9. Commutativity and centers

Exercise 9.1. Show that \(\{ \cdot, \cdot \}_{t,c} = t \{ \cdot, \cdot \} \), where \(\{ \cdot, \cdot \} \) is the standard bracket on \(S(V)^\Gamma \).

Exercise 9.2. Prove the commutativity theorem in the case when \(V \) is not necessarily symplectically irreducible.

Exercise 9.3. Let \(\mathcal{A} \) be a \(\mathbb{Z}_{>0} \)-filtered algebra. If \(\text{gr} \mathcal{A} \) is finitely generated, then so is \(\mathcal{A} \).

Problem 9.1. Let \(p \in \mathcal{P}_0 \). Equip \(Z_p \) with a filtration restricted from \(H_p \). Show that \(\text{gr} Z_p = S(V)^\Gamma \). Deduce that \(H_p \) is a finitely generated module over \(Z_p \).

Problem 9.2. Now let \(p \notin \mathcal{P}_0 \). Show that the center of \(H_p \) coincides with \(\mathbb{C} \) as follows:

1. Let \(z \) lie in the center of \(H_p \). Show that \(\text{gr} z \in \text{gr} H_p = S(V)^\# \Gamma \) actually lies in \(S(V)^\Gamma \).

2. Show that \(\text{gr} z \) lies in the Poisson center of \(S(V)^\Gamma \), meaning that \(\{ \text{gr} z, S(V)^\Gamma \} = 0 \).

3. Show that the Poisson center of \(S(V)^\Gamma \) coincides with \(\mathbb{C} \).

Problem 9.3. In this problem we are going to equip \(Z_c \) with a structure of a Poisson algebra. Fix \(c \) and consider \(H_{t,c} \) as an algebra over \(\mathbb{C}[t] \) by making \(t \) an independent variable.

1. Let \(a, b \in Z_c \). Lift \(a, b \in H_c = H_{t,c}/(t) \) to elements \(\tilde{a}, \tilde{b} \in H_{t,c} \). Show that \([\tilde{a}, \tilde{b}] \in tH_{t,c} \) and that the element \(\frac{1}{t}[\tilde{a}, \tilde{b}] \) modulo \(t \) depends only on \(a, b \) and lies in \(Z_c \). Let \(\{ a, b \} \) be that element. Show that \(\{ \cdot, \cdot \} \) is the Poisson bracket.

2. Show that \(\{ Z_c^i, Z_c^j \} \subset Z_c^{i+j-2} \). Show that the induced bracket on \(\text{gr} Z_c = S(V)^\Gamma \) is a nonzero multiple of the standard bracket. Can you identify the scalar factor?

Problem 9.4. Show that the scheme \(C_p \) is irreducible and normal (and, well, Cohen-Macaulay and Gorenstein, if you know what these words mean).

Problem 9.5. Show that if \(C_p \) is smooth, then \(H_p e \) is a locally free \(H_p \)-module.

Problem 9.6. Let \(\mathcal{A} \) be a filtered algebra. Show that if \(\text{gr} \mathcal{A} \) has finite global dimension, then \(\mathcal{A} \) does.

Problem 9.7. Prove that if \(C_p \) is smooth, then \(p \) is spherical (we deal here with \(p \in \mathcal{P}_0 \)).