15. Quotient singularities as quiver varieties

The purpose of this problem set is to recover results of Lecture 15 in the special case of \(\Gamma_1 = \{1\} \).

Problem 15.1. Describe the \(GL(n) \)-orbits on \(\text{Mat}_n(\mathbb{C}) \oplus \mathbb{C}^n \). Deduce that there are \(n + 1 \) components in \(\mu^{-1}(0) \) and that they all have codimension \(n^2 \).

As in the correction to the lecture, we show that \(\mu^{-1}(0) \) is reduced. So \(\mu^{-1}(0)/G \) is a variety.

Problem 15.2. This problem establishes a bijective morphism \(\psi : \mathbb{C}^{2n}/S_n \to \mu^{-1}(0)/G \).

1. Let \(A, B \in \text{Mat}_n(\mathbb{C}) \) be such that \(\text{rk}[A, B] \leq 1 \). Show that, in some basis, \(A, B \) are upper triangular.

2. Deduce that any irreducible representation of \(\Pi^0(Q^{CM}) \) is actually a one-dimensional representation of \(\Pi^0(Q^{MK}) \).

3. Use this to produce a required morphism.

It remains to show that \(\psi^* \) is isomorphism of algebras.

Problem 15.3. Show that \(\mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]^{S_n} \) is generated by the polynomials of the form \(\sum_{i=1}^{n} (x_i + ty_i)^n \). Deduce that \(\psi^* \) is surjective and, using this, that \(\psi^* \) is an isomorphism.