PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

12. CM systems and quantum mechanics

Exercise 12.1. Show that the trajectories for \(H = \frac{1}{2} \text{tr}(Y^2) \) on \(R = T^* \text{Mat}_n(\mathbb{C}) \) are of the form \((X - tY, Y) \).

Problem 12.1. Prove part (2) of the main theorem (integration of the CM system) in Lecture 11.

Problem 12.2. Check that the symplectic forms on \(\mu^{-1}(E)/\tilde{G} \) and \(\mu^{-1}(O)/G \) (see the notation in the lecture notes) are the same.

Exercise 12.2. Show that the algebra \(D_h(X_0) \) is a deformation of \(\mathbb{C}[T^*X_0] \) compatible with the usual bracket there. Hint: how does the sheaf \(D_h(X_0) \) on \(X_0 \) behave under étale base changes?

Exercise 12.3. Let \(\mathcal{A}_h \) be a \(\mathbb{Z}_{>0} \)-graded \(\mathbb{C}[h] \)-algebra with \(h \) being of positive degree. Let \(\mathcal{A}'_h \) be the \(h \)-adic completion of \(\mathcal{A}_h \). Explain how to recover \(\mathcal{A}_h \) back from \(\mathcal{A}'_h \) using some natural action of \(\mathbb{C}^\times \) on \(\mathcal{A}'_h \).

Exercise 12.4. Let \(X_0 \) be a smooth affine variety acted freely by a finite group \(\Gamma \). Equip \(D_h(X_0) \) with a natural \(\Gamma \)-action by \(\mathbb{C}[h] \)-algebra automorphisms and then identify \(D_h(X_0)^\Gamma \) with \(D_h(X_0/\Gamma) \).

\footnote{This exercise and the next problem already appeared in Pset 11}