same as in Theorem 3.7.

References

[Ara99] Tomoyuki Arakawa. Drinfeld functor and finite-dimensional representations of Yangian. Comm. Math. Phys., 205(1):1-18, 1999.
[BGHP93] D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier. Yang-Baxter equation in long-range interacting systems. J. Phys. A, 26(20):5219-5236, 1993.
[CP96] Vyjayanthi Chari and Andrew Pressley. Quantum affine algebras and affine Hecke algebras. Pacific J. Math., 174(2):295-326, 1996.
[Dri86] V. G. Drinfel'd. Degenerate affine Hecke algebras and Yangians. Funktsional. Anal. i Prilozhen., 20(1):69-70, 1986.
[Jim86] Michio Jimbo. A q-analogue of $U(\mathfrak{g l}(N+1)$), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys., 11(3):247-252, 1986.
[Mol07] Alexander Molev. Yangians and classical Lie algebras, volume 143 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
E-mail address: yisun@math.mit.edu

