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Abstract

Following [3] very closely, we construct the moduli space of semistable
sheaves on a projective scheme over an algebraically closed field of
characteristic zero. We begin by explaining why such a space is open,
bounded, and proper. Next, we show that this space is actually a pro-
jective scheme, constructing it as a quotient of a certain Quot scheme,
using geometric invariant theory.

1 Introduction

The name of the seminar is “Moduli of sheaves on K3 surfaces”, so before
we actually talk about these objects and study their geometry, we need to
construct them. Even if the title refers to K3 surfaces only, we can actually
construct such a moduli of (semistable) sheaves on any projective scheme, by
which we mean a space whose closed points correspond roughly to semistable
sheaves. Semistable sheaves appear naturally in the classification problem of
vector bundles over an algebraic variety − the moduli space of vector bundles
is usually not proper, so we have to throw in some other sheaves, close to
vector bundles, which help us compactify this space. These objects will be
semistable sheaves which are not locally free.

However, even if one is interested in parametrizing sheaves only on a
projective variety, one will be forced to restrict to a small class of sheaves in
order to construct a reasonable space. Semistable sheaves are such a class
of sheaves, and every sheaf is related to semistable sheaves via the Harder-
Narasimhan filtration. Thus, the existence of such a space can be seen as a
method of classifying sheaves on a given projective scheme, so it certainly
has an intrinsic purpose.

One is led to study these spaces for K3 surfaces because of their spectac-
ular properties: two dimensional moduli spaces of sheaves on a K3 surface
are again K3 surfaces, not necessarily isomorphic to the initial K3, but with
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equivalent derived categories. Also, higher dimensional moduli spaces give
examples of irreducible symplectic (or even hyperkahler) manifolds. In these
notes, we only discuss the first question raised in this paragraph, namely
what is the moduli of (semistable) sheaves on a projective variety and how
it can be constructed.

A geometric invariant theory construction shows that this space is actu-
ally a projective scheme. However, we ignore this construction for the first
part of the notes and we study geometric properties of the moduli space with-
out referring to the GIT construction. In this part of the notes, the nature
of the space will not matter as all the properties can be formulated in terms
of the moduli functor we will want to corepresent, or, equivalently, in terms
of flat families of semistable sheaves. The reason is that the arguments used
to establishing openness, boundedness, and properness of the space can be
employed in understanding other moduli spaces (for example, certain moduli
spaces of complexes of sheaves) where there is no GIT construction available
to construct the space as a scheme. Of course, boundedness has to be estab-
lished a priori of the GIT construction anyway, in order to realize semistable
sheaves as points of a finite type scheme. Thus, we will give two proofs
of properness, one via Langton’s criterion, and one following from the GIT
construction.

The plan for the lecture/ the notes is the following: we begin in section 2
by reviewing some definitions and results we will need later in the notes, such
as the definition of semistable sheaves and Kleiman’s boundedness criterion,
and by explaining what we mean by the moduli space of sheaves of a scheme.
We also show that the family of semistable sheaves on a smooth projective
curve is bounded. In section 3 we prove openness for the moduli space of
interest. In section 4 we discuss boundedness− the most important ingredi-
ents are the Grauert- Mulich theorem and the Le Potier- Simpson estimates.
The case of higher dimensional varieties can be reduced to the case of curves
via these results and Kleiman’s criterion. In section 5 we prove Langton’s
theorem [6], which shows properness of the moduli of stable sheaves and gives
a replacement for properness for semistable sheaves. In section 6 we explain
how semistable sheaves can be seen as invariant points of a certain Quot
scheme under the action of GL(V ), and we set up the GIT construction.
Finally, in section 7, we prove the technical identification of (semi)stable
sheaves and (semi)stable points in the GIT sense for our particular case, and
conclude that the moduli space is actually a projective scheme.

Before starting, we should mention that the first construction of the mod-
uli space of semistable sheaves was given by Gieseker and Maruyama, and
that the proof we present is due to Simpson.
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2 Semistable sheaves and bounded families of

sheaves

In these notes, k will be always an algebraically closed field of characteristic
zero, X will denote a projective scheme over k, and OX(1) will be an ample
line bundle on X.

We need the characteristic zero assumption because we will use the Grauert-
Mulich theorem to establish boundedness for the moduli space. However,
boundedness can be established over fields of characteristic p as well [4] and
this result can be used to construct a moduli space of semistable sheaves in
this setting using the methods of the present article [5].

As we said in the introduction, we begin by recalling what a (Gieseker)
semistable sheaf is. For X and O(1) as above, we define the Hilbert poly-
nomial P (E, t) := χ(E ⊗O(t)) for any coherent sheaf E on X. The leading
coefficient of PE is ad = r

d!
, where d is the dimension of the support of E and

r is the multiplicity of the sheaf E. We further define the reduced Hilbert
polynomial p(E, t) = P (E,t)

ad
. A coherent sheaf E of dimension d is called

(Gieseker) (semi)stable if E is pure and for any proper subsheaf F ⊂ E we
have p(F )(≤) < p(E). We also define the slope µ′(E) := ad−1

ad
, where ai are

the coefficients of the Hilbert polynomial.
We should comment a little on the role and definition of µ′. Recall

from the first lecture that, besides Gieseker stability, we have also discussed
µ−stability, which had, however, in the definition the requirement that the
sheaf is supported on the full scheme X. In this case, we have defined

µ(E) =
deg(E)

rank (E)
.

We can define similar stability conditions for more general classes of sheaves
on X as follows. Define Cohd(X) to be the subcategory of Coh(X) con-
sisting of sheaves of dimension ≤ d; also, define Cohd,e(X) to be the quo-
tient category Cohd(X)/Cohe−1(X). Thus, the objects of Cohd,e(X) are the
same as the objects of Cohd(X), and morphism F → G are equivalence
classes of diagrams F ← F ′ → G such that F, F ′, and G are in Cohd(X),
both maps are in Cohd(X), and such that F ′ → F has both the kernel
and the cokernel supported in dimension ≤ e − 1. Similarly, we define
Q[T ]d = {P ∈ Q[T ]| deg(P ) ≤ d} and Q[T ]d,e = Q[T ]d/Q[T ]e−1. We will
have a well-defined Hilbert polynomial map

Pd,e : Cohd,e → Q[T ]d,e.

Let Td−1(E) be the maximal subsheaf of E whose support is in dimension
d − 1 or lower. We call E ∈ Cohd,e pure if Td−1(E) ∈ Cohd,e is zero, i.e.
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E is pure in dimensions e and higher. Finally, we define E ∈ Cohd,e to be
(semi)stable if E is pure in Cohd,e and if for all non-trivial proper subsheaves
F ,

pd,e(F ) ≤ pd,e(G).

This notion is a generalization of both Gieseker stability and µ−stability.
For d = dim(X) and e = d − 1 we recover µ−stability. Thus, if we want
to define µ−stability for sheaves not necessarily supported in full dimension,
we can do it using this new notion: a coherent sheaf E of dimension d
is called µ−(semi)stable if it is (semi)stable in Cohd,d−1, condition which
can be rephrased in function of µ′ only: E is µ−(semi)stable if and only if
Td−1(E) = Td−2(E) and µ′(F )(≤) < µ′(E) for all proper subsheaves F ⊂ E.
For sheaves E whose support is X, we have

µ(E) = ad(OX)µ′(E)− ad−1(OX).

Now, we would like to define the moduli space of semistable sheaves. For
this, fix a polynomial P ∈ Q[X]. Define a functor Φ : Sch/kop → Sets,
which will be the functor which we want to corepresent, by Φ(S) is the set
of isomorphism classes of S−flat families of semistable sheaves on X with
Hilbert polynomial P up to equivalence, where we say that two families F and
F ′ are equivalent if there exists a line bundle L on S such that F ∼= F ′⊗p∗L.
We would like to find a scheme that represent this functor and call it the
moduli space of semistable sheaves.

However, this functor is not representable by a scheme in general. Indeed,
if there exist semistable sheaves F1 and F2 with Ext1(F2, F1) 6= 0, choose F a
non-trivial extension. We can construct a flat family F of semistable sheaves
on A1 such that F0

∼= F1⊕F2 and Ft ∼= F by taking the line in Ext1(F2, F1)
corresponding to F . We also have the constant F1 ⊕ F2 family on A1. Now,
the map from A1 → M , where M is the potential moduli scheme has to
be constant in both cases, because it is constant when restricted to A1 − 0.
However, the two families are different, and so their ”defining” maps to M
should be different. There are two lessons we learn from here: first, we
should look for a coarse moduli space instead, that is, to a scheme M with
a natural transformation Φ → Hom(−,M) which is universal with respect
to all these natural transformations. Second, we should identify semistable
sheaves with the same Harder-Narasimhan factors and try to see whether
we can find a moduli space which sees these S-equivalence classes instead.
Following [3], if we can find a coarse moduli space M for Φ, we say that Φ is
corepresentable by M .

As mentioned in the introduction, we are vague about the nature of the
moduli space and call it simply a “space”. It will not matter in the beginning
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if the moduli space is a scheme/ algebraic space/ stack; the properties we in-
vestigate in the next sections are about the moduli functor, so it doesn’t really
matter if there is a geometric object representing it. However, in the sec-
ond half of the notes we will actually show that there is scheme representing
the moduli functor described above, where we further identify S-equivalent
semistable sheaves.

Next, we recall some result about boundedness that will be used in both
sections 2 and 4. First, recall that a family of isomorphism classes of coherent
sheaves on X is called bounded if there exists a scheme S of finite type over
k and a coherent OS×X sheaf F such that the given family is contained in
the set {Fs|s ∈ S}. A very useful characterization of boundedness can be
done in terms of the Mumford Castlenuovo regularity, which is defined for a
coherent sheaf F as

ρ(F ) := inf {m|H i(X,F (m− i)) = 0, for all i ≥ 0}.

A criterion due to Mumford says that a family of sheaves {Fi} is bounded
if and only if the set of Hilbert polynomials {P (Fi)} is finite and there is a
uniform bound for the Mumford-Castelnuovo regularity of all the sheaves Fi
in the family.

We will use inductive arguments to establish boundedness, and for that
we will want a good notion of transversality: if E is “nice”, we want E|H
its restriction to a hyperplane section to be “nice” as well. The correct
notion of transversality in our case is that of F−regularity. Recall that a
hyperplane s ∈ H0(X,O(1)) is called F−regular if F ⊗O(−1)→ F given by
multiplication by s is injective. The hyperplane determined by s is F−regular
if it does not contain any of the (finitely many) associated points of F . We
say that a sequence of hyperplanes s1, ..., sd ∈ H0(X,O(1)) is F−regular
if si is F/(s1, ..., si−1)(F ⊗ O(−1))− regular for all 1 ≤ i ≤ d. Also, we
introduce some notation which will be used throughout the notes: given a
sheaf F and hyperplanes H1, ..., Hd, we denote by Fi the restriction of F to
the intersection H1 ∩H2 ∩ ...∩Hd−i. This condition means that Hi does not
contain any of the associated points of the restriction of F to the intersection
H1 ∩ ... ∩ Hi−1. Next, we state Kleiman’s criterion, which will be used in
inductive arguments related to boundedness.

Theorem 2.1. [3, Theorem 1.7.8] Let {Fi} be a family of coherent sheaves
on X with the same Hilbert polynomial P . Then this family is bounded if and
only if there exist constants Cj, for 0 ≤ j ≤ d, such that for every element
F of the family, there exists a F−regular sequence of hyperplane sections
H1, ..., Hd such that h0(Fi) ≤ Ci, for all 0 ≤ i ≤ d.
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As we were saying, Kleiman’s criterion will be used in inductive argu-
ments. Thus, it would be good to have a general result for semistable sheaves
on a curve. This is given by the following:

Lemma 2.2. The family of semistable sheaves with fixed Hilbert polynomial
on a smooth projective curve is bounded.

Proof. The family of zero-dimensional sheaves is certainly bounded, so we fo-
cus on one-dimensional sheaves. We want to bound the Mumford-Castelnuovo
regularity, so we want to find an m for which

H1(X,F (m− 1)) = Hom(F, ωX(1−m))∨ = 0

in terms of the Hilbert polynomial only.
But both F and ωX(1 −m) are semistable, and we know that there are

no maps from a semistable sheaf to another if the first one has larger Hilbert
polynomial. It is clear that we can choose m such that this happens.

Next, we discuss a theorem of Grothendieck which will be used in estab-
lishing openness.

Theorem 2.3. [3, (proof of) Theorem 1.7.9] Let X be projective scheme,
O(1) ample line bundle, and E a d−dimensional sheaf with Hilbert polyno-
mial P and Castelnuovo-Mumford regularity ρ, and let µ0 > 0 be a real num-
ber. The family of purely d−dimensional quotients E � F with µ′(F ) ≤ µ0

is bounded and the regularity of E is bounded by ρ, P, and µ0 only.

3 Openness

Suppose we are given a flat family {Fs} of d−dimensional sheaves with
Hilbert polynomial P on the fibers of a projective morphism f : X → S
and that O(1) is an f−ample invertible sheaf. In this section, we show that
the locus s ∈ S for which Fs is semistable is open. This will establish:

Theorem 3.1. Semistability is open in flat families.

Proof. Say that Fs is a member of the flat family and that it is not semistable.
This means that there exists a proper purely d dimensional quotient Fs � E
such that p(E) ≤ p(Fs). This means, in particular, that µ′(E) ≤ µ′(Fs).
We are looking at quotients of Fs whose µ′ is bounded, so we can invoke
Grothedieck’s theorem 2.3 to deduce that this family is bounded, and that the
regularity ρ(E) is bounded in function of ρ(Fs), and the Hilbert polynomial
P (Fs), which is the same for all of them. The regularity of Fs is bounded for
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s ∈ S because F is a bounded family. This means that ρ(E) for all quotients
E of Fs, where s varies in S, is bounded, so the family of such quotients
is bounded. Now, using the Mumford-Castelnuovo criterion we deduce that
there are only finitely many Hilbert polynomials in the set {P (E)}, where
E is a quotient of a fiber Fs as above. Now, every such quotient will imply
that there exists a polynomial g < p such that the point s ∈ S is in the
image of π : QuotX/S(F,G)→ S, for example, by base-changing via the map
s→ S. Since π is proper, the image is a closed subset of S. Also, there are
finitely many possibilities for the Hilbert polynomial G, and Fs is semistable
precisely when s is in the complement of the finite union of these closed sets,
which is open.

4 Boundedness

Now, we want to prove boundedness for the family of semistable sheaves.
Boundedness will be used later in realizing semistable sheaves as points of a
Quot scheme. It is also the point where it matters that we work in charac-
teristic 0, as the proof in characteristic p is more involved and uses another
notion of stability (all pullbacks via Frobenius should be Gieseker semistable).

It is natural to proceed by induction, given Kleiman’s criterion. Given a
regular sequence of hyperplane sections H1, ..., Hd, define Xv = H1∩...∩Hd−v,
and let Fv be the restriction of F to Xv. To prove boundedness, it is enough
to bound h0(Xv, Fv) in function of d, the dimension of the support of F , and
P , the Hilbert polynomial of F . It would be nice if the restriction of F to a
general hyperplane section was semistable, then we would have been able to
use induction right away. Unfortunately, this is not true, but one has control
over how bad F |H fails to be semistable if one uses µ−stability. This is the
content of the Grauert-Mulich theorem. But, before we state it, we need
a definition. For F a non necessarily µ−stable sheaf, arrange the slopes of
the Harder-Narasimhan filtration in increasing order µ1 ≥ ... ≥ µs. So, we
have d hyperplane sections and s Harder- Narasimhan factors (we would like
s = 1, i.e. the restriction Fv to Xv is semistable, but, as we said above, this
might not happen). Define

δ(F ) := max {µi − µi+1|i = 1, s− 1} ,

a quantity which measures how far F is from being (semi)stable.

Theorem 4.1. [3, Theorem 3.1.2] Let X be a normal projective variety with
very ample sheaf O(1). Let F be a µ−semistable sheaf and let H1, ..., Hd
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be some hyperplane sections. Define F0 to be the restriction of F to their
intersection. Then for a generic choice of hyperplane sections,

0 ≤ δ(F0) ≤ deg(X),

where deg(X) is, as usual, the self-intersection number of O(1) taken dim(X)
times.

Let’s see an example of use of this theorem (this is actually the original
theorem Grauert and Mulich proved):

Theorem 4.2. [3, Theorem 3.0.1] Let E be a µ−semistable locally free sheaf
of rank r on complex projective space Pn. If L is a general line in Pn and
E|L ∼= OL(b1)⊕OL(b2)⊕ ...⊕OL(br), with integers b1 ≥ ... ≥ br, then

0 ≤ bi − bi+1 ≤ 1

for all 1 ≤ i ≤ r − 1.

One can actually formulate a more general statement involving arbitrary
degree hypersurfaces instead of hyperplane sections. There are also other
(stronger) theorems with the same flavour that can be used as replacements
for Grauert- Mulich. For example, Flanner has proved that the restriction of
a µ−semistable sheaf F to a general degree d hypersurface is µ−semistable
in characteristic zero, for d explicitly computable in function of invariants
of F . Mehta and Ramanathan proved the same statement over arbitrary
characteristic, but with no control over the degree of the hyerpsurface, so their
result did not imply boundedness of the moduli space of semistable sheaves
in characteristic p. For more theorems about restrictions to hypersurfaces
see [3, Chapter 7] and [4].

The other important ingredient is the Le Potier- Simpson theorem, which
gives a bound for h0(Xv, Fv) in function of various invariants of F . We will
also need this estimate when we characterize semistable sheaves in Section
7.

Theorem 4.3. [3, Theorem 3.3.1] Let X be a projective variety, O(1) an
ample line bundle, F a d−dimensional pure sheaf of multiplicity r. For a
sequence of hyperplanes Hi, 1 ≤ i ≤ d, define Xv = H1 ∩ ... ∩Hd−v and Fv
the restriction of F to Xv, for all 1 ≤ v ≤ d. Then, there exists an F−regular
sequence of hyperplanes Hi, 1 ≤ i ≤ d, such that

h0(Xv, Fv) ≤
r

v!

[
µ′m(F ) +

r(r + d)

2
− 1
]v
+
,

where [x]+ := max{x, 0} and where µ′m(F ) is the maximal slope that appears
in the Harder- Narasimhan filtration of F .
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As we were saying above, it only matters that we can find a sequence of
hyperplanes such that h0(Xv, Fv) is bounded in function of invariants of F
coming from the Hilbert polynomial, the exact bound given by the theorem
does not really matter for us.

Proof. We prove it only in the torsion free case. The idea is the following: we
first bound h0(Xv, Fv) in function of F1. It should not come as a surprise that
this can be done: we lose control more and more on the Harder-Narasimhan
factors as we take more hyperplane sections, but we know that the degree
remains constant, so µ′m(F1) should dominate all the terms. The second part
involves bounding µ′m(F1) in function of µ′m(F ), which should seem surprising
at first, considering what we have just said, but not after seeing the Grauert-
Mulich theorem, which controls the slope of the Harder-Narasimhan factors
on F1. We thus split the proof in two cases:

Step 1. We show by induction on v that

h0(Xv, Fv) ≤
rkD

v!

[µm(F1)

D
+ v
]v
+
,

where D is the degree of X and rk is the rank of F , r = rkD. For v = 1, we
have

h0(X1, F1) ≤
∑
i

h0(X1, gr
NH
i (F1)),

and we can assume that µm(F1) = µ(F1), i.e. that F1 is semistable. Further,
we know by boundedness for semistable sheaves on a curve that h0(X1, F1(−l)) =

0 for l > µ(F1)
D

. We also have the estimate

h0(X1, F1) ≤ h0(X1, F1(−l)) + rklD.

Thus, for l = bµ(F1)
D

+ 1c we get the bound claimed above.
For the inductive step, use the exact sequences

0→ Fv(−k − 1)→ Fv(−k)→ Fv−1(−k)→ 0

to obtain
h0(Xv, Fv) ≤

∑
i

h0(Xv−1, Fv−1(−i)).

Now, the result follows from the induction hypothesis and some elementary
computations.

Step 2. It is enough to show that

µm(F1) + vD ≤ µm(F ) + vD +
(rk− 1)D

2
.
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For this, we can assume that F is semistable, otherwise choose the quotient
which gives µm(F ) and look at its restriction to X1. Assume that the slopes
and the ranks of the HN factors for F1 are µ1 ≥ µ2 ≥ ... ≥ µs and rk1, ..., rks.
The Grauert-Mulich theorem says that µi − µi+1 ≤ D, for all 1 ≤ i ≤ s, and
thus

µ(F ) =
s∑
i=1

rki
rk
µi ≥ µ1 −

s∑
i=1

(i− 1)
rki
rk
D,

which can be bounded below by

µ1 −
D

rk

rk∑
i=1

(i− 1) = µm(F1)−
D(rk− 1)

2
.

This ends the proof in the torsion free case.

Now, we are ready to prove boundedness for semistable sheaves.

Theorem 4.4. Let f : X → S be a projective morphism of schemes of finite
type and let O(1) be an f−ample line bundle. Let P be a polynomial of degree
d, and let µ0 be a rational number. Then the family of purely d−dimensional
sheaves on the fibers of f with Hilbert polynomial P and maximal slope µ′max ≤
µ0 is bounded. In particular, the family of semistable sheaves on the fibres of
f with Hilbert polynomial P is bounded.

Proof. We reduce to the case S = Spec(k) and X = Pn. The Le Potier-
Simpson estimate says that for every purely d−dimensional coherent sheaf
F we can find a sequence of F− regular hyperplanes such that h0(Fv) ≤ C,
for 0 ≤ i ≤ d, where C is a constant depending only on the dimension
and the degree of X and the multiplicity and slope of F . For a semistable
sheaf, these depend on the Hilbert polynomial only. Now, boundedness for
semistable sheaves follows from Kleiman’s criterion.

5 Properness

Recall the valuative criterion for properness:

Theorem 5.1. [2, Theorem II.4.7 and Exercise II.4.11]
Let f : X → Y be a finite type morphism of noetherian schemes. Then

f is proper if and only if for every discrete valuation ring R with maximal
ideal (π), π ∈ R and quotient field K, and for every morphism of Spec (K)
to X and for every morphism Spec (R) to Y , there exists a unique morphism
Spec (R)→ X making the following diagram commutative:
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Spec (K) //

��

X

��
Spec (R) //

;;

Y

Denote by k = R/(π) the residue field of R. We do not expect separated-
ness in general for the moduli functor of semistable sheaves. This can be seen
using the example used to show there is no fine moduli space representing the
moduli functor. Let’s recall it: if there exist semistable sheaves F1 and F2

with Ext1(F2, F1) 6= 0, choose F a non-trivial extension. We can construct
a flat family F of semistable sheaves on A1 such that F0

∼= F1 ⊕ F2 and
Ft ∼= F by taking the line in Ext1(F2, F1) corresponding to F . We also have
the constant F1 ⊕ F2 family on A1. Both of these families are isomorphic on
A1 − 0, but have different fibers over 0, which means there are at least two
diagonal maps in the above diagram which make it commutative.

This means we cannot expect separatedness if we do not identify S-
equivalence classes for semistable sheaves. However, we expect separatedness
for stable sheaves and an extension property (filling the diagonal map in the
valuative criterion diagram) for semistable sheaves. Both of these results will
follow as consequences of the semi-continuity theorem and of the following
theorem (extension of a result of Langton):

Theorem 5.2. [3, Theorem 2.B.1] Let F be an R−flat family of d−dimensional
coherent sheaves on X such that FK = F ⊗ K is a semistable sheaf. Then
there exists a subsheaf E ⊂ F such that EK = FK and Ek is a semistable
sheaf.

Because a subsheaf of a flat sheaf is flat, E is flat over Spec(R). This
proposition implies that the moduli of stable sheaves is separated. Indeed,
using once again the valuative criterion, we have to show that FK has exactly
one extension over R. Suppose F and F ′ are two different extensions. Then,
by the semi-continuity property [1, Satz 3(i)] for Hom of sheaves, we get a
non-zero map Fk → F ′k. But they are both stable sheaves with the same
Hilbert polynomial (that of FK), so this is not possible.

Proof. The rough idea of the proof is as follows: we construct E one step at
the time, working in the categories Cohd,e. In case there is a value e such
that we cannot extend it further, we will get a destabilizing sheaf G of Fk.
We will try to modify the family F over Spec(k) so that the new family is
semistable. Assuming this cannot be done, we construct infinite chains of
maximal destabilizing sheaves of Fk. We will use these chains of sheaves to
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construct flat quotients of F ⊗R/πnR with Hilbert polynomial p(G) < p(F ),
for every n ≥ 1. This will imply that there is actually such a destabilizing
flat quotient over R, and thus that FK admits a destabilizing subsheaf, which
will contradict the hypothesis that FK is semistable over K.

As advertised above, we will use induction in the following way: if F is
as above and Fk is semistable in Cohd,e+1, then there exists a sheaf E ⊂ F
such that EK = FK and Ek is semistable in Cohd,e. The theorem follows by
descending induction on e, and the base case e = d is empty. So, fix some
e ≤ d−1 and suppose the claim was false for e. Define a descending sequence
of sheaves F = F 0 ⊃ F 1 ⊃ ... with F n

K = FK and F n
k not semistable in

Cohd,e as follows. Suppose F n has been defined, then let Bn be the maximal
destabilizing subsheaf of F n

k . Define further Gn = F n
k /B

n and let F n+1 be the
kernel of the composite homomorphism F n → F n

k → Gn. As a submodule of
an R−flat sheaf, F n+1 is R−flat again. Then

0→ Bn → F n
k → Gn → 0 (5.1)

is exact by definition. Further,

0→ F n+1 → F n → Gn → 0

is exact, so by restricting over Spec(k), we get that

TorR1 (F n, k)→ TorR1 (Gn, k)→ F n+1
k → F n

k → Gn → 0.

Now, TorR1 (F n, k) = 0 because F n is flat. Further, using the exact sequence

0→ R
π−→ R→ k → 0

we compute that TorR1 (Gn, k) = Gn. Thus, we deduce that

0→ Gn → F n+1
k → Bn → 0. (5.2)

Observe that both Gn and Bn+1 are subsheaves of F n+1
k . Now, the plan

is to show that Gn ∩ Bn+1 = 0 for big enough n, which will imply that
Bn+1 ⊂ Bn and Gn ⊂ Gn+1. We will see that this implies that the sequences
5.1 and 5.2 split. Define Cn = Bn+1 ∩ Gn; then Cn is a subsheaf of Bn.
We will use the notation pmax(F ) to denote the Hilbert polynomial of the
maximal destabilizing subsheaf of a given sheaf F . Observe that

p(Cn) ≤ pmax(G
n) < p(F n

k ) ≤ p(Bn+1) mod Q[T ]e−1,

where the first inequality is true by the definition of pmax and because
Cn ⊂ Gn. The second inequality is true by the choice of Bn as the maxi-
mal destabilizer sheaf of F n

k : if there would have been a subsheaf H ⊂ Gn
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such that p(H) > p(F n
k ), then looking at the preimage of H in F n

k we find a
subsheaf H ′ containing Bn which has p(H ′) > p(F n

k ), contradicting the max-
imality of Bn. The third one follows in a similar way from the definition of
Bn+1. Since Bn+1/Cn is isomorphic to a nonzero submodule of Bn it follows
that

pd,e(B
n+1) ≤ pd,e(B

n+1/Cn) ≤ pd,e(B
n) (5.3)

with equality if and only if Cn = 0. We know that pd,e(B
n) > pd,e(F

n
k ). How-

ever, recall that Fk is semistable in Cohd,e+1, so we must have pd,e+1(B
n) =

pd,e+1(Fk) = pd,e+1(G
n) for all n, which means that

pd,e(B
n)− pd,e(Fk) = βnT

e mod Q[T ]e−1

for a rational number βn. Since pd,e(B
n) > pd,e(F

n
k ) it follows that βn > 0.

The sequence βn is decreasing, bounded below, and it is contained in the
lattice 1

r!
Z ⊂ Q, so it has to become stationary; we can actually assume it is

constant from the beginning. This implies by the equality case of inequality
5.3 that Cn = 0. In particular, we have Bn+1 ⊂ Bn and Gn ⊂ Gn+1. Now,
this implies that P (B0) ≡ p(B1) ≡ ... mod Q[T ]e−1. From the exact sequence
5.1,

P (Gn) = P (F n
k )− P (Bn),

and also P (F n
k ) = P (F n

K) = P (FK), because F is flat over Spec(R). It
follows that P (G0) ≡ P (G1) ≡ ... mod Q[T ]e−1, and thus that G0 ⊂ G1 ⊂
... is a sequence of purely d−dimensional sheaves which are isomorphic in
dimension ≥ d−1. Now, two subsheaves with the same support of dimension
d isomorphic in dimensions ≥ d−1 have the same reflexive hull (result which
is a corollary of [3, Section 1.1]). This implies that the sheaves Gn have the
same reflexive hull, and thus we can regard them as being subsheaves of a
fixed sheaf (this common reflexive hull). The inclusions become eventually
isomorphisms, and we assume once again that happens for n = 0.

The map Gn → F n+1
k → Gn+1 obtained from combining the maps from

the exact sequences 5.1 and 5.2 is thus an isomorphism, thus the short exact
sequences 5.1 and 5.2 split. We will use the short notations B = Bn, G = Gn

from now on. We have that F n
k = B ⊕G. Define Qn = F/F n, n ≥ 0. Now,

we want to show that Qn is an R/πnR flat quotient of F/πnF with Hilbert
polynomial P (G). The first step in doing this is showing that Qn

k
∼= G. To

see this, observe that
F n+1
k → F n

k → Qn
k → 0. (5.4)

The map F n+1
k → Fk factors through the maps F n

k = B⊕G→ F n−1
k = B⊕G.

Now, using the definiton of F n as the kernel of F n−1 → Gn−1 → 0, we find
that

F n
k = B ⊕G→ F n−1

k = B ⊕G→ G→ 0,
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which shows that the map F n
k → F n−1

k is actually B⊕G id⊕0−−−→ B⊕G. Coming
back in the sequence 5.4, we find that Qn

k
∼= G. Using this result and the

exact sequence
0→ G→ Qn+1 → Qn → 0,

we can deduce that Qn is actually an R/πnR flat module. It is also a quo-
tient of F/πnF , by construction. All in all, this implies that the image of
the proper map π : QuotXR/R

(F, P (G))→ Spec(R) contains the closed sub-
scheme Spec(R/πnR). Thus, the proper map

π : QuotXR/R
(F, P (G))→ Spec(R)

has to be surjective. By base change, Quot(FK , P (G)) → Spec (K) is sur-
jective, which implies that FK also admits a destabilizing quotient with
Hilbert polynomial p(G) < p(F ). This contradicts the assumption that FK
is semistable, and ends the proof.

6 Setting up the GIT construction

As usual, X is a projective scheme with an ample line bundle O(1). Fix
a polynomial p ∈ Q[X]. Recall the definition of the moduli functor from
section 2: Φ : Sch/kop → Sets, Φ(S) is the set of isomorphism classes of
S−flat families of semistable sheaves on X with Hilbert polynomial P up to
equivalence, where we say that two families F and F ′ are equivalent if there
exists a line bundle on S such that F ∼= F ′ ⊗ p∗L.

We explain how we can regard the semistable sheaves as points of a certain
Quot scheme, invariant under the action of SL(V ) for a k vector space V
to be defined in a few lines. First, we know that the family of semistable
sheaves on X with Hilbert polynomial equal to P is bounded. This means
that there exists an integerm (depending on P only) such that every such F is
m−regular. Hence, F (m) is globally generated and h0(F (m)) = P (m). Let V
be a k−vector space of dimension P (m); one can think of V as H0(F⊗O(m))
for F a semistable sheaf. There exists a surjection V ⊗ OX(−m) → F , and
thus a point of Quot(V ⊗ OX(−m), P ). We will use the shorther notation
Quot for the scheme Quot(V ⊗OX(−m), P ) in the rest of these notes.

This point is contained in the open subset R ⊂ Quot of all the quotients
V ⊗ OX(−m) → F where the induced map V → H0(F (m)) is an isomor-
phism. Its closure R̄ will play an important role in our arguments. Denote
by Rs ⊂ R the open subset of stable subsheaves. All semistable sheaves with
Hilbert polynomial P appear as points of Quot, but with an ambiguity arising
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from the choice of basis of H0(F (m)). The group GL(V ) acts by composition
on Quot. The open subset R is invariant under this action and isomorphism
classes of semistable sheaves are given by the set R(k)/GL(V )(k).

Before discussing further the construction of the moduli of semistable
sheaves, let’s recall how GIT can be used to construct quotients of a projective
scheme by a reductive algebraic group as projective schemes. For a projective
scheme X with an action of a reductive group G and L a G−linearized ample
line bundle, one defines certain G−invariant open subsets of X, possibly
empty, of stable and semistable points Xs ⊂ Xss. For the definition of
(semi)stable points in the context of GIT and the definitions of categorical,
good, and geometric quotient, see the previous set of notes or [3, Chapter4.2].

Theorem 6.1. [3, Theorem 4.2.10] Let G be a reductive group acting on a
projective scheme X with a G−linearized ample line bundle L. Then there
exists a projective scheme Y and a morphism π : Xss(L) → Y such that π
is a universal good quotient for the G−action. Moreover, there is an open
subset Y s ⊂ Y such that for Xs(L) = π−1(Y s), the map π : Xs(L) → Y s is
a universal geometric quotient.

We will eventually want to use the above theorem for the projective
scheme X = R̄ and the reductive group G = SL(V ). However, before we
can apply the above theorem, we first have to find a G−linearized ample line
bundle on R̄. It is actually enough to find one over Quot.

One can show that the center Z ⊂ GL(V ) is contained in the stabilizer
of any point in Quot. Instead of actions of GL(V ) we will consider actions of
PGL(V ) and SL(V ). It is actually a little easier to find one for SL(V ), so
we will work with this group. Now, recall that we have constructed the Quot
scheme as a subscheme of a certain Grassmannian [3, Section 2.2]. Indeed,
for a projective morphism f : X → S, for a general coherent OX−module H
and for a Hilbert polynomial P , we showed that for large l, there is a closed
immersion

QuotX/S(H, P )→ GrassS(f∗H(l), P (l)).

Recall the standard proof that the Grassmannian is projective using the
Plucker embedding (for more details, see [3, Section 2.2]). We can pull back
the tautological line bundle from the projective space to get a very ample
line bundle on the Grassmannian, and thus on the Quot scheme. All in all,
this line bundle on Quot, in our particular case, is

Ll := det(p∗(U ⊗ q∗OX(l))),

where p : Quot×X → Quot and q : Quot×X → X are the projections onto
the two factors, and where U is the universal quotient sheaf on Quot×X. One
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can show that Ll has a natural GL(V )−linearization (which by restriction
will induce a natural SL(V )−linearization) using the results discussed in
Lecture 3.

Now we have all the ingredients required by Theorem 6.1 to construct a
quotient: we take X to be R̄ the closure of the points where the induced
map V → H0(F (m)) is an isomorphism, G to be SL(V ), and L to be Ll
defined above. Then Theorem 6.1 produces for us a new projective scheme,
and there is a priori no reason why this should be related to a potential
moduli scheme of semistable sheaves. The main theorem of this lecture is
that (semi)stable points for the above GIT setup correspond to
(semi)stable sheaves. This means that there exist a good quotient of the
action of SL(V ) on R. Further, it also gives a correspondence between the
closed points of the quotient and S-equivalence classes of semistable sheaves.
This means that the projective scheme produced by Theorem 6.1 is precisely
the scheme we were looking after, the moduli scheme of semistable sheaves!
The exact form of the result we are going to discuss in the next section is
the following:

Theorem 6.2. Let l� m� 0 sufficiently large integers. Then R = R
ss

(Ll)
and Rs = R

s
(Ll). Moreover, the closure of the orbits of two points V ⊗

OX(−m) → F1 and V ⊗ OX(−m) → F2 intersect if and only if grJH(F1) ∼=
grJH(F2). The orbit of a point V ⊗ OX(−m)→ F is closed if and only if it
is polystable.

Recall that grJH(F ) is the direct sum of the quotients appearing in the
Jordan-Holder filtration of a sheaf F− for more details, check the notes for
Lecture 1. One can prove [3, Lemma 4.3.1] that a categorical quotient of R
by SL(V ) corepresents the moduli functor. Thus, as explained in the above
paragraph, this proves:

Theorem 6.3. There is a projective scheme M(OX(1), P ) that universally
corepresents the moduli functor Φ. Closed points in M(OX(1), P ) are in
bijection with S-equivalence classes of semistable sheaves with Hilbert poly-
nomial P . Moreover, there is an open subset M s(OX(1), P ) that universally
corepresents the moduli functor Φs.

7 Proof of theorem 6.2

Theorem 6.2 says that (semi)stability for sheaves is equivalent to (semi)stability
in the GIT sense (for m and l large enough). This means we should char-
acterize GIT semistable points and semistable sheaves and try to show that
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these characterizations are the same. There is a good way to test whether
a point is semistable or not, namely the Hilbert-Mumford criterion. So, the
plan is the following: we test test whether a point V ⊗OX(−m)→ F is GIT
(semi)stable using the Hilbert-Mumford criterion, and we discover that this
characterizes GIT semistability in function of some inequalities involving the
number of global sections of subsheaves F ′ ⊂ F . After that, we will try to
find a similar characterizations of semistable sheaves, and we will discuss Le
Potier’s theorem, which does exactly that. Finally, we will explain how these
ingredients can be put together to prove Theorem 6.2.

So, let’s start with ρ : V ⊗ OX(−m) → F , a closed point in R, where
recall that R ⊂ Quot is the open subset of the Quot scheme parametrizing
points where V → H0(F (m)) is an isomorphism. As we were saying in the
above paragraph, we test whether this point is semistable using the Hilbert-
Mumford criterion. Let’s briefly recall what this criterion says in the general
GIT context, where X is a projective scheme and G is a reductive group
acting on X. For a more throughout analysis, see [3, Section 3.2]. Given a
one parameter subgroup λ : Gm → G, we get an action of Gm on X. Since
X is projective, the orbit map Gm → X, t→ λ(t)x extends in a unique way
to a morphism f : A1 → X with f(0) fixed point of the action on Gm on X
via λ. This means that Gm acts on the fiber L(f(0)) over f(0) with a certain
weight r, and define µ(x, λ) := −r.

Lemma 7.1 (Hilbert-Mumford). A point x ∈ X is (semi)stable if and only
if for any non-trivial one parameter subgroup λ : Gm → G,

µ(x, λ)(≥) > 0.

In order to apply the Hilbert- Mumford criterion we need to determine
the limit point limt→0[ρ]λ(t) for the action of any one parameter subgroup
λ : Gm → SL(V ) on [ρ] = [ρ : V ⊗ OX(−m) → F ] a point in R; λ is
completely determined by the decomposition V = ⊕n∈ZVn into weight pieces
Vn of weight n. Define ascending filtrations of V and F by V≤n = ⊕s≤nVs
and by F≤n = ρ(V≤n ⊗O(−m)) ⊂ F . Then ρ induces surjections ρn : Vn ⊗
O(−m)→ Fn = F≤n/F≤n−1. Summing over all weights we get a closed point

ρ := ⊕ρn : V ⊗O(−m)→ F := ⊕Fn

in the Quot scheme in question. One can show the following:

Lemma 7.2. The limit limt→0[ρ]λ(t) is [ρ].

Now, we can compute the weight of the action of Gm via the character
λ on the fiber of Ll at the point [ρ]. The Quot scheme is bounded, so we
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can choose l such that all H i(F (l)) = 0, for all elements F of Quot and for
i ≥ 1. In particular, P (F, l) = H0(F (l)). Indeed, F = ⊕Fn decomposes in
subsheaves on which Gm acts via the character t → tn, hence Gm will act
by weight n on H0(Fn(l)). In particular, it acts on the determinant of the
complex with cohomology groups H i(Fn(l)) with weight nP (Fn, l). Looking
at the definition of Ll, we see that

Ll(ρ) = ⊗n det(H0(Fn(l))),

which means that λ acts on Ll(ρ) with weight
∑

n nP (Fn, l). Recall that the
Hilbert-Mumford criterion says, in this particular case, that∑

n

nP (Fn, l) ≤ 0

for all one parameter subgroups λ : Gm → G.
Now, we can rewrite this weight using the fact that the determinant of

λ is 1, which implies
∑
n dim(Vn) = 0. After some easy manipulations, the

weight becomes∑
n

nP (Fn, l) = − 1

dim(V )

∑
n∈Z

(dim(V )P (F≤n, l)− dim(V≤n)P (F, l)).

This implies:

Lemma 7.3. A closed point ρ : V ⊗ OX(−m) → F in R is (semi)stable if
and only if for all non-trivial proper linear subspaces V ′ ⊂ V and the induced
subsheaf F ′ ⊂ F generated by V ′ we have:

dim(V )P (F ′, l)(≥) > dim(V ′)P (F, l).

One can actually prove a variant of the lemma where the inequality to be
checked is in function of the Hilbert polynomial only, and this is what will
be used in the proof of Theorem 6.2.

Lemma 7.4. If l is sufficiently large, a closed point ρ : V ⊗ OX(−m) → F
in R is (semi)stable if and only if for all coherent subsheaves F ′ ⊂ F and
V ′ = V ∩H0(F ′(m)), the following inequality holds:

dim(V )P (F ′)(≥) > dim(V ′)P (F ).

Proof. First, we remark that for l large enough, the inequality stated above
is equivalent to the estimate

dim(V )P (F ′, l)(≥) > dim(V ′)P (F, l),
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which is similar to the form of Lemma 7.3. The family of subsheaves F ′

generated by V ′ is bounded, so there are finitely many possible Hilbert poly-
nomials P (F ′), which means that for large l the conditions of the two lemmas
are equivalent. Moreover, if F ′ is generated by V ′, then V ′ ⊂ V ∩H0(F ′(m)),
and conversely, if F ′ is an arbitrary subsheaf of F and V ′ = V ∩H0(F ′(m)),
then the subsheaf of F generated by V ′ is contained in F ′.

Now, we have a good description of what are the GIT (semi)stable points
of the Quot scheme. Let’s see what would it mean for a semistable sheaf
to be GIT semistable sheaf− we will a imprecise and vague in the following
argument. We would like to have dim(V )P (F ′) ≥ dim(V ′)P (F ), for any
subsheaf F ′ ⊂ F with multiplicity 0 < r′ < r, where V ′ = H0(F ′(m)). Thus,
we would like to prove

h0(F (m))r′p(F ′) ≥ h0(F ′(m))rp(F ).

However, for semistable sheaves we know that p(F ′) ≤ p(F ), so this looks like
it is going in the other direction. However, they are both monic polynomials
of the same degree, so maybe we can prove

h0(F (m))r′ ≥ h0(F ′(m))r

and show that equality occurs precisley when p(F ′) = p(F ).
Now, if we choosem large enough, h0(F (m)) = rp(F,m) and h0(F ′(m)) =

r′p(F ′,m), and thus the inequality becomes

rr′p(F,m) ≥ rr′p(F ′,m),

which is true for m big enough depending on F and F ′. However, we have
to choose m depending on the Hilbert polynomial P alone (which we can
do, because the family of semistable sheaves with Hilbert polynomial P is
bounded), and not on all subsheaves F ′ ⊂ F of such sheaves F . One can
easily see that this family is not bounded. This means we have to use another
argument to prove something like h0(F (m))r′ ≥ h0(F ′(m))r. This is exactly
the content of a theorem of Le Potier. However, before we discuss it, we need
a corollary of the Le Potier- Simpson estimates dicussed in section 4.

Lemma 7.5. [3, Corollary 3.3.8] Let C = r(r+d)
2

. Then

h0(F (m)) ≤ r − 1

d!
[µ′max(F ) + C − 1 +m]d+ +

1

d!
[µ′(F ) + C − 1 +m]d+.

We can now state the theorem of Le Potier we alluded to above:
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Theorem 7.6. Let p be a polynomial of degree d, and let r be a positive
integer. Then for all sufficiently large integers m the following properties are
equivalent for a purely d−dimensional sheaf F of multiplicity r and reduced
polynomial p.

(1) F is (semi)stable,
(2) rp(m) ≤ h0(F (m)), and h0(K(m)) ≤ kp(m) for all subsheaves K ⊂ F

of multiplicity k, 0 < k < r.
(3) qp(m) ≤ h0(Q(m)) for all quotient sheaves F � Q of multiplicity q,

0 < q < r.

Proof. (1) =⇒ (2): The idea is as follows: we know that the family
of semistable sheaves with fixed Hilbert polynomial is bounded, but this
fails for the family of subsheaves. However, we know, from Grothendieck’s
lemma, that the family of (certain) quotients with bounded from above slope
is bounded, so the family of (saturated) subsheaves with bounded from be-
low slope is bounded. Then, we will need a different argument for subsheaves
with “small” slope.

As we said above, the family of semistable sheaves with Hilbert polyno-
mial equal to rp is bounded by Theorem 4.4. Therefore, if m is sufficiently
large, any such sheaf is m−regular, and rp(m) = h0(F (m)). Let K ⊂ F and

let C = r(r+d)
2

.
Case 1: µ′(K) < µ′(F )− rC. By lemma 7.4, we have that

h0(K(m)) ≤ k − 1

d!
[µ′max(K) + C − 1 +m]d+ +

1

d!
[µ′(K) + C − 1 +m]d+.

But we have µ′(K) < µ′(F )− rC and µ′max(K) ≤ µ′(F ) by the semistability
of F , which together imply that

h0(K(m))

k
≤ md

d!
+

md−1

(d− 1)!
(µ′(F )− 1) + lower terms.

Because p(m) = md

d!
+ md−1

(d−1)!µ
′(F ) + lower terms, we deduce that

h0(K(m)) ≤ kp(m)

for sufficiently large m and all K ⊂ F as above.
Case 2. µ′(K) ≥ µ′(F )− rC.
The family of saturated sheaves K ⊂ F is bounded by Grothendieck’s

lemma, where recall that a saturated sheaf K ⊂ F is by definition one for
which F/K is pure of dimension d equal to the dimension of the support of
F . This means that there exists a large m such that all these sheaves K are
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m−regular, implying that h0(K(m)) = P (K,m), and, moreover, that the set
of Hilbert polynomials they can have is finite. We can choose m big enough
such that

P (K,m) ≤ kp(m)↔ P (K) ≤ kp,

and choosing m like this shows that (1) implies (2).
(2) =⇒ (3) is immediate.
(3) =⇒ (1): apply (3) to the maximal destabilizing quotient sheaf Q of

F . Then, by Lemma 7.4,

p(m) ≤ h0(Q(m))

q
≤ 1

d!
[µ′(Q) + C − 1 +m]d+.

This shows that µ′min(F ) = µ′(Q) is bounded from below and consequently
µmax(F ) is bounded from above. Hence by Theorem 4.4 the family of sheaves
F satisfying (3) is bounded. Now let Q be any purely d−dimensional quotient
of F which destabilizes F , so µ′(F ) ≤ µ(Q). Using Grothendieck’s lemma,
the family of such quotients Q is bounded, so we can choose m large enough
such that h0(Q(m)) = P (Q,m) and

P (Q,m) ≥ qp(m)↔ P (Q) ≥ qp,

which indeed show that (3) implies (1).

After finding these equivalent characterizations of (semi)stable sheaves
and (semi)stable points in GIT sense, we are ready to prove Theorem 6.2.
In these notes/ talk, we only show that points corresponding to (semi)stable
sheaves are GIT (semi)stable. For the full proof, see [3, Section 4.4].

Proof. Recall that the Hilbert polynomial P = rp is fixed. Choose m big
enough such that all families of semistable sheaves with Hilbert polynomial
p, 2p, ..., rp have regularity m. This can be done as each of these families is
bounded.

Let ρ : V ⊗ O(−m) → F be a closed point in R. By definition of R,
the map V → H0(F (m)) is an isomorphism. Let F ′ ⊂ F be a subsheaf
of multiplicity 0 < r′ < r and let V ′ = V ∩ H0(F ′(m)). Using Le Potier’s
theorem, we have either p(F ′) = p(F ) or h0(F ′(m)) < r′p(m). In the first case
F ′ is m−regular and we get dim(V ′) = h0(F ′(m)) = r′p(m) and therefore

dim(V ′)P (F ) = (r′p(m))(rp) = (rp(m))(r′p) = dim(V )P (F ′).

In the second case

dim(V )r′ = rr′p(m) > h0(F ′(m)) = dim(V )r.
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These are the leading coefficients of dim(V )P (F ′) and dim(V ′)P (F ), so in-
deed

dim(V )P (F ′) > dim(V ′)P (F ).

By Lemma 7.3, we can deduce that (semi)stable sheaves correspond to (semi)stable
GIT points.

Before we finish, we should make an apology for not talking about the
existence of universal family of stable sheaves. We have argued that the
moduli functor Φ is not representable in general by looking at semistable
sheaves with the same Harder-Narasimhan factors, but there might be hope
that the moduli functor of stable sheaves Φs is representable. For example,
if we write

P (n) =
d∑
i=0

ai

(
n+ i− 1

i

)
,

with integral coefficients a0, ..., ad, then gcd(a0, ..., ad) = 1 implies that Φs is
representable. For more details, see [3, Section 4.6].
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