NOTIONS OF STABILITY OF SHEAVES

XIAOLEI ZHAO

1. Stability and Filtrations

1.1. **Semistable sheaves.** Let X be a projective scheme over a field k and E be a coherent sheaf on X. The Euler characteristic of E is denoted by $\chi(E) = \sum (-1)^i h^i(X, E)$, where $h^i(X, E) = \dim_k H^i(X, E)$. Fix $\mathcal{O}(1)$ as an ample line bundle on X.

Definition and Lemma. The Hilbert polynomial $P(E): m \mapsto \chi(E \otimes \mathcal{O}(m))$ is a polynomial of m and can be written as $P(E,m) = \sum_{i=0}^{\dim E} \alpha_i(E) \frac{m^i}{i!}$.

Note. $\alpha_{\dim X}(\mathcal{O}_X)$ is exactly the degree of X with respect to $\mathcal{O}(1)$. Furthermore, if X is reduced and irreducible, of dimension d_X , then $\alpha_{d_X}(E) = \operatorname{rank}(E) \cdot \alpha_{d_X}(\mathcal{O}_X)$.

Definition 1.1.1. The reduced Hilbert polynomial p(E) of a coherent sheaf E of dimension d is defined by $p(E,m) = \frac{P(E,m)}{\alpha_d(E)}$.

For two polynomials p(m) and q(m), we say p(m) < q(m) if that holds for m >> 0.

Definition 1.1.2. A coherent sheaf E purely of dimension d (i.e. every nonzero subsheaf is of support dimension d) is (semi)stable if for any proper subsheaf $F \subset E$, one has $p(F) < (\leq)p(E)$.

Exercise 1.1.1. E is (semi)stable if and only if for all proper quotient sheaves $E \twoheadrightarrow G$ with $\alpha_d(G) > 0$, one has $p(E) < (\leq) p(G)$.

Exercise 1.1.2. Suppose F, G are semistable, purely of dimension d. If p(F) > p(G), then Hom(F,G) = 0; if p(F) = p(G) and $f: F \to G$ is nontrivial, then f is injective if F is stable and surjective if G is stable.

1.2. **Slope stable.** Let X be a smooth projective curve over an algebraic closed field k and E be a locally free sheaf of rank r. Then $\chi(E) = \deg(E) + r(1-g)$, where g is the genus of X. So $P(E,m) = (\deg(X)m + \mu(E) + (1-g))r$, where $\mu(E) = \frac{\deg(E)}{r}$ is called the slope of E

In this case, the stability means:

E is (semi)stable if for all subsheaves $F \subset E$ with $0 < \operatorname{rank}(F) < \operatorname{rank}(E)$, one has $\mu(F) < (\leq)\mu(E)$.

In general, this becomes the μ -stability. Denote $d = \dim X$.

Definition 1.2.1. Suppose that E is a coherent sheaf of dimension $d = \dim X$. The degree of E is defined to be

$$\deg(E) = \alpha_{d-1}(E) - \operatorname{rank}(E) \cdot \alpha_{d-1}(\mathcal{O}_X).$$

And its slope is

$$\mu(E) = \frac{\deg(E)}{\operatorname{rank}(E)}.$$

Definition 1.2.2. A coherent sheaf E of dimension $d = \dim(X)$ is μ -(semi)stable if

XIAOLEI ZHAO

- (i) any torsion subsheaf of E has support of codimension at least 2;
- (ii) $\mu(F) < (\leq)\mu(E)$ for all subsheaves $F \subset E$ with $0 < \operatorname{rank}(F) < \operatorname{rank}(E)$.

Exercise 1.2.1. • If E is purely of dimension $d = \dim X$, then μ -stable \implies stable $\implies \mu$ -semistable.

• Given X being integral, if the coherent sheaf E of dimension $d = \dim X$ is μ semistable, and rank(E) is coprime to deg(E), then E is μ -stable.

1.3. Harder-Narasimhan Filtration.

Definition 1.3.1. Suppose a coherent sheaf E over X is purely of dimension d. A Harder-Narasimhan filtration for E is an increasing filtration

$$0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_\ell(E) = E,$$

such that $\operatorname{gr}_i^{HN} := HN_i(E)/HN_{i-1}(E)$ for $i = 1, \dots, \ell$ are semistable sheaves of dimension d with reduced Hilbert polynomials p_i satisfying

$$p_{\max}(E) := p_1 > \cdots > p_{\ell} =: p_{\min}(E).$$

Theorem 1.3.1. Every pure sheaf E has a unique HN filtration.

Proof. We first need the following lemma.

Lemma 1.3.1. Suppose E is pure of dimension d. Then there exists $F \subset E$ such that for all $G \subset E$, one has $p(F) \geq p(G)$, and in case of equality $F \supset G$. Moreover F is unique and semistable. We call F the maximal destabilizing sheaf of E.

Proof of Lemma. We define an order ' \leq ' on the nontrivial subsheaves of E: $F_1 \leq F_2$ if $F_1 \subset F_2$ and $p(F_1) \leq p(F_2)$. We say a sheaf is \leq -maximal if it is maximal with respect to this order. By ascending property, for each $F \subset E$, there exists a subsheaf F' such that $F \subset F' \subset E$ and F' is \leq -maximal. Let $F \subset E$ be the \leq -maximal subsheaf with minimal $\alpha_d(F)$. We claim that F has the asserted properties.

Suppose there exists $G \subset E$ with $p(G) \geq p(F)$. First we show that we can assume $G \subset F$ by replacing G by $G \cap F$. Indeed, if $G \not\subset F$, F is a proper subsheaf of F + G, so p(F) > p(F + G). Consider

$$0 \to F \cap G \to F \oplus G \to F + G \to 0.$$

We have

2

$$P(F) + P(G) = P(F \cap G) + P(F + G),$$

$$\alpha_d(F) + \alpha_d(G) = \alpha_d(F \cap G) + \alpha_d(F + G).$$

Hence

$$\alpha_d(F\cap G)(p(G)-p(F\cap G)) = \alpha_d(F+G)(p(F+G)-p(F)) + (\alpha_d(G)-\alpha_d(F\cap G))(p(F)-p(G)).$$

Therefore $p(F) < p(G) < p(F \cap G)$.

Next, fix $G \subset F$ with p(G) > p(F) which is \leq -maximal in F. Let G' be the \leq -maximal sheaf in E containing G. In particular, $p(F) < p(G) \leq p(G')$. By definition, $G' \not\subset F$ (otherwise $\alpha_d(G') < \alpha_d(F)$), hence F is a proper subsheaf of F + G'. Therefore p(F) > p(F + G'). As before, we have $p(F \cap G') > p(G') \geq p(G)$. Since $G \subset F \cap G' \subset F$, this is a contradiction to the assumption on G.

The other two properties follow from the first property.

Existence of HN-filtration: Let E_1 be the maximal destabilizing subsheaf. By induction, we can assume E/E_1 has an HN-filtration

$$0 = G_0 \subset G_1 \subset \cdots \subset G_{\ell-1} = E/E_1.$$

Let $E_{i+1} \subset E$ be the preimage of G_i . We just need to show $p(E_1) \geq p(E_2/E_1)$. This follows from the maximal property of E_1 .

Uniqueness of HN-filtration: Assume **E**. and **E**.' are two HN-filtrations of E, with $p(E'_1) \geq p(E_1)$. Let j be minimal number such that $E'_1 \subset E_j$. Then

$$E_1' \to E_i \to E_i/E_{i-1}$$

in a nontrivial morphism between two semistable sheaves. Hence

$$p(E_j/E_{j-1}) \ge p(E_1) \ge p(E_1) \ge p(E_j/E_{j-1}).$$

So j=1 and $E_1'\subset E_1$. Then $p(E_1')\leq p(E_1)$. Repeat the argument, we can see $E_1'=E_1$. Now by induction, E/E_1 has a unique HN-filtration.

1.4. Jordan-Holder Filtration.

Definition 1.4.1. Let E be a semistable coherent sheaf of dimension d on X. A Jordan-Holder filtration is a filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_\ell = E$$

such that $gr_i(E) = E_i/E_{i-1}$ are stable with reduced Hilbert polynomial p(E).

Proposition 1.4.1. JH-filtration exists and gr $E := \bigoplus_i \operatorname{gr}_i(E)$ is independent of the choice of the JH-filtration.

Proof. The existence is straightforward: any filtration of E by semistable sheaves with reduced Hilbert polynomial p(E) has a maximal refinement, whose factors are necessarily stable.

The second statement follows from the same idea as in the proof of the uniqueness of the HN-filtration. We refer to Section 1.5 of Huybrechts and Lehn's book for detail. \Box

Definition 1.4.2. Two semistable sheaves E_1 and E_2 with $p(E_1) = p(E_2)$ are S-equivalent if $gr(E_1) \cong gr(E_2)$.

Definition 1.4.3. A semistable sheaf E is called polystable if E is the direct sum of stable sheaves.

1.5. Relative case.

Theorem 1.5.1. Let S be an integral k-scheme of finite type, $f: X \to S$ a projective morphism, $\mathcal{O}_X(1)$ an f-ample invertible sheaf on X, and F a flat family of d-dimensional coherent sheaves on the fibers of f. Then there is a projective birational morphism $g: T \to S$ of integral k-schemes and a filtration

$$0 = HN_{0,T}(F) \subset HN_{1,T}(F) \subset \cdots \subset HN_{\ell,T}(F) = F_T$$

such that

- (i) $HN_{i,T}(F)/HN_{i-1,T}(F)$ are T-flat for all $i=1,\dots,\ell$;
- (ii) there is a dense open subscheme $U \subset T$ such that $\mathbf{HN}_{\cdot,\mathbf{T}}(F)_t = g_X^*(\mathbf{HN}_{\cdot}(F_{g(t)}))$ for all $t \in U$.

Moreover, $(g, \mathbf{HN}_{\cdot,\mathbf{T}}(F))$ is universal, meaning that if $g': T' \to S$ is any dominant morphism of integral schemes, and \mathbf{F}' is a filtration of $F_{T'}$ satisfying the above two properties, then there exists an S-morphism $h: T' \to T$ with $\mathbf{F}' = h_X^*(\mathbf{HN}_{\cdot,\mathbf{T}}(F))$.

4 XIAOLEI ZHAO

Sketch of proof. Just like the proof of the existence of the HN-filtration, the idea is to construct a family of sheaves which is generically the maximal destabilizing sheaf fiberwise. The main ingredient is the quot schemes. We refer to Section 2.3 of Huybrechts and Lehn's book for detail.

Note. 1) In the proof, it can be shown that there exists a subscheme V of certain quot scheme **Quot** such that U is isomorphic to an open dense subscheme of S, and T is taken to be closure of V in **Quot**. So a priori, T is only birational to S. It is interesting to try to find an example in which this is necessarily birational.

2) In condition ii), we can't always take U = T, since the graded quotients of the relative HN-filtration may degenerate to unstable sheaves on special fibers.

2. Examples of stable vector bundles

$2.1. \Omega_{\mathbb{P}^n}$.

Proposition 2.1.1. $\Omega_{\mathbb{P}^n}$ is stable.

Proof. By the uniqueness of HN-filtration, it is invariant under the SL(V)-action on $\mathbb{P}^n = \mathbb{P}(V)$. In particular, every subsheaf in the filtration is a subbundle. However, since SL(V) acts transitively on \mathbb{P}^n , and the induced action on the cotangent vectors at a fixed point is irreducible, the only nontrivial invariant subbundle is $\Omega_{\mathbb{P}^n}$. Hence the HN-filtration is trivial and $\Omega_{\mathbb{P}^n}$ is semistable. Now $\gcd(\operatorname{rank}\Omega_{\mathbb{P}^n}, \deg\Omega_{\mathbb{P}^n}) = 1$, so it is μ -stable, and hence stable.

2.2. $\mathbb{P}^1 \times \mathbb{P}^1$ and change of polarization. On $\mathbb{P}^1 \times \mathbb{P}^1$, it is easy to compute that

$$\operatorname{Ext}^{1}(\mathcal{O}(0,3),\mathcal{O}(1,-3)) \cong k^{10}.$$

So we can consider the sheaf E given by a non-trivial extension

$$0 \to \mathcal{O}(1, -3) \to E \to \mathcal{O}(0, 3) \to 0.$$

Note that $c_1(E) = (1,0), c_2(E) = 3$. Let $L = \mathcal{O}(1,5), L' = \mathcal{O}(1,7)$. We claim:

Proposition 2.2.1. (i) E is not L'-semistable.

(ii) E is L-stable.

Proof. (i)
$$\mu_{L'}(\mathcal{O}(1, -3)) = 4 > \mu_{L'}(E) = \frac{7}{2}$$
.

- (ii) We need to show that for any rank 1 subbundle $\mathcal{O}(D)$ of E, we have $D \cdot L < \frac{5}{2} = \mu_L(E)$. There are two cases:
 - (a) $\mathcal{O}(D) \hookrightarrow \mathcal{O}(1,-3)$, or
 - (b) $\mathcal{O}(D) \hookrightarrow \mathcal{O}(0,3)$.

For case (a), $D \cdot L \leq \mathcal{O}(1, -3) \cdot \mathcal{O}(1, 5) = 2$.

For case (b), let $D=(\alpha,\beta)$, then $\alpha \leq 0$ and $\beta \leq 3$. $(\alpha,\beta) \neq (0,3)$ since the extension is nontrivial. Hence $D \cdot L = 5\alpha + \beta \leq 2$.